VA VISTA Product Integration Control Registrations Approved for Public Usage

September 26, 2011

Summary List
 ICR# CUSTODIAL PACKAGE NAME TYPE

--

 1135 ADVERSE REACTION TRACKING GMRAMCU0 Routine

 2378 ADVERSE REACTION TRACKING TEST FOR ALLERGY OR ART ENTRY Routine

 2422 ADVERSE REACTION TRACKING DBIA2422 Routine

 10099 ADVERSE REACTION TRACKING GMRADPT Routine

--

 1615 AUTOMATED INFO COLLECTION SYS ENCOUNTER FORM DATA ENTRY Routine

 3412 AUTOMATED INFO COLLECTION SYS Print Encounter Forms Routine

--

 5259 AUTOMATED LAB INSTRUMENTS LAB HL7 ORU MESSAGE Other

--

 3380 BAR CODE MED ADMIN PSB VALIDATE ESIG Remote Procedure

 3382 BAR CODE MED ADMIN PSB FMDATE Remote Procedure

 3383 BAR CODE MED ADMIN PSB SCANPT Remote Procedure

 3384 BAR CODE MED ADMIN PSB USERLOAD Remote Procedure

 3385 BAR CODE MED ADMIN PSB DISPLAY ORDER Remote Procedure

 3386 BAR CODE MED ADMIN PSB GETPRNS Remote Procedure

 3387 BAR CODE MED ADMIN PSB GETORDERLIST Remote Procedure

 3388 BAR CODE MED ADMIN PSB REACTIONS Remote Procedure

 3389 BAR CODE MED ADMIN PSB SERVER CLOCK VARIANCE Remote Procedure

 3390 BAR CODE MED ADMIN PSB VALIDATE ORDER Remote Procedure

 3391 BAR CODE MED ADMIN PSB PARAMETER Remote Procedure

 3395 BAR CODE MED ADMIN PSB TRANSACTION Remote Procedure

 3396 BAR CODE MED ADMIN PSB SUBMIT MISSING DOSE Remote Procedure

 3459 BAR CODE MED ADMIN PSB MEDICATION HISTORY REPORT Routine

--

 1207 CLINICAL PROCEDURES DBIA1207 Routine

 3279 CLINICAL PROCEDURES MCARUTL2 Routine

 3280 CLINICAL PROCEDURES MCARUTL3 Routine

--

 4544 CMOP PSX550 Routine

--

 4576 CONSULT/REQUEST TRACKING FIM REQUESTING USER CONSULT PERMISSIONS Routine

--

 1995 CPT/HCPCS CODES CPT Code APIs Routine

 1996 CPT/HCPCS CODES CPT/HCPCS Modifier APIs Routine

 1997 CPT/HCPCS CODES CPT Utility APIs Routine

 2815 CPT/HCPCS CODES CPT FILE POINTERS File

 2816 CPT/HCPCS CODES CPT MODIFIERS FILE File

 4125 CPT/HCPCS CODES CPT CODE UPDATE Other

 5408 CPT/HCPCS CODES CPT/HCPCS Procedure File 81 File

--

 3991 DRG GROUPER ICD Utility APIs Routine

 4052 DRG GROUPER DRG Code APIs Routine

 4126 DRG GROUPER ICD CODE UPDATE Other

 5388 DRG GROUPER ICD-9 Diagnosis File 80 File

 5404 DRG GROUPER ICD-9 Operation/Procedure file 80.1 File

--

 4955 ELECTRONIC SIGNATURE ELECTRONIC SIGNATURE Other

 3499 ENROLLMENT APPLICATION SYSTEM DBIA3499 Routine

 4460 EVENT CAPTURE DBIA4460 Routine

 10100 EVENT CAPTURE NATIONAL SERVICE FILE File

 5170 FOUNDATIONS gov.va.med.monitor.time.AuditTimer Other

 5171 FOUNDATIONS gov.va.med.crypto.VistaKernelHash Other

 5172 FOUNDATIONS gov.va.med.environment.Environment Other

 5173 FOUNDATIONS gov.va.med.environment.ServerType Other

 5174 FOUNDATIONS gov.va.med.exception.ExceptionUtils Other

 5175 FOUNDATIONS gov.va.med.exception.FoundationsExceptionInterface Other

 5176 FOUNDATIONS gov.va.med.net.SocketManager Other

 5177 FOUNDATIONS gov.va.med.xml.XmlUtilities Other

 5245 FOUNDATIONS vljFoundationsLib Exceptions Other

 1120 GEN. MED. REC. - VITALS GMRVUTL Routine

 5046 GEN. MED. REC. - VITALS GMVUTL Routine

 5047 GEN. MED. REC. - VITALS GMVGETVT Routine

 5048 GEN. MED. REC. - VITALS GMVGETQL Routine

 5050 GEN. MED. REC. - VITALS GMVGETC Routine

--

 1089 GENERIC CODE SHEET Supported Option File Routines Routine

 1107 GENERIC CODE SHEET GECSENTR reference Routine

 3466 GENERIC CODE SHEET DBIA3466-A Routine

 3467 GENERIC CODE SHEET DBIA3466-B Routine

--

 4638 HEALTH DATA & INFORMATICS DBIA4638-A Routine

 4639 HEALTH DATA & INFORMATICS DBIA4638-B Routine

 4640 HEALTH DATA & INFORMATICS DBIA4638-C Routine

 4651 HEALTH DATA & INFORMATICS DBIA4638-E Routine

 4856 HEALTH DATA & INFORMATICS DBIA4856 Routine

 4860 HEALTH DATA & INFORMATICS HDI Routine

 2161 HEALTH LEVEL SEVEN HLFNC2 Routine

 2164 HEALTH LEVEL SEVEN HL7 MESSAGE ADMINISTRATION Routine

 2165 HEALTH LEVEL SEVEN HL7 MESSAGE ADMINISTRATION Routine

 2270 HEALTH LEVEL SEVEN Subscription Management Routine

 2271 HEALTH LEVEL SEVEN DERIVE LOGICAL LINK FROM INSTITUTION Routine

 2434 HEALTH LEVEL SEVEN DBIA2434 Routine

 2887 HEALTH LEVEL SEVEN Application Parameter Inquire Routine

 3098 HEALTH LEVEL SEVEN HL7 APIs Routine

 3099 HEALTH LEVEL SEVEN HL7 APIs Routine

 3484 HEALTH LEVEL SEVEN HL7 Capacity Management Phase I API Routine

 3488 HEALTH LEVEL SEVEN HL7 Capacity Management Phase II API Routine

 3988 HEALTH LEVEL SEVEN Dynamic Routing Header Help Code Routine

 4262 HEALTH LEVEL SEVEN MESSAGE BODY DELETION Routine

 4716 HEALTH LEVEL SEVEN HLO BUILD MESSAGE APIS Routine

 4717 HEALTH LEVEL SEVEN HLO SEND MESSAGE APIS Routine

 4718 HEALTH LEVEL SEVEN HLO PARSING APIS Routine

 4722 HEALTH LEVEL SEVEN HLO APPLICATION ACKNOWLEDGEMENT APIS Routine

 4723 HEALTH LEVEL SEVEN HLO APPLICATION ACKNOWLEDGEMENT APIS (CONTINUED) Routine

 4724 HEALTH LEVEL SEVEN HLO MISCELANEOUS APIS Routine

 4725 HEALTH LEVEL SEVEN HLO SUBSCRIPTION REGISTRY APIS Routine

 4726 HEALTH LEVEL SEVEN HLO SUBSCRIPTION REGISTRY APIS (CONTINUED) Routine

 4727 HEALTH LEVEL SEVEN HLO CONVERSION APIS Routine

 4728 HEALTH LEVEL SEVEN HLO CONVERSION APIS (2) Routine

 4730 HEALTH LEVEL SEVEN HLO QUEUE MANAGEMENT APIS Routine

 4731 HEALTH LEVEL SEVEN HLO CONVERSOIN APIS (3) Routine

 4805 HEALTH LEVEL SEVEN HLO APPLICATION REGISTRY File

 4852 HEALTH LEVEL SEVEN HLO DATA TYPE PARSERS Routine

 4853 HEALTH LEVEL SEVEN HLO BUILDING MESSAGES WITH DATA TYPES Routine

 10106 HEALTH LEVEL SEVEN HLFNC Routine

 10107 HEALTH LEVEL SEVEN HLFNC1 Routine

 10108 HEALTH LEVEL SEVEN HLTF Routine

 10109 HEALTH LEVEL SEVEN HLTRANS Routine

 10110 HEALTH LEVEL SEVEN HL7 NON-DHCP APPLICATION PARAMETER File

 10136 HEALTH LEVEL SEVEN HL7 APPLICATION PARAMETER File

 10137 HEALTH LEVEL SEVEN HL7 SEGMENT NAME FILE File

 10138 HEALTH LEVEL SEVEN HL7 TRANSMISSION FILE File

 3487 HEALTH SUMMARY HEALTH SUMMARY COMPONENT FILE #142.1 File

 2005 IFCAP DBIA2005 Routine

 4151 IFCAP CoreFLS/Legacy Software Shut Down Status Check Routine

 10085 IFCAP PRCPUSA Routine

 3297 INCOME VERIFICATION MATCH DBIA3297 Routine

 4537 INPATIENT MEDICATIONS PSJ53P1 Routine

 4819 INPATIENT MEDICATIONS PSJ59P5 Routine

 5001 INPATIENT MEDICATIONS Pointing to the PHARMACY QUICK ORDER (#57.1) File File

 2034 INTEGRATED BILLING DBIA2034 Routine

 3733 INTEGRATED BILLING GMT Related IB utilities (IA#3733) Routine

 4419 INTEGRATED BILLING DBIA4419 Routine

 4663 INTEGRATED BILLING PFSS ON/OFF SWITCH Routine

 10147 INTEGRATED BILLING IBARXEU Routine

 1157 KERNEL XPDMENU Routine

 1340 KERNEL DBIA1340 File

 1367 KERNEL XPDKEY Routine

 1472 KERNEL XUTMOPT Option scheduling interface Routine

 1519 KERNEL XUTMDEVQ Routine

 1557 KERNEL E-SIG API'S Routine

 1621 KERNEL %ZTER (ERROR RECORDING) Routine

 1625 KERNEL PERSON CLASS API'S Routine

 1632 KERNEL XUS SIGNON SETUP Remote Procedure

 2067 KERNEL UPDATE PACKAGE APPLICATION HISTORY Routine

 2118 KERNEL DBIA2118 Routine

 2119 KERNEL DBIA2119 Routine

 2171 KERNEL DBIA2171 Routine

 2172 KERNEL DBIA2172 Routine

 2232 KERNEL Resource Device Routine

 2240 KERNEL ENCRYPTING -- CLIENT/SERVER Routine

 2241 KERNEL DECRYPTING -- CLIENT/SERVER Routine

 2320 KERNEL DBIA2320 Routine

 2343 KERNEL DBIA2343 Routine

 2433 KERNEL XPDGREF Other

 2541 KERNEL DBIA2541 Routine

 2542 KERNEL DBIA2542 Routine

 2622 KERNEL DBIA2622 Routine

 2641 KERNEL KIDS VARIABLES Other

 2788 KERNEL XQALBUTL Routine

 2790 KERNEL XQALSURO Routine

 3009 KERNEL XQALFWD Routine

 3010 KERNEL XQALBUTL Routine

 3056 KERNEL DNS lookup Routine

 3057 KERNEL SET~XUS1A Routine

 3065 KERNEL Name Standardization APIs Routine

 3156 KERNEL XLFCRC Routine

 3172 KERNEL Special Printer Variables Routine

 3173 KERNEL XGF Function Library Routine

 3178 KERNEL Convert String to Soundex Routine

 3213 KERNEL XQALSURO Routine

 3277 KERNEL XUSRB Routine

 3522 KERNEL $$OS EXTRINSIC FUNCTION IN ROUTINE %ZOSV Routine

 3589 KERNEL Tasking An Event From a New Style Xref Routine

 3618 KERNEL POSTAL CODE AND COUNTY CODE APIS Routine

 3771 KERNEL XUDHGUI Routine

 3795 KERNEL XUMF Routine

 4334 KERNEL XU USER TERMINATE Other

 4409 KERNEL XUP Routine

 4440 KERNEL DBIA4440 Routine

 4558 KERNEL LIBRARY FUNCTIONS Routine

 4574 KERNEL XUPS APIs Routine

 4685 KERNEL PROTOCOL File

 4770 KERNEL unique handle into XTMP global. Routine

 4851 KERNEL KAAJEE Other

 4894 KERNEL FATKAAT TEST ENTRY Other

 5567 KERNEL XPDPROT Routine

 10038 KERNEL HOLIDAY FILE File

 10044 KERNEL XUS Routine

 10045 KERNEL XUSHSHP Routine

 10046 KERNEL XUWORKDY Routine

 10047 KERNEL USER FILE File

 10048 KERNEL PACKAGE FILE File

 10050 KERNEL XUSESIG Routine

 10051 KERNEL XUVERIFY Routine

 10052 KERNEL XUSCLEAN Routine

 10053 KERNEL XUSERNEW Routine

 10056 KERNEL STATE FILE File

 10060 KERNEL NEW PERSON FILE File

 10063 KERNEL %ZTLOAD Routine

 10074 KERNEL XQH Routine

 10075 KERNEL OPTION FILE File

 10076 KERNEL XUSEC GLOBAL File

 10077 KERNEL XQ92 Routine

 10078 KERNEL XQCHK Routine

 10079 KERNEL XQDATE Routine

 10080 KERNEL XQH4 Routine

 10081 KERNEL XQALERT Routine

 10086 KERNEL %ZIS Routine

 10088 KERNEL %ZISS Routine

 10089 KERNEL %ZISC Routine

 10090 KERNEL INSTITUTION FILE File

 10093 KERNEL SERVICE/SECTION FILE File

 10096 KERNEL Z OPERATING SYSTEM FILE File

 10097 KERNEL %ZOSV Routine

 10101 KERNEL XQOR Routine

 10102 KERNEL XQORM1 Routine

 10103 KERNEL XLFDT Routine

 10104 KERNEL XLFSTR Routine

 10105 KERNEL XLFMTH Routine

 10114 KERNEL DEVICE FILE File

 10140 KERNEL XQORM Routine

 10156 KERNEL OPTION FILE File

 1958 LAB SERVICE DBIA1958 Routine

 2766 LAB SERVICE Formatted Lab Results Routine

 4989 LAB SERVICE LR7OSAP4- GET AP RESULTS Routine

 5161 LAB SERVICE Laboratory Reference Range Uniform Formatting Routine

 10054 LAB SERVICE LABORATORY TEST FILE File

 10055 LAB SERVICE TOPOGRAPHY FIELD FILE File

 10130 LAB SERVICE MORPHOLOGY FIELD FILE File

 10131 LAB SERVICE ETIOLOGY FIELD FILE File

 10132 LAB SERVICE FUNCTION FIELD FILE File

 10133 LAB SERVICE DISEASE FIELD FILE File

 10134 LAB SERVICE PROCEDURE FIELD FILE File

 10135 LAB SERVICE OCCUPATION FIELD FILE File

 457 LEXICON UTILITY CLINICAL LEXICON EXPRESSIONS File

 1571 LEXICON UTILITY LEXICON UTILITY EXPRESSIONS File

 1573 LEXICON UTILITY LEXU Routine

 1597 LEXICON UTILITY LEXICON EXPRESSION INFORMATION Routine

 1609 LEXICON UTILITY LEXICON SETUP SEARCH PARAMETERS Routine

 1614 LEXICON UTILITY LEXICON EXPRESSIONS FROM CODES Routine

 2950 LEXICON UTILITY DBIA2950 Routine

 4083 LEXICON UTILITY LEXICON CODE STATUS Routine

 4912 LEXICON UTILITY LEXICON CONCEPT DATA FOR CODE Routine

 4913 LEXICON UTILITY LEXICON CONCEPT DATA FOR TEXT Routine

 4914 LEXICON UTILITY LEXICON VALIDATE CODE FOR SOURCE Routine

 5006 LEXICON UTILITY Lexicon Obtain Synonyms for Code Routine

 5007 LEXICON UTILITY Lexicon Obtain Fully Specified Name Routine

 5008 LEXICON UTILITY Lexicon Obtain Preferred Term Routine

 5009 LEXICON UTILITY Lexicon Obtain Designation Code Routine

 5010 LEXICON UTILITY Lexicon Obtain Mapped Codes Routine

 5011 LEXICON UTILITY Lexicon Obtain Version Identifier Routine

 5386 LEXICON UTILITY LEXU Lookup Screens Routine

 5451 LIST MANAGER VALM HIDDEN ACTIONS protocol Other

 10118 LIST MANAGER VALM Routine

 10120 LIST MANAGER VALM4 Routine

 1040 MAILMAN LIST INDEX OF MESSAGE RESPONSES Routine

 1131 MAILMAN XMB('NETNAME') File

 1132 MAILMAN TEST FORWARDING ADDRESS Routine

 1136 MAILMAN ENCODE/DECODE CARETS AND CTRL CHARS Routine

 1142 MAILMAN MESSAGE SUBJECT API Routine

 1143 MAILMAN MESSAGE HEADER API Routine

 1144 MAILMAN MESSAGE INFO API Routine

 1145 MAILMAN REPLY TO / ANSWER A MESSAGE API Routine

 1146 MAILMAN MAIL GROUP API Routine

 1147 MAILMAN LOOKUP / CREATE BASKET Routine

 1148 MAILMAN MAILMAN: Interactive control of a port Routine

 1150 MAILMAN RESEQUENCE MESSAGES API Routine

 1151 MAILMAN MAILMAN: Server API Routine

 1230 MAILMAN PRINT A MESSAGE API Routine

 1232 MAILMAN INTERACTIVE REPLY TO A MESSAGE API Routine

 1233 MAILMAN INTERACTIVE ANSWER OR SEND A MESSAGE API Routine

 1283 MAILMAN MAILMAN - Access 'as if' a server Routine

 1284 MAILMAN INTERACTIVE READ/MANAGE MESSAGES OPTION Routine

 2723 MAILMAN MAILBOX AND BASKET API Routine

 2728 MAILMAN USER ENVIRONMENT API Routine

 2729 MAILMAN MESSAGE ACTION API Routine

 2730 MAILMAN MESSAGE EDIT API Routine

 2731 MAILMAN SECURITY, PERMISSIONS, & RESTRICTIONS API Routine

 2732 MAILMAN SECURITY, PERMISSIONS, & RESTRICTIONS API Routine

 2733 MAILMAN SECURITY, PERMISSIONS, & RESTRICTIONS API Routine

 2734 MAILMAN MESSAGE & MAILBOX UTILITIES API Routine

 2735 MAILMAN DATE & STRING UTILITIES API Routine

 2736 MAILMAN MESSAGE INFORMATION API Routine

 2737 MAILMAN MESSAGE INFORMATION API Routine

 2774 MAILMAN INTERACTIVE API Routine

 3006 MAILMAN MAIL GROUP API Routine

 3890 MAILMAN BULLETIN LOOKUP AND EDIT File

 10064 MAILMAN PROGRAMMER API Routine

 10065 MAILMAN DELETE/SAVE MESSAGE API Routine

 10066 MAILMAN CREATE A MESSAGE STUB API Routine

 10067 MAILMAN ADDRESSING API Routine

 10068 MAILMAN START BACKGROUND DELIVERY TASK Routine

 10069 MAILMAN SEND A BULLETIN API Routine

 10070 MAILMAN SEND / FORWARD A MESSAGE API Routine

 10071 MAILMAN GLOBAL PACKMAN MESSAGE API Routine

 10072 MAILMAN SERVER MESSAGE API Routine

 10073 MAILMAN MAILMAN: Message Body Access, including Servers Routine

 10091 MAILMAN MAILMAN SITE PARAMETERS File

 10111 MAILMAN MAILMAN: Maintenance of Mail Groups File

 10113 MAILMAN MAILMAN: Message Text - Direct Entry File

 2701 MASTER PATIENT INDEX VISTA MPIF001 Routine

 2702 MASTER PATIENT INDEX VISTA MPIFAPI Routine

 1612 MENTAL HEALTH DSM FILE File

 2535 MENTAL HEALTH DBIA2535 Routine

 2889 MENTAL HEALTH DBIA2889 Routine

 2891 MENTAL HEALTH DBIA2891 Routine

 2893 MENTAL HEALTH DBIA2893 Routine

 2895 MENTAL HEALTH DBIA2895 Routine

 2896 MENTAL HEALTH DBIA2896 Routine

 2531 NATIONAL DRUG FILE Application Programmer Interfaces (APIs) Routine

 2574 NATIONAL DRUG FILE ADDITIONAL APIS FOR NDF Routine

 4531 NATIONAL DRUG FILE DBIA4531 Routine

 4540 NATIONAL DRUG FILE DBIA4540 Routine

 4543 NATIONAL DRUG FILE DBIA4543 Routine

 4545 NATIONAL DRUG FILE DBIA4545 Routine

 4554 NATIONAL DRUG FILE DBIA4554 Routine

 4829 NATIONAL DRUG FILE DBIA4829 Routine

 4997 NATIONAL DRUG FILE Pointing to the VA DRUG CLASS (#50.605) File File

 4998 NATIONAL DRUG FILE Pointing to the DRUG INGREDIENTS (#50.416) File File

 4999 NATIONAL DRUG FILE Pointing to the VA GENERIC (#50.6) File File

 10098 NEW PERSON see Veterans Administration Other

 3052 NURSING SERVICE Nursing Ward Location API Routine

 2186 ORDER ENTRY/RESULTS REPORTING DBIA2186 Routine

 2187 ORDER ENTRY/RESULTS REPORTING DBIA2187 Routine

 2414 ORDER ENTRY/RESULTS REPORTING ORDERS CONVERSION CHECK File

 4859 ORDER ENTRY/RESULTS REPORTING ORDER CHECK API Routine

 4922 ORDER ENTRY/RESULTS REPORTING ORDER HL7 MESSAGE ESCAPE API Routine

 10092 ORDER ENTRY/RESULTS REPORTING Routine Routine

 1878 OUTPATIENT PHARMACY DBIA1878 Routine

 4820 OUTPATIENT PHARMACY PRESCRIPTION FILE (#52) DATA ELEMENTS Routine

 4821 OUTPATIENT PHARMACY DBIA4821 Routine

 4822 OUTPATIENT PHARMACY DBIA4822 Routine

 4823 OUTPATIENT PHARMACY DBIA4823 Routine

 4824 OUTPATIENT PHARMACY DBIA4824 Routine

 4825 OUTPATIENT PHARMACY DBIA4825 Routine

 4827 OUTPATIENT PHARMACY OUTPATIENT SITE FILE Routine

 4858 OUTPATIENT PHARMACY DBIA 4858 Routine

 4902 OUTPATIENT PHARMACY OBTAIN FILLS, REFILLS, PARTIAL FILLS FROM PRESCRIPTION FILE Routine

 5000 OUTPATIENT PHARMACY Pointing to the PRESCRIPTION (#52) File File

 5014 OUTPATIENT PHARMACY Pointing to the OUTPATIENT SITE (#59) File File

 441 PATIENT DATA EXCHANGE DBIA439-C Routine

 3035 PCE PATIENT CARE ENCOUNTER DBIA3035-A Routine

 3038 PCE PATIENT CARE ENCOUNTER DBIA3035-B Routine

 3043 PCE PATIENT CARE ENCOUNTER DBIA3035-C Routine

 3044 PCE PATIENT CARE ENCOUNTER DBIA3035-D Routine

 3045 PCE PATIENT CARE ENCOUNTER DBIA3035-E Routine

 3046 PCE PATIENT CARE ENCOUNTER DBIA3035-F Routine

 3047 PCE PATIENT CARE ENCOUNTER DBIA3035-G Routine

 3048 PCE PATIENT CARE ENCOUNTER DBIA3035-H Routine

 3049 PCE PATIENT CARE ENCOUNTER DBIA3035-I Routine

 3050 PCE PATIENT CARE ENCOUNTER DBIA3035-J Routine

 3051 PCE PATIENT CARE ENCOUNTER DBIA3035-A Routine

 4424 PCE PATIENT CARE ENCOUNTER PCE Patient Immunization Data Routine

 2494 PHARMACY DATA MANAGEMENT DBIA-2494 PDM-Delete bad field global File

 4237 PHARMACY DATA MANAGEMENT DBIA4237 Routine

 4480 PHARMACY DATA MANAGEMENT DBIA4480 Routine

 4533 PHARMACY DATA MANAGEMENT DBIA4533 Routine

 4546 PHARMACY DATA MANAGEMENT ADMINISTRATION SCHEDULE Routine

 4548 PHARMACY DATA MANAGEMENT MEDICATION ROUTES APIs Routine

 4549 PHARMACY DATA MANAGEMENT DBIA4549 Routine

 4550 PHARMACY DATA MANAGEMENT DBIA4550 Routine

 4551 PHARMACY DATA MANAGEMENT DBIA4551 Routine

 4662 PHARMACY DATA MANAGEMENT DBIA4662 Routine

 4826 PHARMACY DATA MANAGEMENT DBIA4826 Routine

 4828 PHARMACY DATA MANAGEMENT DBIA4828 Routine

 4846 PHARMACY DATA MANAGEMENT DBIA4846 File

 4928 PHARMACY DATA MANAGEMENT DATA RETRIEVAL FROM FILE 55 Routine

 5494 QUASAR ACKQ A&SP STAFF CONVERSION Routine

 2043 RADIOLOGY/NUCLEAR MEDICINE DBIA2043 Routine

 2266 RADIOLOGY/NUCLEAR MEDICINE Rad/Nuc Med return report narrative text (order) Routine

 2267 RADIOLOGY/NUCLEAR MEDICINE Rad/Nuc Med return imaging location information Routine

 2268 RADIOLOGY/NUCLEAR MEDICINE Rad/Nuc Med exam case numbers linked to an order Routine

 2877 RADIOLOGY/NUCLEAR MEDICINE DBIA2877 Routine

 263 REGISTRATION DBIA263-A Routine

 1154 REGISTRATION DIC(45.7, File

 1246 REGISTRATION DGPMDDCF CALLS Routine

 2664 REGISTRATION OBSERVATION API Routine

 2716 REGISTRATION DG MST STATUS API'S Routine

 2919 REGISTRATION Patients enrolled/preferred facility Routine

 2990 REGISTRATION Treating Facility List Routine

 3017 REGISTRATION PD1 segment generator Routine

 3018 REGISTRATION PV1 segment generator Routine

 3019 REGISTRATION DG CHK BS5 XREF Y/N Remote Procedure

 3020 REGISTRATION DG CHK BS5 XREF ARRAY Remote Procedure

 3021 REGISTRATION DG CHK MEANS TEST DIV DISPLAY Remote Procedure

 3022 REGISTRATION DG CHK PAT MEANS TEST REQUIRED Remote Procedure

 3023 REGISTRATION DG CHK PAT/DIV MEANS TEST Remote Procedure

 3027 REGISTRATION Security/Sensitive Record access Routine

 3157 REGISTRATION PATIENT TREATMENT FILE DATA Routine

 3164 REGISTRATION DG PATIENT TREATMENT DATA Remote Procedure

 3402 REGISTRATION DG SENSITIVE RECORD ACCESS Remote Procedure

 3403 REGISTRATION DG SENSITIVE RECORD BULLETIN Remote Procedure

 3457 REGISTRATION DBIA3457 Routine

 3523 REGISTRATION DBIA3523 Routine

 3593 REGISTRATION DBIA3593 Routine

 3744 REGISTRATION DBIA3744 Routine

 3799 REGISTRATION DBIA3799 Routine

 4080 REGISTRATION BAD ADDRESS INDICATOR Routine

 4156 REGISTRATION COMBAT VETERAN STATUS Routine

 4292 REGISTRATION DBIA4292 Routine

 4346 REGISTRATION VAFHLU Routine

 4418 REGISTRATION ADT HL7 MSG Other

 4462 REGISTRATION SHAD STATUS INDICATOR Routine

 4678 REGISTRATION VAFCTFU GET TREATING LIST Remote Procedure

 4679 REGISTRATION VAFCTFU CONVERT ICN TO DFN Remote Procedure

 4680 REGISTRATION VAFCTFU CONVERT DFN TO ICN Remote Procedure

 4800 REGISTRATION EMERGENCY RESPONSE INDICATOR Routine

 4807 REGISTRATION API FOR RATED DISABILITIES Routine

 10035 REGISTRATION PATIENT FILE File

 10036 REGISTRATION DGPMLOS Routine

 10037 REGISTRATION DGRPD Routine

 10039 REGISTRATION WARD LOCATION FILE File

 10061 REGISTRATION VADPT Routine

 10112 REGISTRATION VASITE Routine

 2198 RPC BROKER TEST FOR BROKER CONTEXT Routine

 2238 RPC BROKER CHANGE RPC RETURN TYPE Routine

 2239 RPC BROKER XWBAPVER -- RPC VERSION Other

 3011 RPC BROKER XWB IS RPC AVAILABLE Remote Procedure

 3012 RPC BROKER XWB ARE RPCS AVAILABLE Remote Procedure

 4186 RPC BROKER M2M BROKER - M Client/Server Connection Routine

 4187 RPC BROKER M2M BROKER - Set Application Context Routine

 4188 RPC BROKER M2M BROKER - Build the PARAM Data Structure Routine

 4189 RPC BROKER M2M BROKER - Build the Remote Procedure Data Structure Routine

 4190 RPC BROKER M2M BROKER - Close Connection Routine

 4191 RPC BROKER M2M BROKER - Returns CURRENT Application Context Routine

 266 SCHEDULING LIST TEMPLATE FILE Other

 1252 SCHEDULING PRIMARY CARE INPUT AND OUTPUT API CALLS Routine

 1713 SCHEDULING SC LISTER Remote Procedure

 1714 SCHEDULING SC FILER Remote Procedure

 1715 SCHEDULING SC DELETE ENTRY Remote Procedure

 1717 SCHEDULING SC FILE NUMBER Remote Procedure

 1718 SCHEDULING SC GLOBAL NODE Remote Procedure

 1719 SCHEDULING SC GETS ENTRY DATA Remote Procedure

 1720 SCHEDULING SC LOCK/UNLOCK NODE Remote Procedure

 1721 SCHEDULING SC VALIDATOR Remote Procedure

 1722 SCHEDULING SC GLOBAL NODE COUNT Remote Procedure

 1723 SCHEDULING SC PRTP Remote Procedure

 1724 SCHEDULING SC MAILMAN Remote Procedure

 1725 SCHEDULING SC NEW HISTORY OK Remote Procedure

 1726 SCHEDULING SC CHANGE HISTORY OK Remote Procedure

 1727 SCHEDULING SC INACTIVATE ENTRY Remote Procedure

 1728 SCHEDULING SC DELETE HISTORY Remote Procedure

 1729 SCHEDULING SC HISTORY STATUS OK Remote Procedure

 1730 SCHEDULING SC MEAN TEST Remote Procedure

 1731 SCHEDULING SC TEAM LIST Remote Procedure

 1732 SCHEDULING SC PATIENT LOOKUP Remote Procedure

 1733 SCHEDULING SC POSITION MEMBERS Remote Procedure

 1734 SCHEDULING SC FILE SINGLE VALUE Remote Procedure

 1736 SCHEDULING SC KEY CHECK Remote Procedure

 1760 SCHEDULING SC STAFF LOOKUP Remote Procedure

 1761 SCHEDULING SC USER CLASS STATUS Remote Procedure

 1762 SCHEDULING SC PRIMARY CARE TEAM Remote Procedure

 1765 SCHEDULING SC ASSIGN PATIENT LIST Remote Procedure

 1766 SCHEDULING SC FILE PATIENT LIST Remote Procedure

 1767 SCHEDULING SC BUILD PAT TM LIST Remote Procedure

 1768 SCHEDULING SC GET PAT TM LIST Remote Procedure

 1769 SCHEDULING SC GET PAT BLOCK Remote Procedure

 1770 SCHEDULING SC BLD PAT LIST Remote Procedure

 1771 SCHEDULING SC FILE PAT TM ASGN Remote Procedure

 1772 SCHEDULING SC BLD PAT CLN LIST Remote Procedure

 1773 SCHEDULING SC FILE PAT POS ASGN Remote Procedure

 1774 SCHEDULING SC BLD PAT SCDE LIST Remote Procedure

 1775 SCHEDULING SC BLD PAT TM LIST Remote Procedure

 1776 SCHEDULING SC BLD PAT POS LIST Remote Procedure

 1777 SCHEDULING SC PAT ENROLL CLN Remote Procedure

 1778 SCHEDULING SC CHECK FOR PC POS Remote Procedure

 1779 SCHEDULING SC FILE ALL PAT TM ASGN Remote Procedure

 1780 SCHEDULING SC BLD PAT APT LIST Remote Procedure

 1781 SCHEDULING SC FILE ALL PAT POS ASGN Remote Procedure

 1797 SCHEDULING SC BLD NOPC TM LIST Remote Procedure

 1798 SCHEDULING SC PAT ASGN MAILMAN Remote Procedure

 1916 SCHEDULING SCAPMC - SUPPORTED PCMM CALLS Routine

 2546 SCHEDULING ACRP INTERFACE TOOLKIT (AIT) Routine

 2548 SCHEDULING ACRP INTERFACE TOOLKIT (AIT) Routine

 2552 SCHEDULING ACRP INTERFACE TOOLKIT (AIT) Routine

 2553 SCHEDULING SDOE ASSIGNED A DIAGNOSIS Remote Procedure

 2554 SCHEDULING SDOE ASSIGNED A PROCEDURE Remote Procedure

 2555 SCHEDULING SDOE ASSIGNED A PROVIDER Remote Procedure

 2556 SCHEDULING SDOE FIND DIAGNOSIS Remote Procedure

 2557 SCHEDULING SDOE FIND FIRST ENCOUNTER Remote Procedure

 2558 SCHEDULING SDOE FIND FIRST STANDALONE Remote Procedure

 2559 SCHEDULING SDOE FIND LAST STANDALONE Remote Procedure

 2560 SCHEDULING SDOE FIND PROCEDURE Remote Procedure

 2561 SCHEDULING SDOE FIND PROVIDER Remote Procedure

 2564 SCHEDULING SDOE GET DIAGNOSES Remote Procedure

 2565 SCHEDULING SDOE GET GENERAL DATA Remote Procedure

 2566 SCHEDULING SDOE GET PRIMARY DIAGNOSIS Remote Procedure

 2567 SCHEDULING SDOE GET PROCEDURES Remote Procedure

 2568 SCHEDULING SDOE GET PROVIDERS Remote Procedure

 2569 SCHEDULING SDOE GET ZERO NODE Remote Procedure

 2570 SCHEDULING SDOE LIST ENCOUNTERS FOR DATES Remote Procedure

 2571 SCHEDULING SDOE LIST ENCOUNTERS FOR PAT Remote Procedure

 2572 SCHEDULING SDOE LIST ENCOUNTERS FOR VISIT Remote Procedure

 2573 SCHEDULING SDOE PARSE GENERAL DATA Remote Procedure

 2590 SCHEDULING SD OUTPATIENT GAF SCORE UTILS Routine

 2848 SCHEDULING GETALL API CALL Routine

 4347 SCHEDULING SCMSVUT5 Routine

 4433 SCHEDULING DBIA4433 Routine

 4652 SCHEDULING CLNCHK - SDUTL2 (RESTRICTING STOP CODE) Routine

 4990 SCHEDULING SERVICE CONNECTED AUTOMATION Routine

 10040 SCHEDULING HOSPITAL LOCATION FILE File

 10042 SCHEDULING SDM Routine

 1517 SPINAL CORD DYSFUNCTION SCD API Routine

 10123 TEXT INTEGRATION UTILITIES CWAD Other

 2075 TOOLKIT DBIA2075 Routine

 2263 TOOLKIT SUPPORTED PARAMETER TOOL ENTRY POINTS Routine

 2336 TOOLKIT SUPPORTED CALLS TO XPAREDIT Routine

 2365 TOOLKIT Merge File Entries Routine

 2992 TOOLKIT PARAMETER DEFINITIONS File

 3197 TOOLKIT XQALBUTL Routine

 3561 TOOLKIT M XML PARSER Routine

 4149 TOOLKIT M XML EVENT-DRIVEN API Routine

 4153 TOOLKIT MXMLUTL Routine

 4631 TOOLKIT VHA UNIQUE ID (VUID) API Routine

 5515 TOOLKIT HTTP Client Routine

 5516 TOOLKIT HTTP client utilities Routine

 10094 TOOLKIT XTFN Routine

 10095 TOOLKIT XTKERMIT Routine

 10122 TOOLKIT XTLKKWL Routine

 10143 TOOLKIT XLFMSMT Routine

 10144 TOOLKIT XLFHYPER Routine

 10153 TOOLKIT MTLU LOOKUPS/FILE MANAGEMENT Routine

 937 VA FILEMAN SEARCH TEMPLATE RESULTS File

 2050 VA FILEMAN Database Server (DBS) API: DIALOG Utilities Routine

 2051 VA FILEMAN Database Server API: Lookup Utilities Routine

 2052 VA FILEMAN Database Server API: Data Dictionary Utilities Routine

 2053 VA FILEMAN Data Base Server API: Editing Utilities Routine

 2054 VA FILEMAN Data Base Server API: Misc. Library Functions Routine

 2055 VA FILEMAN Data Base Server API: Misc. Data Libaray Functions Routine

 2056 VA FILEMAN Data Base Server API: Data Retriever Utilities Routine

 2607 VA FILEMAN Browser API Routine

 2608 VA FILEMAN Browser API Routine

 2609 VA FILEMAN Browser API Routine

 2610 VA FILEMAN ScreenMan API: Form Utilities Routine

 2648 VA FILEMAN Import Tool API Routine

 2649 VA FILEMAN Classic FileMan API: Max. Routine Size Routine

 2821 VA FILEMAN DIALOG File Other

 2916 VA FILEMAN Data Base Server API: DD Modification Utilities Routine

 3209 VA FILEMAN DDR GETS ENTRY DATA Remote Procedure

 3215 VA FILEMAN DDR DELETE ENTRY Remote Procedure

 3216 VA FILEMAN DDR FILER Remote Procedure

 3217 VA FILEMAN DDR FIND1 Remote Procedure

 3218 VA FILEMAN DDR FINDER Remote Procedure

 3220 VA FILEMAN DDR GET DD HELP Remote Procedure

 3221 VA FILEMAN DDR LISTER Remote Procedure

 3222 VA FILEMAN DDR LOCK/UNLOCK NODE Remote Procedure

 3223 VA FILEMAN DDR VALIDATOR Remote Procedure

 3224 VA FILEMAN DDR KEY VALIDATOR Remote Procedure

 4397 VA FILEMAN DIAUTL Routine

 4399 VA FILEMAN Local FileMan Array DIPA() Other

 4454 VA FILEMAN Direct read of global DD('KWIC' File

 10000 VA FILEMAN Classic FileMan API: Date/Time Manipulation Routine

 10001 VA FILEMAN Classic FileMan API: Internal to External Date Routine

 10002 VA FILEMAN Classic FileMan API: Input Template Compilation Routine

 10003 VA FILEMAN Classic FileMan API: Date/Time Input & Conversion Routine

 10004 VA FILEMAN Classic FileMan API: Data Display Routine

 10005 VA FILEMAN Classic FileMan API: Required Variables Routine

 10006 VA FILEMAN Classic FileMan API: File Lookup/Add New Entries Routine

 10007 VA FILEMAN Classic FileMan API: Custom Lookup & File Info. Setup Routine

 10008 VA FILEMAN Classic FileMan API: Entry Display For Lookups Routine

 10009 VA FILEMAN Classic FileMan API: Adding New Entries & YES/NO Prompt Routine

 10010 VA FILEMAN Classic FileMan API: Print Data Routine

 10011 VA FILEMAN Classic FileMan API: Word Processing Routine

 10012 VA FILEMAN Classic FileMan API: Form Document Print Routine

 10013 VA FILEMAN Classic FileMan API: Entry Deletion & File Reindexing Routine

 10014 VA FILEMAN Classic FileMan API: Data Dictionary Deletion Routine

 10015 VA FILEMAN Classic FileMan API: Data Retrieval Routine

 10016 VA FILEMAN Classic FileMan API: MUMPS Code Validation Routine

 10017 VA FILEMAN DD DATE FORMATER File

 10018 VA FILEMAN Classic FileMan API: Edit Data Routine

 10019 VA FILEMAN Classic FileMan API: Print Template Compilation Routine

 10020 VA FILEMAN Classic FileMan API: Print/Sort Template Display Routine

 10021 VA FILEMAN Classic FileMan API: Data Dictionary Listing Routine

 10022 VA FILEMAN Classic FileMan API: Array Moving Routine

 10023 VA FILEMAN Classic FileMan API: User Controlled Editing Routine

 10024 VA FILEMAN Classic FileMan API: Wait Messages Routine

 10025 VA FILEMAN Classic FileMan API: Cross Reference Compilation Routine

 10026 VA FILEMAN Classic FileMan API: Reader Routine

 10027 VA FILEMAN Classic FileMan API: Search File Entries Routine

 10028 VA FILEMAN Classic FileMan API: Text Editing Routine

 10029 VA FILEMAN Classic FileMan API: Output Last Line of Text Routine

 10030 VA FILEMAN DD VERSION NODE File

 10031 VA FILEMAN ScreenMan API: Form Processor Routine

 10032 VA FILEMAN Classic FileMan API: File Access Determination Routine

 10033 VA FILEMAN Other API: Filegram Routine

 10034 VA FILEMAN Other API: Filegram Routine

 10142 VA FILEMAN Classic FileMan API: Loader Routine

 10149 VA FILEMAN ScreenMan API: Form Utilities Routine

 10150 VA FILEMAN ScreenMan API: Form Utilities Routine

 10151 VA FILEMAN Extract Tool API Routine

 10152 VA FILEMAN DD('ROU') File

 10154 VA FILEMAN DESCRIPTOR BLOCK File

 10155 VA FILEMAN SET OF CODES File

 10057 VETERANS ADMINISTRATION COUNTY FILE File

 10058 VETERANS ADMINISTRATION ZIP CODE FILE File

 10062 VETERANS ADMINISTRATION VADPT6 Routine

 10115 VETERANS ADMINISTRATION LIST MANAGER Other

 10116 VETERANS ADMINISTRATION VALM1 Routine

 10117 VETERANS ADMINISTRATION VALM10 Routine

 10119 VETERANS ADMINISTRATION VALM2 Routine

 10139 VETERANS ADMINISTRATION VAFADDR Routine

--

 4090 VISTALINK VISTALINK SUPPORTED CALLS Routine

 5178 VISTALINK gov.va.med.vistalink.adapter.cci.VistaLinkConnectionFactory Other

 5179 VISTALINK gov.va.med.vistalink.adapter.cci.VistaLinkConnection Other

 5180 VISTALINK gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpec Other

 5226 VISTALINK gov.va.med.vistalink.security.m.VistaKernelPrincipal Other

 5227 VISTALINK VistaLinkAppProxyConnectionSpec Other

 5228 VISTALINK gov.va.med.vistalink.adapter.cci.VistaLinkDuzConnectionSpec Other

 5229 VISTALINK VistaLinkVpidConnectionSpec Other

 5230 VISTALINK VistaLinkRequestRetryStrategy Other

 5231 VISTALINK VistaLinkRequestRetryStrategyAllow Other

 5232 VISTALINK VistaLinkRequestRetryStrategyDeny Other

 5233 VISTALINK gov.va.med.vistalink.adapter.record.VistaLinkRequestVO Other

 5234 VISTALINK gov.va.med.vistalink.adapter.spi.VistaLinkServerInfo Other

 5235 VISTALINK gov.va.med.vistalink.institution.IPrimaryStationRules Other

 5236 VISTALINK gov.va.med.vistalink.institution.InstitutionMappingDelegate Other

 5238 VISTALINK gov.va.med.vistalink.rpc.RpcReferenceType Other

 5239 VISTALINK gov.va.med.vistalink.rpc.RpcRequestFactory Other

 5240 VISTALINK gov.va.med.vistalink.rpc.RpcRequestParams Other

 5241 VISTALINK gov.va.med.vistalink.rpc.RpcResponse Other

 5242 VISTALINK gov.va.med.vistalink.rpc.RpcRequest Other

 5243 VISTALINK vljConnector Exceptions Other

 5221 VISTALINK SECURITY gov.va.med.vistalink.security.CallbackHandlerSwing Other

 5222 VISTALINK SECURITY gov.va.med.vistalink.security.CallbackHandlerSwingCCOW Other

 5223 VISTALINK SECURITY gov.va.med.vistalink.security.CallbackHandlerUnitTest Other

 5224 VISTALINK SECURITY gov.va.med.vistalink.security.VistaKernelPrincipalImpl Other

 5225 VISTALINK SECURITY gov.va.med.vistalink.security.VistaLoginModule Other

 5244 VISTALINK SECURITY vljSecurity Exceptions Other

 5421 WEB SERVICES CLIENT XOBWLIB Routine

 5458 WEB SERVICES CLIENT xobw.RestRequest Other

 5459 WEB SERVICES CLIENT xobw.error.BasicError Other

 5460 WEB SERVICES CLIENT xobw.error.DialogError Other

 5461 WEB SERVICES CLIENT xobw.error.HttpError Other

 5462 WEB SERVICES CLIENT xobw.error.ObjectError Other

 5463 WEB SERVICES CLIENT xobw.error.SoapError Other

Detailed List
 CUSTODIAL PACKAGE: ADVERSE REACTION TRACKING
 ICR#: 1135

 NAME: GMRAMCU0

SUBSCRIBING PACKAGE: REGISTRATION

 USAGE: Supported ENTERED: FEB 17,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The Patient Wristband software calls IDBAND^GMRAMCU0(DFN,DATE,USR) to update the ID BAND MARKED field in file 120.8 (PATIENT

 ALLERGIES).

 ROUTINE: GMRAMCU0

 COMPONENT: IDBAND

 VARIABLES: DFN Type: Input

 IEN for a patient in file 2 (Required)

 DATE Type: Input

 Date of marking in File Manager format (optional- if undefined or null current date/time will

 be used)

 USR Type: Input

 User Marking the ID band (optional- if undefined null will be used indicating data

 automatically entered).

 IDBAND(DFN,DATE,USR) ; This program will mark all the ID Band fields for

 ; all reactions for a patient

************** END OF ICR RECORD ***************

 CUSTODIAL PACKAGE: ADVERSE REACTION TRACKING
 ICR#: 2378

 NAME: TEST FOR ALLERGY OR ART ENTRY

 USAGE: Supported ENTERED: MAY 6,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This call returns 1 (True) if the patient has an allergy to an agent defined by the variables TYP and PTR, else it returns 0

 (False). The Contrast Media Reaction check will return a null if the patient is not in the Adverse Reaction Tracking

 database.

 ROUTINE: GMRAOR

 COMPONENT: ORCHK

 VARIABLES: DFN Type: Input

 Patient's IEN.

 TYP Type: Input

 TYP="CM" - Contrast Media Reaction

 TYP="DR" - Drug Reaction

 TYP="IN" - Drug Ingredients

 TYP="CL" - Drug Class

 PTR Type: Input

 If TYP="CM", PTR is not required.

 If TYP="DR", PTR is the IEN to NATIONAL DRUG file (#50.6).

 If TYP="IN", PTR is the IEN to DRUG INGREDIENTS file (#50.416).

 If TYP="CL", PTR is the IEN to VA DRUG CLASS file (#50.605).

 $T Type: Output

 $T will be defined as 1 (True) if the patient has an allergy to an agent defined by the TYP

 and PTR variables, else it returns 0 (False).

 This call returns 1 (True) if the patient has an allergy to an agent defined by the variables TYP and PTR, else

 it returns 0 (False). The Contrast Media Reaction check will return a null if the patient is not in the

 Adverse Reaction Tracking database.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ADVERSE REACTION TRACKING
 ICR#: 2422

 NAME: DBIA2422

 USAGE: Supported ENTERED: MAY 21,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Returns Allergies/Adverse reaction details for an entry in the PATIENT ALLERGIES file (#120.8).

 ROUTINE: GMRAOR2

 COMPONENT: EN1(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 Internal Entry number for Allergy/Adverse reaction in the PATIENT ALLERGIES file (#120.8).

 ARRAY Type: Input

 Option variable indicating name of array in which results should be returned. If this is

 undefined, the array will be returned.

 GMRACT Type: Output

 <causative agent^originator^originator title^verified/not

 verified^observed/historical^^allergy type>

 GMRACT('C' Type: Output

 Array of comments for this reaction. Comments is a multiple field, and word processing:

 <date/time entered^source (verifier/originator)>

 GMRACT('C' Type: Output

 Word processing text for comment GMRACT('C',Y).

 GMRACT('O' Type: Output

 Array of observation dates/severitys for this reaction: <observation date^severity>.

 GMRACT('S' Type: Output

 Array of signs/symptoms for this reaction: <sign/symptom>.

 GMRACT('V' Type: Output

 Array of VA drug classes for this reaction: <VA drug class code^VA drug class name>.

 Returns Allergies/Adverse reaction details.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ADVERSE REACTION TRACKING
 ICR#: 10099

 NAME: GMRADPT

 USAGE: Supported ENTERED: FEB 8,1996

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA documents a data extract utility which allows other DHCP packages to gather allergy/adverse reaction data about a

 patient for use in the calling package.

 ROUTINE: GMRADPT

 COMPONENT: EN1

 VARIABLES: DFN Type: Input

 The internal entry number of the patient (File #2).

 GMRA Type: Input

 This GMRA variable is optional. The default value is "0^0^111" which means return "all

 reactions (allergic/non-allergic)^all data (verified or non verified)^all food, drug and

 other type reactions".

 GMRA must be in the format A^B^C

 if A = 0 return all reactions (allergic/non-allergic).

 1 return allergies only.

 2 return non-allergies only.

 B = 0 return all data (verified or non-verified).

 1 return only verified data.

 2 return only non-verified data.

 C = X_Y_Z

 where X, Y, and Z are either 0 or 1. 1 would mean to

 return an Adverse Reaction of that particular type,

 and zero means do not return an Adverse Reaction of

 that type.

 X is for TYPE=OTHER

 Y is for TYPE=FOOD

 Z is for TYPE=DRUG.

 E.g., 001 (return drug only), 111 (returns all types),

 and 010 (returns food only).

 GMRAL Type: Output

 The GMRAL variable and GMRAL array are returned as output.

 GMRAL = 1 if the patient has an Adverse Reaction

 0 if the patient has no known Adverse Reaction

 null if the patient has not been asked about Adverse Reaction

 GMRAL(PTR TO File #120.8) = A^B^C^D^E^F^G^H

 where A = Pointer to Patient file.

 B = Free text of the causative agent.

 *C = Type of reaction, where D is drug, F is food, and O is

 other.

 D = 1 if the Adverse Reaction has been verified

 0 if the Adverse Reaction has not been verified

 E = 0 if this is an allergic reaction

 1 if this is not an allergic reaction

 **F = the mechanism of reaction in the format:

 External format;Internal format

 (ALLERGY;0, PHARMACOLOGIC;2, UNKNOWN;U).

 G = Type of reaction.

 D = drug

 DF = drug/food

 DFO = drug/food/other

 DO = drug/other

 F = food

 FO = food/other

 O = other

 H = the mechanism of reaction in the format:

 External format;Internal format

 (ALLERGY;A, PHARMACOLGIC;P, UNKNOWN;U)

 GMRAL(PTR TO File #120.8,"S",COUNT) = S

 where COUNT = number 1 to number of signs/symptoms for this

 reaction.

 S = a sign/symptom for this reaction in the format:

 External format;Internal format

 * NOTE: This piece will no longer be supported after 9/1/97,

 Please use piece G.

 ** NOTE: This piece will no longer be supported after 9/1/97,

 Please use piece H.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: AUTOMATED INFO COLLECTION SYS
 ICR#: 1615

 NAME: ENCOUNTER FORM DATA ENTRY

 USAGE: Supported ENTERED: AUG 27,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This is a supported reference to process encounter form data. Packages that know patient, visit date/time, and clinic can

 call this API to use the AICS data entry system to prompt users for encounter data and subsequently store this data using the

 PCE device interface (this is done automatically using the AICS parameters).

 ROUTINE: IBDFDEA

 COMPONENT: EN1(PXCA,IBDF)

 VARIABLES: Type:

 PXCA Type: Both

 Pass by reference. The results of processing are returned in this array. See PCE device

 interface manual for description of data nodes.

 IBDF Type: Input

 Pass IBDF array to include:

 REQUIRED:

 IBDF("APPT") = Appointment date/time

 IBDF("DFN") = Pointer to Patient file (2)

 OPTIONAL:

 IBDF("CLINIC") = Pointer to Hospital Location file (44). If

 Clinic is not defined and no form printed, data

 entry will not be allowed.

 IBDF("NOAPPT") = If the AICS parameters allow for making follow-up

 appointments, setting this to any non-zero value

 will suppress the ability to add follow-up appts.

 IBDF("PROVIDER") = If defined, will be used as primary provider for

 data entry. Use for provider data entry options.

 May be called to use the AICS data entry system to prompt users for encounter data and subsequently store this

 data using the PCE device interface.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: AUTOMATED INFO COLLECTION SYS
 ICR#: 3412

 NAME: Print Encounter Forms

 USAGE: Supported ENTERED: JUN 25,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The Registration package needs to be able to Print an Encounter Form while Registering a Patient through the GUI Registration.

 ROUTINE: IBDF1B1

 COMPONENT: APPT

 VARIABLES: DFN Type: Input

 This is the IEN of the Patient file (#2).

 IBAPPT Type: Input

 This is the time/date NOW, as derived from NOW^%DTC.

 IBCLINIC Type: Input

 This variable holds the clinic location IEN (file #44, pointed to by the .01 field of file

 409.95).

 IBDT Type: Input

 IBDT is the same as DT.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: AUTOMATED LAB INSTRUMENTS
 ICR#: 5259

 NAME: LAB HL7 ORU MESSAGE

 USAGE: Supported ENTERED: SEP 4,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 The following event protocol is supported for packages to add their subscriber protocol to subscribe to Laboratory results.

 NAME: LA7 LAB RESULTS AVAILABLE (EVN)

 ITEM TEXT: Lab Results Available Event

 DESCRIPTION: A VistA Laboratory package HL7 ORU result message is created

 and sent by the HL package for transmission to any subscribers of event

 protocol LA7 LAB RESULTS AVAILABLE (EVN).

 It provides the capability for the generation of a Laboratory HL7 ORU

 message containing patient laboratory results to subscribers of the HL7

 event protocol LA7 LAB RESULTS AVAILABLE (EVN) as these results are made

 available within the Laboratory package.

 The following subscripts are supported by the event:

 "CH", "MI", "SP", "CY", "EM".

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3380

 NAME: PSB VALIDATE ESIG

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 PSB VALIDATE ESIG is used to validate the data in PSBESIG against the user currently signed on (DUZ).

 Validate the data in PSBESIG against the user currently signed on (DUZ)

 ROUTINE: ESIG PSBRPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3382

 NAME: PSB FMDATE

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Used to validate Fileman dates.

 Used to validate Fileman dates.

 ROUTINE: FMDATE PSBRPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3383

 NAME: PSB SCANPT

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC is used to validate the data scanned in at the scan patient wristband prompt of the mnOpenPatient component. The

 value passed in is either the full SSN scanned in from the patient wristband -or- the 1U4N syntax of the patient lookup. In

 either case the call must return only one patient from the lookup. If the 1U4N syntax is used and multiple patients are found

 the call returns an error. If only one patient is found the RESULTS array is loaded with the patient data and passed back to

 the client for verification.

 This RPC is used to validate the data scanned in at the scan patient

 wristband prompt of the mnOpenPatient component. The value passed in

 is either the full SSN scanned in from the patient wristband -or- the

 1U4N syntax of the patient lookup. In either case the call must

 return only one patient from the lookup. If the 1U4N syntax is used

 and multiple patients are found the call returns an error. If only

 one patient is found the RESULTS() array is loaded with the patient

 data and passed back to the client for verification.

 ROUTINE: SCANPT PSBRPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3384

 NAME: PSB USERLOAD

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC is called at application startup to populate the BCMA_User object with the users defaults. No paramters are passed,

 the current DUZ is assumed.

 This RPC is called at application startup to populate the BCMA_User

 object with the users defaults. No paramters are passed, the current

 DUZ is assumed.

 ROUTINE: USRLOAD PSBRPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3385

 NAME: PSB DISPLAY ORDER

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns a display for a selected order when double clicked on the VDL.

 ROUTINE: DISPORD PSBRPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3386

 NAME: PSB GETPRNS

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns all administrations of a PRN order that have NOT had the PRN Effectiveness documented for the last 30 days.

 Returns all administrations of a PRN order that have NOT had the PRN

 Effectiveness documented for the last 30 days.

 ROUTINE: GETPRNS PSBPRN

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3387

 NAME: PSB GETORDERLIST

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns the current order set for today to display on the client VDL.

 Using the input paramter DFN and ORDDATE a call is made to an

 Inpatient Meds API to return all active orders for a patient in Unit

 Dose, IV's and Pending Orders. These are returned to the client and

 the client will then begin retrieving each order with RPC PSB

 GETORDER.

 ROUTINE: RPC PSBVDL1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3388

 NAME: PSB REACTIONS

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns detailed listing of reactions when Reactions Button is clicked.

 Returns reactions from server call to EN1^GMRADPT.

 ROUTINE: REACT PSBRPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3389

 NAME: PSB SERVER CLOCK VARIANCE

 USAGE: Supported ENTERED: MAY 21,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns the variance from the server to the client in minutes.

 Client date/time in external FileMan format. Returns the variance from the

 server to the client in minutes.

 ROUTINE: CLOCK PSBUTL

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3390

 NAME: PSB VALIDATE ORDER

 USAGE: Supported ENTERED: MAY 22,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Final check of order against an actual administration date/time used immediately after scanned med has been validated to be a

 good unadministered order and by the PSBODL (Due List) output.

 ROUTINE: EN PSBVDLVL

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3391

 NAME: PSB PARAMETER

 USAGE: Supported ENTERED: MAY 22,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Return a parameter list.

 Called by client to return or set parameters

 ROUTINE: RPC PSBPAR

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3395

 NAME: PSB TRANSACTION

 USAGE: Supported ENTERED: MAY 22,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This is the filing RPC for all data returning from the client regarding the medication log. Filing is handled by business

 rules on the server and this RPC will return either '1^Data Filed' or '-1^reason for not filing data' to the client.

 Business rules are conducted via the [0] node data. If a '+1^MEDPASS' is encountered it is a complete new med pass and is

 validated as such. Transaction type MEDPASS is the only type that requires a +1 in the first piece of the header, all other

 transactions MUST supply a valid medication log entry in the IENS.

 This is the filing RPC for all data returning from the client

 regarding the medication log. Filing is handled by business rules on

 the server and this RPC will return either '1^Data Filed' or

 '-1^reason for not filing data' to the client. Results of the

 processed transaction is communicated via the RESULTS array. The

 number of RESULTS subscripts used (n) will be presented in RESULTS[0].

 RESULTS [1..n] will contain the RESULTS message.

 Business rules are conducted via the [0] node data. If a '+1^MEDPASS'

 is encountered it is a complete new med pass and is validated as such.

 Transaction type MEDPASS is the only type that requires a +1 in the

 first piece of the header, all other transactions MUST supply a valid

 medication log entry in the IENS.

 The data for filing is passed in as a list in Param[1] as shown below.

 Example Delphi Call

 with RPCBroker1 do

 begin

 RemoteProcedure := 'PSB TRANSACTION';

 Param[0].Value := '88484^COMMENT';

 Param[0].PType := Literal;

 Param[1].Mult['0'] := 'Comment for the med pass';

 Param[1].Ptype := List;

 Call;

 end;

 TRANSACTION = MEDPASS

 Note: Entries 1-6 are required, 7,8,9 are required depending on

 item [2] order type...

 [0] = Patient IEN

 [1] = IV/Unit Dose Order Number

 Note: will be passed in as I;#### for IV and U;#### for Unit Dose

 future release will allow P;#### for pending

 [2] = Schedule

 Note: C:Continuous P:PRN 1:One Time O:On Call

 [3] = Status

 Note: G:Given H:Held R:Refused

 [4] = Orderable Item

 Note: IEN to 'PHARMACY ORDERABLE ITEM' (#50.7)

 [5] = Scheduled Administration Date/Time

 Note: This is when the med is scheduled, med is entered as GIVEN NOW!

 [6] = Reason Given PRN^PRN Reason Flag

 Note: Required if given PRN must be null if not PRN

 [7] = Comment

 Note: 1-200 characters

 [8] = Injection Site

 [9] = Tab^Unique ID #

 [10..n]= RecordType^IEN^Units Ordered^Units Given^Units Type

 Record Type = DD: Dispense Drug

 SOL: Solution

 ADD: Additive

 IEN = Internal Entry Number of the following

 if Record Type = DD: DRUG (FILE #50)

 SOL: IV SOLUTIONS (FILE #??)

 ADD: IV ADDITIVES (FILE #??)

 Units Ordered = Number of units in the Inpt Meds Order

 Units Given = Number of units scanned/entered by the user

 Units Type = Type of administration unit (i.e. TAB, CAPLET, ML)

 TRANSACTION = COMMENT

 [0] = Comment to append to the log entry

 Note: Will be appended to the log with user ien and NOW as a date

 TRANSACTION = PRN EFFECTIVENESS

 [0] = Effective Comment

 Note: will be filed as entered now by current user

 TRANSACTION = STATUS UPDATE

 [0] = New Status

 Note: If status is Given, Date/Time administered D/T will be set to NOW

 If status is Held/Refused administered D/T will be set to null

 Status on med log must be <> null to execute.

 New status must NOT match current status or G will overwrite

 administration DT.

 [1] = Comment

 Note: Comment *IS* Required

 TRANSACTION = EDIT

 [0] = Action Status

 [1] = Patient DFN

 [2] = Inf/Inj Site

 [3] = IV Unique ID

 [4] = Admin Date/Time (fileman format)

 [5] = Prn Reason

 [6] = Prn Effectiveness

 [7] = Comment

 Note: comment data is required!

 [8] = "DD/ADD/SOL^ Drug IEN ^ Dose Ordered ^ Dose Given

 ^ Unit of Administration"

 [n] = "additional data per DD/ADD/SOL associated with order."

 ROUTINE: RPC PSBML

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3396

 NAME: PSB SUBMIT MISSING DOSE

 USAGE: Supported ENTERED: MAY 22,2001

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: Version 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Allows the client to submit a missing dose interactively.

 Allows the client to submit a missing dose interactively.

 ROUTINE: RPC PSBMD

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: BAR CODE MED ADMIN
 ICR#: 3459

 NAME: PSB MEDICATION HISTORY REPORT

 USAGE: Supported ENTERED: SEP 25,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The purpose of this agreement is to provide other packages with the ability to call the BCMA Medication History report. It

 returns a report of medications a patient has received by orderable item.

 This DBIA is for BCMA Version 2.0 only.

 ROUTINE: PSBMLHS

 COMPONENT: HISTORY

 VARIABLES: RESULTS Type: Input

 The name of the array that the output ispassed in.

 DFN Type: Input

 Patient IEN number.

 PSBOI Type: Input

 Orderable Item number.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CLINICAL PROCEDURES
 ICR#: 1207

 NAME: DBIA1207

SUBSCRIBING PACKAGE: DSS EXTRACTS

 USAGE: Supported ENTERED: MAY 4,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 1) Decision Support System (DSS) interface

 Functional description:

 This process provides a reporting mechanism to the DSS package. The subscriber passes a Starting date and ending date to the

 MCARDSS routine and the TMP global will store the result records in an arbitrary order. The results include the following

 required fields: Date and Time the record is released, Provider signing or signed for, CPT code, Patient identification

 Software components: Routines -- ^MCARDSS, ^MCBLD, ^MCPTF File(s) -- Procedure Term File: ^MCAR(694.8 Menu Options: None

 Technical overview: The DSS application makes a parameterized call to ^MCARDSS(Start_date,End_date) with dates in regular

 Fileman date/time format. Only results which have a valid signature, CPT code, date signed, and valid patient ID will be

 returned in the ^TMP($J,count) scratch global. The result is stored as follows: Provider ID(DUZ)^Patient ID(DFN)^Date/time

 signed(FM DATE/TIME)^CPT code for example -- ^TMP(1231231,3)=194^2323^295101010.1232^93005

 ROUTINE: MCARDSS

 COMPONENT: START

 VARIABLES: The DSS application makes a parameterized call to ^MCARDSS(Start_date,End_date) with dates in regular Fileman

 date/time format.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CLINICAL PROCEDURES
 ICR#: 3279

 NAME: MCARUTL2

 USAGE: Supported ENTERED: JAN 2,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs allow the Imaging package access to the Medicine package

 data. The APIs will do lookups on the MEDICAL PATIENT File (#690) and

 the PROCEDURE/SUBSPECIALTY file (#697.2) and return data from the

 associated Medicine files.

 ROUTINE: MCARUTL2

 COMPONENT: SUB

 VARIABLES: .ARRAY Type: Both

 (Required)

 .ARRAY = The return array where

 the data will be placed.

 Recommend the array should

 be namespaced.

 Return Array:

 ARRAY can be any variable array that the

 developer chooses. Recommend the array

 be namespaced. The API returns all of

 the procedures found for the patient in

 the variable array specified.

 When the API returns

 the data it will be placed into the

 variable array specified.

 ARRAY(0) = Piece1_^_Piece2

 Piece1 1 Indicates that the

 component returned data.

 0 Indicates that the

 component failed.

 Piece2 is an informational

 message either indicating

 how many entries were

 found for the patient or

 and error message stating

 why the component failed.

 X = Is a sequential number

 from 1 to the total

 number of procedures

 found as indicated by

 ARRAY.

 ARRAY(X) = Piece1_^_Piece2_^_Piece3

 _^_Piece4_^_Piece5

 _^_Piece6_^

 Piece1 is the date and time of the

 procedure in an External

 format.

 Piece2 is procedure name within

 PROCEDURE/SUBSPECIALTY

 file (#697.2).

 Piece3 is Patient name.

 Piece4 is MCAR concatenated with

 "(" and the file number

 where the procedure can be

 found within the Medicine

 package.

 Piece5 is the Internal Entry Number

 of the procedure within the

 file as indicated in Piece 4

 Piece6 indicates that the system

 found associated images.

 1 indicates that there are

 images for this procedure

 0 indicates no images where

 found.

 Y = Is a sequential number from 1

 to the last IMAGE that is

 associated with this procedure.

 ARRAY(X,2005,Y) = Is the IEN of the

 image within the

 IMAGE file (#2005).

 DFN Type: Input

 (Required)

 The Internal Entry Number of

 the Patient with in MEDICAL

 PATIENT file (#690).

 SUB Type: Input

 (Required)

 Either the Internal Entry Number within

 the PROCEDURE/SUBSPECIALTY file

 (#697.2) or the Free Text Name of the

 entry in PROCEDURE/SUBSPECIALTY file

 (#697.2).

 FROM Type: Input

 (Optional) The start date for the

 procedure in File Manager format.

 TO Type: Input

 (Optional) The end date for the

 procedure in File Manager format.

 For a Patient in the MEDICAL PATIENT file (#690) and Procedure in the PROCEDURE/SUBSPECIALTY file (#697.2),

 this component will return all of the requested procedures performed on that patient.

 Coding example of Query call:

 Case 1 <tab>K VAR

 <tab>S DFN=33,SUB=75

 <tab>S FROM=2990101,TO=3001231

 <tab>D SUB^MCARUTL2(.VAR,DFN,SUB,FROM,TO)

 or

 Case 2 <tab>K VAR

 <tab>S DFN=33,SUB="GENERIC SUBSPECIALTY"

 <tab>D SUB^MCARUTL2(.VAR,DFN,SUB)

 Example of Return Array:

 Case 1 Where there was a FROM and TO date for the patient.

 Case 2 Would pickup all data for the patient. In both cases

 the data would be returned in the following format.

 VAR=3

 VAR(0)=1^3 GENERIC SUBSPECIALTY Procedures

 found for Patient ROBERTSON,JOHN

 VAR(1)=Nov 24, 2000@13:09^GENERIC

 SUBSPECIALTY^ROBERTSON,JOHN^MCAR(699.5^30^1^

 VAR(1,2005,1)=16

 VAR(2)=Nov 24, 2000@15:13^GENERIC

 SUBSPECIALTY^ROBERTSON,JOHN^

 MCAR(699.5^32^0^

 VAR(3)=Nov 24, 2000@15:23^GENERIC

 SUBSPECIALTY^ROBERTSON,JOHN^MCAR(699.5^

 33^0^

 COMPONENT: PATLK

 VARIABLES: IEN Type: Output

 Internal Entry Number on the

 Medical Patient File (#690).

 This API is for selecting valid Medicine patients. The calling code would make an extrinsic function call to

 this entry point and the user would be prompted for a patient. After a patient has been selected the API will

 pass back the Medical Patient File (#690) internal entry number for that patient. It will return a -1 if a

 patient is not selected.

 Coding example of Query call:

 S X=$$PATLK^MCARUTL2

 User interface:

 Select MEDICAL PATIENT NAME: LANDO,JOSEPH LANDO,JOSEPH 1-5-57

 3456711 66 YES ACTIVE DUTY

 Enrollment Priority: GROUP 1 Category: IN PROCESS End Date:

 COMPONENT: PATSUB

 VARIABLES: .ARRAY Type: Both

 (Required)

 The total number of procedures found

 for this patient.

 .ARRAY = Recommend the return

 array should be

 namespaced.

 Return Values:

 ARRAY can be any variable array that the

 developer chooses. When the API returns

 the data it will be placed into the

 variable array specified.

 ARRAY(0) = Piece1_^_Piece2

 Piece1 1 Indicates that the component

 returned data.

 0 Indicates that the component

 failed.

 Piece2 is an informational message

 either indicating how

 many entries were found for

 the patient or an error

 message stating why the

 component failed.

 X = Is a sequential number from

 1 to the total number of

 procedures found as

 indicated by ARRAY.

 ARRAY(X) = Piece1_^_Piece2_^_Piece3

 Piece1 is procedure name within

 PROCEDURE/SUBSPECIALTY

 file (#697.2).

 Piece2 is Internal Entry Number

 within PROCEDURE/ SUBSPECIALTY

 file (#697.2).

 Piece3 Total number of entries for

 that patient for that

 subspecialty.

 DFN Type: Input

 (Required)

 The Internal Entry Number of the

 Patient with in MEDICAL PATIENT file

 (#690).

 This API will return all of the sub-specialties for a

 given patient with in the Medicine package.

 Coding example of Query call:

 <tab> KILL VAR

 <tab> D PATSUB^MCARUTL2(.VAR,DFN)

 Example of Return Array:

 VAR=8

 VAR(0)=1^There were 8 procedures found for patient

 ROBERTSON,JOHN

 VAR(1)=ECG^2^2

 VAR(2)=EP^4^1

 VAR(3)=COL^8^1

 VAR(4)=BMA^12^1

 VAR(5)=BMB^13^1

 VAR(6)=CONSULT^15^2

 VAR(7)=PFT^23^10

 VAR(8)=HEM^58^1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CLINICAL PROCEDURES
 ICR#: 3280

 NAME: MCARUTL3

 USAGE: Supported ENTERED: JAN 2,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API allows the Imaging package access to the Medicine package

 data. The API will do a lookup on the MEDICAL PATIENT File (#690)

 and the PROCEDURE/SUBSPECIALTY file (#697.2) for the indicated

 entry and return the associated Medicine package data.

 ROUTINE: MCARUTL3

 COMPONENT: MEDLKUP

 VARIABLES: .ARRAY Type: Both

 (Required)

 .ARRAY = The return array where

 the data will be placed.

 Recommend the array should

 be namespaced.

 Return Values:

 ARRAY can be any variable array that the

 developer chooses. When the API returns

 the data it will be placed into the

 variable array specified.

 ARRAY = Piece1_^_Piece2_^_Piece3_^_

 Piece4_^_Piece5_^_ Piece6_^_

 Piece7_^_Piece8_^_Piece9_^_

 Piece10_^_Piece11

 Piece1 1 Indicates that the component

 returned data.

 0 Indicates that the component

 failed. If the component

 fails Piece 2 will contain

 text indicating why the

 component failed.

 Piece2 The file number within the

 Medicine package.

 Piece3 The Internal Entry Number of

 the entry within the file

 indicated by Piece2.

 Piece4 The Internal Entry Number of

 the patient within the Medical

 Patient File (690).

 Piece5 The External format of the

 patient name.

 Piece6 The Procedure date and time

 in File Manager format.

 Piece7 The Procedure date and time

 in External format.

 Piece8 Pointer to the Procedure/

 Subspecialty file (697.2)

 Piece9 The Name of the Procedure

 indicated in Piece8.

 Piece10 The internal entry number

 of the last image entry

 within the 2005 multiple

 in the indicated procedure.

 For example,

 ^MCAR(FN,IEN,2005,X,0)

 where X is the last entry.

 X is what is returned as

 Piece 10.

 Piece11 The internal entry number

 of the entry within the

 IMAGE file (#2005) indicated

 by Piece 10.

 FN Type: Input

 (Required)

 The File number within the Medicine package.

 IEN Type: Input

 (Required)

 The Internal Entry Number of the

 entry within the indicated file as

 specified by FN.

 This component will return all information on the indicated

 procedure and last associated image if any.

 Coding example of Query call:

 <tab>K IMAGE

 <tab>S FN=699.5,IEN=33

 <tab>D MEDLKUP^MCARUTL3(.IMAGE,FN,IEN)

 Example of Return Array:

 IMAGE=1^699.5^30^33^ROBERTSON,JOHN^3001124.1309^

 Nov 24, 2000@13:09^75^GENERIC

 SUBSPECIALTY^1^10

************** END OF ICR RECORD ***************
@@@11:23 PAGE 6

--

 CUSTODIAL PACKAGE: CMOP
 ICR#: 4544

 NAME: PSX550

 USAGE: Supported ENTERED: MAR 8,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by CMOP as an API to the CMOP SYSTEM file (#550). The API returns the STATUS field (#1) for the System

 name passed to the API.

 This API is to used in the future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSX550

 COMPONENT: PSX(PSXIEN,PSXTXT,LIST)

 VARIABLES: PSXIEN Type: Input

 CMOP system internal entry number (optional)

 PSXTXT Type: Input

 Free Text CMOP system name (optional)

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=1 for successful return of data or -1^NO DATA FOUND

 ^TMP($J,LIST,1)=STATUS (550,1 - S)^External Format for the Set of Codes

 This component returns the STATUS field (#1)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CONSULT/REQUEST TRACKING
 ICR#: 4576

 NAME: FIM REQUESTING USER CONSULT PERMISSIONS

 USAGE: Supported ENTERED: DEC 22,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: GMRCAU

 COMPONENT: $$VALID(var1)

 VARIABLES: var1 Type: Input

 Consult Service IEN for file 123.5

 $$VALID Type: Output

 This function will return :

 0 = not an update user

 2 = update user

 3 = administrative update user

 4 = admin AND update user

 5 = IFC coordinator

 This component will check each one of the following fields to determine if a user has permission to complete a

 consult for a specific consult service:

 Update users W/O notifications(123.3)

 Administrative Update Users(123.33)

 Update Teams W/O notifications(123.31)

 Administrative Update Teams(123.34)

 Update User Classes W/O Notifs(123.35)

 Service Individual to Notify (123.08)

 Service Teams to Notify(123.1)

 within file 123.5

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CPT/HCPCS CODES
 ICR#: 1995

 NAME: CPT Code APIs

 USAGE: Supported ENTERED: APR 8,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This contains the supported references to routine ICPTCOD for the supported APIs to be released with v.6.0 of CPT.

 These entry points will retrieve CPT/HCPCS code related data.

 All entry points will return

 -1^error description in an error condition.

 ROUTINE: ICPTCOD

 COMPONENT: $$CPT(CODE,CDT,SRC)

 VARIABLES: CODE Type: Input

 The CPT, HCPCS, or Level III code in either internal or external format.

 CDT Type: Input

 The date for which status of the code is being checked. The Default value is TODAY.

 If CDT < 1/1/1989, use 1/1/1989

 If CDT > DT, validate with newest In/Activation Dates

 If CDT is year only, use first of the year

 If CDT is year and month only, use first of the month

 $$CPT Type: Output

 String, containing the following information in the following "^" pieces:

 Piece Description

 ===== ===========

 1 internal entry number of code in ^ICPT

 2 CPT CODE (.01 field)

 3 SHORT NAME (versioned from .01 field #61 multiple)

 4 CATEGORY ien (#3 field)

 5 SOURCE code (#6 field) ==> C:CPT; H:HCPCS; L:VA LOCAL

 6 EFFECTIVE DATE (from .01 field #60 multiple)

 7 STATUS 0:inactive; 1:active (from .02 of #60 multiple)

 8 INACTIVE DATE (versioned from .01 field #60 multiple)

 9 ACTIVE DATE (versioned from .01 field #60 multiple)

 10 NOTICE OF TEXTUAL INACCURACY

 SRC Type: Input

 Flag to indicate if Level III codes need to be screened out. If SRC=0 or null, Level III

 codes are not processed as valid input; if SRC>0, Level III codes are accepted.

 Extrinsic function that returns basic information for CPT code.

 WARNING: Use of the INACTIVE FLAG field (#5) can produce

 unpredictable results if the API is not used.

 COMPONENT: $$CPTD(CODE,'OUTARR',DFN,CDT)

 VARIABLES: CODE Type: Input

 The CPT or HCPCS code in either internal or external format.

 $$CPTD Type: Output

 Contains number of lines (number of subscripts) in description (array)

 OUTARR Type: Both

 An array name in which to store the returned versioned description. If no name is provided,

 the default name will be ^TMP("ICPTD",$J,. The calling routine is responsible for killing

 ^TMP("ICPTD",$J) after the call, if used.

 On return, the array contains corresponding lines of text of the code's versioned description

 (field 62)

 OUTARR(1) = 1st line of description OUTARR(last) = last line of description OUTARR(last+1) =

 blank line OUTARR(last+2) = NOTICE OF TEXTUAL INACCURACY

 where last+2 is the value returned by $$CPTD.

 DFN Type: Input

 Not in use. Added in anticipation of future need.

 CDT Type: Input

 Code Date to check, Default = Today (FileMan format)

 Not in use. Added for future need.

 If CDT < 1/1/1989, use 1/1/1989

 If CDT > DT, use the most recent description

 If CDT is year only, use first of the year

 If CDT is year and month only, use first of the month

 Extrinsic function that returns the full description of a code, from the "D" node (field 50) of the ICPT file.

 COMPONENT: $$CODM(CODE,'OUTARR',SRC,CDT,DFN)

 VARIABLES: CODE Type: Input

 The CPT, HCPCS, or Level III code in either internal or external format.

 OUTARR Type: Both

 An array name in which to store the list of acceptable modifiers. If no name is provided,

 the default name will be ^TMP("ICPTM",$J,

 The calling routine is responsible for killing ^TMP("ICPTM",$J) after the call, if used.

 Array sorted on Modifier (field .01) and containing the Versioned Name (field #61), and ien

 of modifier.

 OUTARR(<modifier>)= versioned name^ien

 SRC Type: Input

 Flag to indicate if Level III codes and modifiers need to be screened out. If SRC=0 or null,

 Level III codes are not valid input and Level III modifiers are not valid output; if SRC>0,

 Level III codes and modifiers are included. *Note that all Level III modifiers are currently

 INACTIVE, and will be rejected.

 CDT Type: Input

 Date in Fileman format to check modifier status against. If CDT=0 or null, both active and

 inactive modifiers will be included in the output as acceptable modifiers. If CDT is passed

 as a date, only modifiers being active as of this date will be included in the output as

 acceptable modifiers.

 If CDT < 1/1/1989, use 1/1/1989

 If CDT > DT, validate with newest In/Activation Dates

 If CDT is year only, use first of the year

 If CDT is year and month only, use first of the month

 DFN Type: Input

 Not in use. Included in anticipation of future needs.

 $$CODM Type: Output

 Number of modifiers in OUTARR(mod name).

 or -1^error description in an error condition

 Extrinsic function that returns alphabetic array containing list of all acceptable modifiers for a selected

 code.

 COMPONENT: $$MOD(MOD,MFT,MDT,SRC)

 VARIABLES: $$MOD Type: Output

 String containing modifier data in "^" pieces:

 Piece Description

 ===== ===========

 1 internal entry number

 2 MODIFIER (.01 field)

 3 NAME (.02 field)

 4 CODE (.O3 field) alternate 5-digit code for CPT

 modifiers

 5 SOURCE (.04 field) C:CPT; H:HCPCS; V:VA NATIONAL

 6 EFFECTIVE DATE (.01 field of multiple field 60)

 7 STATUS (.02 field of multiple field 60)

 8 INACTIVE DATE (.01 field of multiple field 60)

 9 ACTIVE DATE (.01 field of multiple field 60)

 10 NOTICE OF TEXTUAL INACCURACY

 MOD Type: Input

 MODIFIER (.01 field or ien: External or ien format)

 MFT Type: Input

 MOD format where "I" = internal (ien); "E" = external (.01) Default value is "E".

 MDT Type: Input

 Date to check modifier status for. Default value is TODAY.

 If MDT < 1/1/1989, use 1/1/1989.

 If MDT > DT, validate with newest In/Activation Dates

 If MDT is year only, use first of the year

 If MDT is year and month only, use first of the month

 SRC Type: Input

 Flag to indicate if Level III modifiers need to be screened out If SRC=0 or null, Level III

 modifiers are not valid input; if SRC>0, Level III modifiers are accepted. *Note that all

 Level III modifiers are currently INACTIVE, and will be rejected.

 Extrinsic function that returns basic information for MODIFIER

 WARNING: Use of the INACTIVE FLAG field (#5) can produce

 unpredictable results if the API is not used.

 COMPONENT: $$MODP(CODE,MOD,MFT,MDT,SRC)

 VARIABLES: $$MODP Type: Output

 If pair not okay, 0. If pair okay, string containing modifier data in "^" pieces:

 Piece Description

 ===== ===========

 1 internal entry number

 2 NAME (.02 field)

 CODE Type: Input

 The CPT, HCPCS, or Level III code in either internal or external format.

 MOD Type: Input

 MODIFIER (.01 field or ien: External or ien format)

 MFT Type: Input

 MOD format where "I" = internal (ien); "E" = external (.01) Default value is "E".

 MDT Type: Input

 Date to check modifier status for. Default value is TODAY.

 If MDT < 1/1/1989, use 1/1/1989

 If MDT > DT, validate with newest In/Activation Dates

 If MDT is year only, use first of the year

 If MDT is year and month only, use first of the month

 SRC Type: Input

 Flag to indicate if Level III codes and modifiers need to be screened out. If SRC=0 or null,

 Level III codes and Level III modifiers are not valid input; if SRC>0, Level III codes and

 modifiers are accepted. *Note that all Level III modifiers are currently INACTIVE, and will

 be rejected.

 Extrinsic function that returns ien value of modifier if it can be used with code - MODIFIER/CODE pair checker.

 COMPONENT: $$CODEN(CODE)

 VARIABLES: $$CODEN Type: Output

 The Internal Entry Number of the CPT or HCPCS code.

 CODE Type: Input

 CPT/HCPCS Code REQUIRED

 Extrinsic function that returns the ien of a CPT or HCPCS code

 COMPONENT: $$CODEC(CODE)

 VARIABLES: $$CODEC Type: Output

 The CPT or HCPCS code.

 CODE Type: Input

 The Internal Entry Number of the CPT or HCPCS code.

 Extrinsic function that returns the CPT or HCPCS code of an ien.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CPT/HCPCS CODES
 ICR#: 1996

 NAME: CPT/HCPCS Modifier APIs

 USAGE: Supported ENTERED: APR 8,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This contains the supported references to routine ICPTMOD for the supported APIs. These entry points will retrieve CPT

 MODIFIER related data. All entry points will return '-1^error description' in an error condition.

 ROUTINE: ICPTMOD

 COMPONENT: $$MOD(MOD,MFT,MDT,SRC,DFN)

 VARIABLES: MOD Type: Input

 MODIFIER (.01 field or ien: External or ien format)

 MFT Type: Input

 Modifier format where "I"=internal (ien); "E"=external (.01) Default value is "E"

 MDT Type: Input

 Date to check modifier status for.

 If MDT < 1/1/1989, use 1/1/1989

 If MDT > DT, validate with newest In/Activation Dates

 If MDT is year only, use first of the year

 If MDT is year and month only, use first of the month

 $$MOD Type: Output

 A "^" delimited string containing the following pieces:

 1 Internal Entry Number (IEN)

 2 MODIFIER (.01 field)

 3 NAME (Versioned Name from multiple field 61)

 4 CODE (.O3 field) alt. 5-digit code for CPT modifiers

 5 SOURCE (.04 field) C:CPT; H:HCPCS; V:VA NATIONAL

 6 EFFECTIVE DATE (from multiple field 60)

 7 STATUS (.02 field of multiple field 60)

 SRC Type: Input

 If 0 or Null, check national (level 1, level 2) mods only If SRC>0, include VA modifiers

 DFN Type: Input

 Extrinsic function that returns basic information for MODIFIER. Returns string of data. WARNING: Use of the

 INACTIVE FLAG field (#5) can produce unpredictable results if the API is not used.

 COMPONENT: $$MODP(CODE,MOD,MFT,MDT,SRC,DFN)

 VARIABLES: CODE Type: Input

 The CPT or HCPCS code in either internal or external format.

 MOD Type: Input

 MODIFIER (.01 field or ien: External or ien format)

 MFT Type: Input

 Modifier format where "I"=internal (ien); "E"=external (.01) Default value is "E"

 MDT Type: Input

 Date to check modifier status for.

 If MDT < 1/1/1989, use 1/1/1989

 If MDT > DT, validate with newest In/Activation Dates

 If MDT is year only, use first of the year

 If MDT is year and month only, use first of the month

 $$MODP Type: Output

 If pair is acceptable: IEN^Versioned Name (from 61 multiple) If pair is unacceptable: 0

 or -1^error message

 SRC Type: Input

 If 0 or Null, check national (level 1, level 2) mods only If SRC>0, include VA modifiers

 Extrinsic function that returns ien value of modifier if it can be used with code - MODIFIER/CODE pair checker.

 Returns ien of MOD if acceptable pair, 0 if not.

 COMPONENT: $$MODD(CODE,OUTARR,DFN,CDT)

 VARIABLES: $$MODD Type: Output

 Returns the number of lines of text in the versioned description or '-1^error message' if

 there is no versioned description.

 CODE Type: Input

 This is either a CPT/HCPCS Modifier code (external, field .01) or an Internal Entry Number

 (IEN) of the CPT Modifier file #81.3.

 OUTARR Type: Both

 This is an array name in which to store the returned versioned description of the Modifier -

 e.g. "ABC" or "ABC("TEST")" or temp array. If no name is provided, the default name will be

 ^TMP("ICPTD",$J,. The calling routine is responsible for killing ^TMP("ICPTD",$J) after the

 call, if used.

 On return, the array contains corresponding lines of text of the Modifier's versioned

 description (field 62)

 ARRAY(1) = 1st line of description

 ARRAY(last) = last line of description

 ARRAY(last+1) = blank line

 ARRAY(last+2) = NOTICE OF TEXTUAL INACCURACY

 where last+2 is the value returned by $$MODD.

 DFN Type: Input

 Future use.

 CDT Type: Input

 Code Set Versioning date - active as of date in Fileman Format, default = today (FM)

 If CDT < 2890101, use 2890101

 If CDT > DT, validate with In/Activation Dates

 If CDT is year only, use first of the year

 If CDT is year and month, use first of the month

 Returns an array of text containing the versioned Modifier description.

 COMPONENT: MODA(CODE,DATE,.ARY)

 VARIABLES: CODE Type: Input

 (Required) This is a CPT CODE.

 DATE Type: Input

 (Required) This is the date to use for retrieving the list of CPT Modifiers and determine if

 the relationship between the CPT code and the CPT Modifier is Active or Inactive. The

 default value for this date is TODAY.

 .ARY Type: Input

 (Required) Input array passed by reference.

 ARY Type: Output

 This is an array of Active and Inactive CPT Modifiers for a CPT code in the following format:

 ARY(0) = 4 Piece String

 1 # of Modifiers found for code CODE (input)

 2 # of Modifiers w/Active Ranges

 3 # of Modifiers w/Inactive Ranges

 4 Code

 ARY(ST,MOD) = 8 Piece Output String

 ST Status A=Active I=Inactive

 MOD Modifier (external format)

 8 Piece String

 1 IEN of Modifier

 2 Versioned Short Text (name)

 3 Activation date of Modifier

 4 Beginning Range Code

 5 Ending Range Code

 6 Activation Date of Range

 7 Inactivation Date of Range

 8 Modifier Identifier

 This entry point builds a list of Active and Inactive CPT Modifiers that are used in conjunction with a CPT

 code. The determination of the status of Active versus Inactive is made based on a date provided (default

 TODAY). The list is placed in a local array passed by reference.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CPT/HCPCS CODES
 ICR#: 1997

 NAME: CPT Utility APIs

 USAGE: Supported ENTERED: APR 8,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Routine contains supported calls for the CPT package. These include an extrinsic variable, which returns the Distribution

 Date, an extrinsic function that returns the category name for a category ien, functions to perform Status Checks on codes, to

 retrieve the Next or Previous code, and to retrieve the History of code activation/inactivation.

 Both entry points will return

 -1^error description in an error condition.

 Another entry point will display the CPT SIGNON COPYRIGHT MESSAGE to the calling device.

 ROUTINE: ICPTAPIU

 COMPONENT: CPTDIST

 VARIABLES: DATE Type: Output

 DISTRIBUTION DATE (.02 field of file 81.2)

 Extrinsic Variable - returns distribution date of current release.

 S X=$$CPTDIST^ICPTAPIU

 COMPONENT: CAT

 VARIABLES: CAT Type: Input

 Internal entry number of category.

 STR Type: Output

 Category name (.01 field) for CAT (file 81.1)

 -1^error description returned if error condition.

 Extrinsic function that returns the CATEGORY NAME, given the internal entry number.

 S X=$$CAT^ICPTAPIU(CAT)

 COMPONENT: COPY

 VARIABLES: none Type:

 D COPY^ICPTAPIU will display the CPT SIGNON COPYRIGHT MESSAGE to the calling device.

 COMPONENT: $$STATCHK(CODE,CDT)

 VARIABLES: CODE Type: Input

 CPT Code or Modifier REQUIRED

 CDT Type: Input

 Code Date to check, Default = Today (FileMan format)

 If CDT is year only, use first of the year

 If CDT is year and month only, use first of the month

 If CDT < 1/1/1989, use 1/1/1989

 If CDT > DT, validate with newest In/Activation Dates

 $$STATCHK Type: Output

 String, containing the following information in the following "^" pieces:

 Piece Description

 ===== ===========

 1 STATUS where 0:inactive; 1:active

 2 IEN of code/modifier, -1 on error

 Extrinsic function that returns the Status of a CPT Code or Modifier.

 COMPONENT: $$NEXT(CODE)

 VARIABLES: CODE Type: Input

 CPT Code or Modifier REQUIRED

 $$NEXT Type: Output

 The Next CPT Code/Modifier, Null if there is none.

 Extrinsic function that returns the Next CPT Code or Modifier (active or inactive).

 COMPONENT: $$PREV(CODE)

 VARIABLES: CODE Type: Input

 CPT Code or Modifier REQUIRED

 $$PREV Type: Output

 The Previous CPT Code/Modifier, Null if there is none.

 Extrinsic function that returns the Previous CPT Code or Modifier (active or inactive).

 COMPONENT: $$HIST(CODE,ARY)

 VARIABLES: CODE Type: Input

 CPT Code or Modifier REQUIRED

 .ARY Type: Both

 Array, passed by Reference

 ARY (which was passed by reference) is returned as follows: ARY(0) = Number of Activation

 History Entries, -1 if error ARY(date) = STATUS where 0:inactive; 1:active

 'date' is in FileMan format ARY("IEN") = Internal Entry Number of CPT

 code/modifier

 $$HIST Type: Output

 Number of Activation History Entries, -1 if error

 Extrinsic function that returns the activation history of a CPT Code or Code Modifier.

 COMPONENT: PERIOD(CODE,ARY)

 VARIABLES: CODE Type: Input

 CPT Code or Modifier REQUIRED

 ARY Type: Output

 Array, passed by Reference REQUIRED

 Return Activation/Inactivation Period(s) in ARY

 ARY(0) = IEN (or, -1 if error) ARY(Act_date) = Inactivation Date^Versioned Short Name Text (field #61)

 COMPONENT: CR(.ARY)

 VARIABLES: .ARY Type: Input

 (Required) Name of Locay Array passed by reference.

 ARY Type: Output

 Local array containing the CPT Copyright information.

 This API is used to place the Copyright Infomration in a Local Array

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CPT/HCPCS CODES
 ICR#: 2815

 NAME: CPT FILE POINTERS

 USAGE: Supported ENTERED: MAY 5,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 81 ROOT: ICPT(81

 DESCRIPTION: TYPE: File

 This agreement will allow other packages' files to point to file #81, CPT file.

 Direct read of the "B" cross-reference will also be permitted.

 Direct read of the "ACT" cross-reference will also be permitted.

 This, along with DBIAs 1995-1997 will replace IA 10084, which will be inactivated as of June, 2000.

 ^ICPT(

 .01 CPT CODE 0;1 Pointed to

 May be pointed to by other packages' files.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CPT/HCPCS CODES
 ICR#: 2816

 NAME: CPT MODIFIERS FILE

 USAGE: Supported ENTERED: MAY 5,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 81.3 ROOT: DIC(81.3,

 DESCRIPTION: TYPE: File

 This will allow other packages to point to file #81.3, CPT MODIFIERS file from their files.

 Direct read of the "B" cross-reference will also be permitted.

 Direct read of the "ACT" cross-reference will also be permitted.

 Direct read of any node in file 81.3 by the Lexicon Environment Check Routines will also be permitted.

 ^DIC(81.3,DA

 .01 MODIFIER 0;1 Pointed to

 May be pointed to by other files.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CPT/HCPCS CODES
 ICR#: 4125

 NAME: CPT CODE UPDATE

 USAGE: Supported ENTERED: JUL 21,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 attached package protocols will be notified of a code set update. Packages may attach protocols using KIDS' "USE AS LINK FOR

 MENU ITEMS"

 ROUTINE:

 COMPONENT: ICPT CODE UPDATE EVENT

 VARIABLES: Notify applications that CPT/HCPCS codes and modifiers have been updated.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: CPT/HCPCS CODES
 ICR#: 5408

 NAME: CPT/HCPCS Procedure File 81

 USAGE: Supported ENTERED: MAR 17,2009

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 81 ROOT: ICPT(

 DESCRIPTION: TYPE: File

 Applications may conduct Fileman lookups of CPT Procedure file #81 provided the 0 (zero) node is not returned as part of the

 output from the lookup. Applications may also point to the CPT Procedure file #81. This agreement provides very limited

 access to file 81, primarily the .01 field and selected cross-references. Additional access to file 81 is given through the

 use of APIs in routines ICPTCOD and ICPTAPIU.

 ^ICPT(D0,0)

 .01 CPT CODE 0;1 Direct Global Read & w

 ^ICPT('B'

 Direct global read of the "B" cross reference.

 ^ICPT('BA',

 Direct global read of the "BA" cross reference.

 ^ICPT('C',

 Direct global read of the "C" cross reference.

 ^ICPT('ACT',

 Direct global read of the "ACT" cross reference.

 ^ICPT('AN',

 Direct global read of the "AN" cross reference.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: DRG GROUPER
 ICR#: 3991

 NAME: ICD Utility APIs

 USAGE: Supported ENTERED: MAR 12,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This contains the references to routine ICDAPIU for the supported APIs to be released with v.20.0 of ICD.

 These include extrinsic functions for retieving Code History, performing Status checks, retrieving Next/Previous Codes,

 retrieving Dates based on the Business Rules, and retrieving a notice of a code's textual inaccuracy.

 ROUTINE: ICDAPIU

 COMPONENT: $$STATCHK(CODE,CDT)

 VARIABLES: CODE Type: Input

 ICD Code REQUIRED

 CDT Type: Input

 Code Date to check, Default = Today (FileMan format)

 If CDT < 10/1/1978, use 10/1/1978.

 If CDT > DT, validate with newest In/Activation Dates

 If CDT is year only, use first of the year

 If CDT is year and month only, use first of the month

 $$STATCHK Type: Output

 String, containing the following information in the following "^" pieces:

 Piece Description

 ===== ===========

 1 STATUS where 1:active; 0:inactive

 2 IEN of code, -1 if not found

 Extrinsic function that returns the Status of an ICD Code.

 COMPONENT: $$NEXT(CODE)

 VARIABLES: CODE Type: Input

 ICD Code REQUIRED

 $$NEXT Type: Output

 The Next ICD Code, Null if there is none.

 Extrinsic function that returns the Next ICD Code (active or inactive)

 COMPONENT: $$PREV(CODE)

 VARIABLES: CODE Type: Input

 ICD Code REQUIRED

 $$PREV Type: Output

 The Previous ICD Code, Null if there is none.

 Extrinsic function that returns the Previous ICD Code (active or inactive)

 COMPONENT: $$HIST(CODE,ARY)

 VARIABLES: CODE Type: Input

 ICD Code REQUIRED

 .ARY Type: Both

 Array, passed by Reference

 ARY (which was passed by reference) is returned as follows: ARY(0) = number of history

 entries, -1 if error ARY(date) = STATUS where 1:active; 0:inactive

 'date' is in FileMan format ARY("IEN") = Internal Entry Number of ICD Code

 $$HIST Type: Output

 The number of activation history entries are returned, -1 if error

 Extrinsic function that returns the activation history of an ICD Code.

 COMPONENT: $$DTBR(CDT,CS)

 VARIABLES: CDT Type: Input

 Code Date to check, Default = Today (FileMan format)

 If CDT is year only, use first of the year

 If CDT is year and month only, use first of the month

 CS Type: Input

 Code System (0:ICD, 1:CPT/HCPCS, 2:DRG, Default=0)

 $$DTBR Type: Output

 If CDT < 10/1/1978 and CS=0, return 10/1/1978 If CDT < 1/1/1989 and CS=1, return 1/1/1989

 If CDT < 10/1/1982 and CS=2, return 10/1/1982 Otherwise, return CDT

 Extrinsic function that returns a date after applying several Business Rules, depending on the Coding System.

 COMPONENT: $$MSG(CDT,CS)

 VARIABLES: CDT Type: Input

 Code Date to check, Default = Today (FileMan format)

 If CDT is year only, use first of the year

 If CDT is year and month only, use first of the month

 CS Type: Input

 Code System (0:ICD, 1:CPT/HCPCS, 2:DRG, 3:LEX, Default=0)

 $$MSG Type: Output

 A warning stating: "CODE TEXT MAY BE INACCURATE"

 Extrinsic function that returns a message to inform someone that the code text may be inaccurate.

 COMPONENT: PERIOD(CODE,ARY)

 VARIABLES: COD Type: Input

 ICD Code REQUIRED

 ARY Type: Output

 Array, passed by Reference REQUIRED

 Funtion that returns Activation/Inactivation Period in ARY

 ARY(0) = IEN (or, -1 if error) ARY(Act_date) = Inactivation Date^Versioned Short Name Text (field #67)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: DRG GROUPER
 ICR#: 4052

 NAME: DRG Code APIs

SUBSCRIBING PACKAGE: FEE BASIS

 INTEGRATED BILLING

 REGISTRATION

 USAGE: Supported ENTERED: JUL 14,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: ICDGTDRG

 COMPONENT: $$DRG(CODE,EDT)

 VARIABLES: CODE Type: Input

 REQUIRED - DGN code, ien or .01 value

 EDT Type: Input

 OPTIONAL - Effective date, default = today (Fileman format)

 $$DRG Type: Output

 If DRG code DOES exist in the database then the function returns a "^" delimited string with

 the following pieces:

 1 DRG name (field #.01)

 2 Weight (field #2)

 3 Low Trim (days) (field #3)

 4 High Trim (days) (field #4)

 5 MDC (field #5)

 6 Surgery Flag (field #.06)

 7 <null>

 8 Avg Length of Stay (days) (field 10)

 9 Local Low Trim Days (field #11)

 10 Local High Trim Days (field #12)

 11 <null>

 12 Local Breakeven (field #13)

 13 Activation Date (.01 field of the 66 multiple)

 14 Status (.03 field of the 66 multiple)

 15 Inactivation Date (.01 field of the 66 multiple)

 16 Effective date (.01 field of the 66 multiple)

 17 Internal Entry Number (IEN)

 18 Effective date of CSV (.01 field of the 66 multiple)

 If DRG code DOES NOT exist in the database then the function returns a "^" delimited string

 with the following pieces:

 1 -1

 2 NO SUCH ENTRY

 14 Status 0=inactive

 This DBIA contains a supported DRG API call that can be used to access data contained in DRG file (# 80.2).

 Returns a string of information from the DRG file (#80.2) for a given DRG code and effective date.

 COMPONENT: $$GETDRG(CODE,DGNDT,FILE)

 VARIABLES: CODE Type: Input

 REQUIRED - IEN number of the #80 or #80.1 file

 DGNDT Type: Input

 OPTIONAL - Effective date, default = today (Fileman format)

 FILE Type: Input

 REQUIRED - file to access - 9:ICD9 (#80), 0:ICD0 (#80.1)

 $$GETDRG Type: Output

 If the code exists in the database, then the function returns a string with ";" delimiters:

 DRG(s) associated with the code (delimited by "^") - can be 1+ (piece 1);Effective date

 (piece 2);status flag (piece 3)

 If the code DOES NOT exist in the database then the function returns:

 Piece #1 : -1 Piece #2 : error message Piece #3 : Status = 0 = Inactive

 This DBIA contains a supported DRG API call that can be used to access data contained in the ICD DIAGNOSIS CODE

 file (#80) or the ICD OPERATION/PROCEDURE CODE file (#80.1). It returns a string of information from the file

 for a given ICD DIAGNOSIS or OPERATION/PROCEDURE CODE and effective date.

 COMPONENT: $$GETDATE(PATNUM)

 VARIABLES: PATNUM Type: Input

 REQUIRED - ien or .01 value for PTF file (#45)

 $$GETDATE Type: Output

 The function returns a Fileman-formatted date of the proper date to be used as the effective

 date. This date can be either the census, discharge, surgery, or movement date. If all

 previous dates are undefined, today's date is returned.

 This DBIA contains a supported DRG API call that can be used to access data in the PTF file (#45). It returns

 the proper effective date for a patient to use in accessing Code Set Versioned data.

 COMPONENT: $$ISVALID

 VARIABLES: CODE Type: Input

 REQUIRED - IEN number of the #80 or #80.1 file entry

 DGNDT Type: Input

 OPTIONAL -Effective date, default = today (Fileman format)

 FILE Type: Input

 REQUIRED - file to access - 9:ICD9(#80), 0:ICD0(#80.1)

 $$ISVALID Type: Output

 Returns 1 if the code is active/valid for the effective date or 0 if it is undefined or

 inactive.

 This DBA contains a supported DRG API call that can be used to determine if an ICD DIAGNOSIS CODE (#80) or ICD

 OPERATION/ PROCEDURE CODE (#80.1)is active for a given effective date. This API is designed for use in

 DIC("S") Fileman calls.

 COMPONENT: $$DRGD(CODE,ARRAY,DFN,DATE)

 VARIABLES: CODE Type: Input

 This is either a DRG Code or an Internal Entry Number (IEN) in the DRG file (#80.2)

 ARRAY Type: Both

 An array name in which to store the returned versioned description. If no name is provided,

 the default name will be ^TMP("DRGD",$J,. The calling routine is responsible for killing

 ^TMP("DRGD",$J) after the call, if used.

 On return, the array contains corresponding lines of text of the code's versioned description

 (field 68)

 ARRAY(1) = 1st line of description

 ARRAY(last) = last line of description

 ARRAY(last+1) = blank line

 ARRAY(last+2) = NOTICE OF TEXTUAL INACCURACY

 where last+2 is the value returned by $$DRGD.

 DATE Type: Input

 This is a Fileman compliant date. Time is ignored. If the date is not supplied, then

 today's date is used. The DRG description (long text) will be appropriate for that date. If

 no text is found that corresponds with the date provided, the oldest possible text will be

 returned and an message will be returned that the "text may be inaccurate".

 DFN Type: Input

 This is a pointer to the Patient File #2 (for future use)

 Extrinsic function that returns the full versioned description of a Diagnostic Related Group (DRG) code, from

 the 68 node (field 68) of the DRG file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: DRG GROUPER
 ICR#: 4126

 NAME: ICD CODE UPDATE

 USAGE: Supported ENTERED: JUL 21,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 attached package protocols will be notified of a code set update. Packages may attach protocols using KIDS' "USE AS LINK FOR

 MENU ITEMS"

 ROUTINE:

 COMPONENT: ICD CODE UPDATE EVENT

 VARIABLES: Notify applications that ICD codes have been updated.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: DRG GROUPER
 ICR#: 5388

 NAME: ICD-9 Diagnosis File 80

 USAGE: Supported ENTERED: MAR 16,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 80 ROOT: ICD9(

 DESCRIPTION: TYPE: File

 Applications may conduct Fileman lookups of ICD Diagnosis file #80 provided the 0 (zero) node is not returned as part of the

 output from the lookup. Applications may also point to the ICD Diagnosis file #80. This agreement provides very limited

 access to file 80, primarily the .01 field and selected cross-references. Additional access to file 80 is given through the

 use of APIs in routines ICDCODE and ICDAPIU.

 ^ICD9(D0,0)

 .01 CODE NUMBER 0;1 Direct Global Read & w

 ^ICD9('AB',

 Direct global read of the "AB" cross reference.

 ^ICD9('BA',

 Direct global read of the "BA" cross reference.

 ^ICD9('D',

 Direct global read of the "D" cross reference.

 ^ICD9('AST',

 Direct global read of the "AST" cross reference.

 ^ICD9('ACT'

 Direct global read of the "ACT" cross reference.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: DRG GROUPER
 ICR#: 5404

 NAME: ICD-9 Operation/Procedure file 80.1

 USAGE: Supported ENTERED: MAR 17,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 80.1 ROOT: ICD0(

 DESCRIPTION: TYPE: File

 Applications may conduct Fileman lookups of ICD Operation Procedure file #80.1 provided the 0 (zero) node is not returned as

 part of the output from the lookup. Applications may also point to the ICD Operation/Procedure file #80.1. This agreement

 provides very limited access to file 80.1, primarily the .01 field and selected cross-references. Additional access to file

 80.1 is given through the use of APIs in routines ICDCODE and ICDAPIU.

 ^ICD0(D0,0)

 .01 CODE NUMBER 0;1 Direct Global Read & w

 ^ICD0('BA',

 Direct global read of the "BA" cross reference.

 ^ICD0('ACT'

 Direct global read of the "ACT" cross reference.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ELECTRONIC SIGNATURE
 ICR#: 4955

 NAME: ELECTRONIC SIGNATURE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 As HealtheVet-VistA developers migrate VistA applications to modern technologies, interim solutions may be required until

 enterprise solutions are mature and stable. The Electronic Signature (ESig) service provides an interim solution for the use

 of electronic codes in place of wet signatures while HealtheVet-VistA s security infrastructure and architecture are being

 defined. The service duplicates for Java applications (J2EE or J2SE) the Kernel 8.0 electronic signature functionality

 currently used by VistA/M applications.

 ESig furnishes a standard, consistent set of APIs that HealtheVet-VistA developers can implement to provide users access to

 electronic signature data stored on VistA/M systems. ESig APIs make calls from Java applications to VistA/M systems to

 retrieve, validate, and store office phone, etc.). Additional Java APIs provide encoding/decoding, hash, and checksum

 calculation utilities, but do not interact with the VistA/M system.

 This integration agreement describes the supported ESig Java APIs that are contained in the esig-x.x.x.xxx.jar file. This JAR

 file can be included in a HealtheVet package distribution.

 SUMMARY

 JAR: esig-x.x.x.xxx.jar

 Package: gov.va.med.esig.utilities

 Class: ESigDataAccess

 Methods: isDefined

 getESigCode

 saveESigCode

 getESigData

 saveESigData

 Class: ESigEncryption

 Methods: checksum

 encrypt

 decrypt

 hash

 Class: ESigValidation

 Methods: isValid

 isValidFormat

 ROUTINE:

 COMPONENT: isDefined(VistaLinkConnection)

 VARIABLES: The isDefined method returns true if the user has an electronic signature code defined on the M server.

 Class:

 gov.va.med.esig.utilities.ESigDataAccess

 Method:

 public static final boolean isDefined

 (gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException, ESigNotAValidUserException

 Parameters:

 connection - The VistaLinkConnection handle.

 Returns:

 true if the user has an Electronic Signature Code defined on the M

 server.

 Throws:

 ESigConnectionException - if the RPC request fails.

 ESigNotAValidUserException - if the DUZ of the user does not correspond

 to a valid entry in the New Person file.

 Example:

 try {

 if (ESigDataAccess.isDefined(myConnection)) {

 System.out.println("Your electronic signature code is defined on the

 M server.");

 } else {

 System.out.println("You currently have no electronic signature code

 defined.");

 }

 } catch (FoundationsException e) {

 System.out.println(e.getMessage());

 }

 COMPONENT: getESigCode(VistaLinkConnection)

 VARIABLES: The getESigCode method retrieves the encrypted electronic signature code from the M server.

 Class:

 gov.va.med.esig.utilities.ESigDataAccess

 Method:

 public static final java.lang.String getESigCode

 (gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException, ESigNotAValidUserException

 Parameters:

 connection - The VistaLinkConnection handle.

 Returns:

 A String that contains the user's encrypted Electronic Signature Code.

 Throws:

 ESigConnectionException - if the RPC request fails.

 ESigNotAValidUserException - if the DUZ of the user does not correspond

 to a valid entry in the New Person file.

 Example:

 try {

 String eSig = ESigDataAccess.getESigCode(myConnection);

 System.out.println(" ESig obtained from VistA: " + eSig);

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

 COMPONENT: saveESigCode(char[] or String, VistaLinkConnection)

 VARIABLES: The overloaded saveESigCode method take the unencrypted electronic signature code either in a character array

 or a String, and saves the encrypted form of the electronic signature code in the New Person file on the M

 server.

 Class:

 gov.va.med.esig.utilities.ESigDataAccess

 Method:

 public static final void saveESigCode(char[] eSigCode,

 gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException,

 ESigNotAValidUserException,

 ESigUnchangedElectronicSignatureException,

 ESigInvalidFormatException

 public static final void saveESigCode(java.lang.String eSigCode,

 gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException,

 ESigNotAValidUserException,

 ESigUnchangedElectronicSignatureException,

 ESigInvalidFormatException

 Parameters:

 eSigCode - An array of characters or a String that contains the

 user-supplied (unencrypted) electronic signature code.

 connection - The VistaLinkConnection handle.

 Throws:

 ESigConnectionException - if the RPC request fails.

 ESigNotAValidUserException - if the DUZ of the user does not correspond

 to a valid entry in the New Person file.

 ESigUnchangedElectronicSignatureException - if the electronic signature

 on the M server is the same as the electronic signature code passed

 in.

 ESigInvalidFormatException - if the format of the electronic signature

 code passed in is not valid. VistA electronic signatures codes must

 be between 6 and 20 characters in length, and cannot contain control

 characters. That is, they must contain only the printable characters

 in the 7-bit ASCII character set, decimal ASCII values 32 through 126

 Example:

 try {

 String esig = "NEW ESIG VALUE";

 System.out.println("Value attempting to save: " + esig);

 ESigDataAccess.saveESigCode(esig, myConnection);

 System.out.println("Value " + esig + " saved successfully.");

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

 COMPONENT: getESigData(VistaLinkConnection)

 VARIABLES: The getESigData method obtains other electronic signature related data from the M server and returns it in a

 HashMap. The key values in the HashMap are:

 - initial

 - signature block printed name

 - signature block title

 - office phone

 - voice pager

 - digital pager

 Class:

 gov.va.med.esig.utilities.ESigDataAccess

 Method:

 public static final java.util.HashMap getESigData

 (gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException, ESigNotAValidUserException

 Parameters:

 connection - The VistaLinkConnection handle.

 Returns:

 A HashMap that contains the user's data.

 Throws:

 ESigConnectionException - if the RPC request fails.

 ESigNotAValidUserException - if the DUZ of the user does not correspond

 to a valid entry in the New Person file.

 Example:

 Map oldValues = null

 try {

 oldValues = ESigDataAccess.getESigData(myConnection);

 System.out.println("Values of Map returned:");

 System.out.println(" INITIAL: " + oldValues.get("initial"));

 System.out.println("SIGNATURE BLOCK PRINTED NAME: " +

 oldValues.get("signature block printed name"));

 System.out.println(" SIGNATURE BLOCK TITLE: " +

 oldValues.get("signature block title"));

 System.out.println(" OFFICE PHONE: " + oldValues.get("office

 phone"));

 System.out.println(" VOICE PAGER: " + oldValues.get("voice pager"));

 System.out.println(" DIGITAL PAGER: " + oldValues.get("digital

 pager"));

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

 COMPONENT: saveESigData(Map, VistaLinkConnection)

 VARIABLES: The saveESigData method accepts the following values in a Map, and saves the values in the New Person file on

 the M server:

 - initial

 - signature block printed name

 - signature block title

 - office phone

 - voice pager

 - digital pager

 Class:

 gov.va.med.esig.utilities.ESigDataAccess

 Method:

 public static final void saveESigData(java.util.Map values,

 gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException, ESigNotAValidUserException,

 ESigInvalidFormatException

 Parameters:

 values - The values passed in a HashMap

 connection - The VistaLinkConnection handle.

 Throws:

 ESigConnectionException - if the RPC request fails.

 ESigNotAValidUserException - if the DUZ of the user does not correspond

 to a valid entry in the New Person file.

 ESigInvalidFormatException - if the format of any of the data passed in

 is not valid. In this case, none of the data is filed.

 Example:

 HashMap newValues = new HashMap();

 newValues.put("initial", "TAS");

 newValues.put("signature block printed name", "Test A. Smith");

 newValues.put("signature block title", "Dietician");

 newValues.put("office phone", "(123) 123-4567");

 newValues.put("voice pager", "(234) 234-5678");

 newValues.put("digital pager", "(345) 345-6789");

 try {

 ESigDataAccess.saveESigData(newValues, myConnection);

 LOGGER.info("New values saved successfully.");

 } catch (Exception e) {

 System.out.println(e.getMessage());

 }

 COMPONENT: checksum(String)

 VARIABLES: The checksum method calculates a checksum number for a String using the same algorithm as the Kernel

 $$CHKSUM^XUSESIG1 function.

 Class:

 gov.va.med.esig.utilities.ESigEncryption

 Method:

 public static final java.lang.String checksum

 (java.lang.String document)

 Parameters:

 document - A String containing the document for which to calculate a

 checksum value.

 Returns:

 The checksum value.

 Example:

 String aDocument = "This is a sample document.\nA second line.\n";

 String checksum = ESigEncryption.checksum(aDocument);

 System.out.println(" Java checksum: " + checksum);

 System.out.println(" aDocument:\n" + aDocument);

 COMPONENT: encrypt(String, double, double)

 VARIABLES: This method encrypts a String using the same algorithm as the Kernel EN^XUSHSHP entry point.

 Class:

 gov.va.med.esig.utilities.ESigEncryption

 Method:

 public static final java.lang.String encrypt(java.lang.String text,

 double idNumber, double docNumber)

 Parameters:

 text - The String to be encrypted.

 idNumber - An identification number, such as DUZ.

 docNumber - A document number (or the number one).

 Returns:

 The encrypted version of the input String.

 Example:

 String aStringToEncrypt = "John A. Smith, MD";

 double id = 101.0;

 double doc = 53684791;

 String

 encryptedText = ESigEncryption.encrypt(aStringToEncrypt, id, doc);

 System.out.println(" aString: " + aStringToEncrypt);

 System.out.println(" Java encrypted value: " + encryptedText);

 COMPONENT: decrypt(String, double, double)

 VARIABLES: This method decrypts a String using the same algorithm as the Kernel DE^XUSHSHP entry point.

 Class:

 gov.va.med.esig.utilities.ESigEncryption

 Method:

 public static final java.lang.String decrypt(java.lang.String text,

 double idNumber, double docNumber)

 Parameters:

 text - The String to be decrypted.

 idNumber - The identification number used as the idNumber input

 parameter to the encrypt call.

 docNumber - The document numbers used as the docNumber input parameter

 to the encrypt call.

 Returns:

 The decrypted version of the input String.

 Example:

 String decryptedText = ESigEncryption.decrypt(encryptedText, id, doc);

 System.out.println(" aString: " + encryptedText);

 System.out.println(" Java decrypted value: " + decryptedText);

 COMPONENT: hash(String or char[])

 VARIABLES: This overloaded method hashes a String or characters in a character array using the same algorithm as the

 Kernel HASH^XUSHSHP entry point. This method is used to hash an electronic signature code entered by the user.

 Class:

 gov.va.med.esig.utilities.ESigEncryption

 Method:

 public static final java.lang.String hash(java.lang.String text)

 public static final java.lang.String hash(char[] text)

 Parameters:

 text - The text to hash, contained in a String or character array.

 Returns:

 A String that is the hashed form of the text in the input array.

 Example:

 String aString = "AnESigForTesting";

 String hashedText = ESigEncryption.hash(aString);

 System.out.println(" aString: " + aString);

 System.out.println(" Java hashed string: " + hashedText);

 COMPONENT: isValid(char[] or String, VistaLinkConnection)

 VARIABLES: The overloaded isValid method validates a user-supplied electronic signature code against the electronic

 signature code stored in the New Person file (#200) on the M server. It returns true if the electronic

 signature code passed matches the code stored on the M server.

 A VistALink connection is assumed, and the VistaLinkConnection object must be passed to the method along with

 the electronic signature code being validated.

 Class:

 gov.va.med.esig.utilities.ESigValidation

 Method:

 public static final boolean isValid(char[] code,

 gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException,

 ESigNotAValidUserException,

 ESigNoElectronicSignatureDefinedException

 public static final boolean isValid(java.lang.String code,

 gov.va.med.vistalink.adapter.cci.VistaLinkConnection connection)

 throws ESigConnectionException,

 ESigNotAValidUserException,

 ESigNoElectronicSignatureDefinedException

 Parameters:

 code - A character array or String containing the unencrypted

 user-supplied electronic signature code.

 connection - The VistaLinkConnection handle.

 Returns:

 true if the electronic signature code matches the code store on the M

 server.

 Throws:

 ESigConnectionException - if an error occurred while attempting to make

 an RPC call on the M server.

 ESigNotAValidUserException - if the user identified by DUZ on the M

 server does not correspond to an entry in the New Person file.

 ESigNoElectronicSignatureDefinedException - if the user has no

 electronic signature defined on the M server.

 Example:

 try {

 boolean valid = ESigValidation.isValid(userESig.toCharArray(),

 myConnection);

 if (valid) {

 System.out.println("Electronic signature code is valid.");

 } else {

 System.out.pritnln("Electronic signature is not valid.");

 }

 } catch (ESigConnectionException e) {

 System.out.println(e.getMessage());

 } catch (ESigNotAValidUserException e) {

 System.out.println(e.getMessage());

 } catch (ESigNoElectronicSignatureDefinedException e) {

 System.out.println(e.getMessage());

 }

 COMPONENT: isValidFormat(char[] or String)

 VARIABLES: The overloaded isValidFormat method checks whether the format of the user-supplied electronic signature code is

 valid. Electronic signatures codes must be between 6 and 20 characters in length, and cannot contain control

 characters; that is, they must contain only the printable characters in the 7-bit ASCII character set, decimal

 ASCII values 32 through 126.

 Class:

 gov.va.med.esig.utilities.ESigValidation

 Method:

 public static final boolean isValidFormat(char[] code)

 public static final boolean isValidFormat(java.lang.String code)

 Parameters:

 code - A character array containing the unencrypted user-supplied

 electronic signature code.

 Returns:

 true if the format of the electronic signature code is valid.

 Example:

 String[] validESigCodes = { "6CHARS",

 "LENGTH 20 CHARACTERS",

 "`~!@#$%^&*()-_=+",

 "[]\\{}|;:'\",./<>?",|

 "VALID_INCL.PUNC" };

 String[] invalidESigCodes = { "SHORT",

 "",

 "THIS ELECTRONIC SIGNATURE IS TOO LONG",

 "Invalid mixed case", };

 System.out.println(" Valid e-sig codes:");

 for (int i = 0; i < validESigCodes.length; i++) {

 System.out.println(" " + validESigCodes[i]);

 System.out.println(" --> " +

 (ESigValidation.isValidFormat(validESigCodes[i])

 ? "valid" : "invalid"));

 }

 System.out.println("");

 System.out.println(" Invalid e-sig codes:");

 for (int i = 0; i < invalidESigCodes.length; i++) {

 if (invalidESigCodes[i].equals("")) {

 System.out.println(" <null> string");

 } else {

 System.out.println(" " + invalidESigCodes[i]);

 }

 System.out.println(" --> " +

 (ESigValidation.isValidFormat(invalidESigCodes[i]) ? "valid" :

 "invalid"));

 }

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ENROLLMENT APPLICATION SYSTEM
 ICR#: 3499

 NAME: DBIA3499

 USAGE: Supported ENTERED: JAN 14,2002

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The purpose of this API is to facilitate the check for a required means test for a veteran during appointment management. A

 deficiency noted in the "Report of Task Force to Review Enrollment, Means Testing and Income Verification", item #22, required

 VHA to identify a means to acquire veterans' signatures on means tests at a local level. This API provides a procedure that

 when called will check on a veteran means test status and return a flag on whether a means test is required or not, and

 optionally, a related text message that can be displayed by the calling procedure. This API is provided in the Enrollment

 Application Systems namespace.

 ROUTINE: EASMTCHK

 COMPONENT: MT(DFN,EASAPT,EASACT,EASDT,EASQT,EASMSG)

 VARIABLES: DFN Type: Input

 Contains the Internal Entry Number of the patient in the PATIENT File, #2.

 EASAPT Type: Input

 Contains the Internal Entry Number of the appointment type from the APPOINTMENT TYPE, File

 #409.1. Current requirements are for action only on "Regular" type appointments.

 EASACT Type: Input

 Appointment action flag [Optional]. Used to specify the appointment action being taken. If

 not specified, a default of "Other" is used. Walk-In and Other appointment actions will not

 block an appointment action, and may be used for returning a MT status message.

 M - Make an appointment

 C - Check In/Out an existing appointment

 W - Unscheduled/Walk-In appointment

 O - Other (Default)

 EASDT Type: Input

 Appointment Date/Time in FileMan format. If the appointment type is not available, then the

 appointment date/time must be passed.

 EASMSG Type: Input

 Return array for alert message [Optional], if defined, the alert text is copied to the array.

 Can be used in conjunction with EASQT to control how and when alert messages are displayed.

 RSLT Type: Output

 Outputcontains the results:

 1 - MT Required

 0 - MT Not required

 EASQT Type: Input

 Silent flag [Optional], if set, prevents display of alert message.

 The MT^EASMTCHK entry point returns a flag and alert messgae if a means test update is required for the

 patient. If a means test update is not required, a "0" is returned. The IEN in the PATIENT File, #2, is

 passed into the call as variable DFN. If DFN is not populated, the call fails. EASAPT is the IEN of the

 Appointment type in the APPOINTMENT TYPE File, #409.1, and EASDT is the date of the appointment. If the

 Appointment type is not available, then the appointment date/time must be passed in. When the Appointment

 action flag is "C", the appointment date/time is used to lookup the appointment and determine the appointment

 type for the MT status determination. Normally either the appointment type or the appointment date/time will

 be available to the API. If one or the other is not passed in, the API will return "0".

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: EVENT CAPTURE
 ICR#: 4460

 NAME: DBIA4460

SUBSCRIBING PACKAGE: DSS EXTRACTS

 Used by DSS Event Capture extract.

 USAGE: Supported ENTERED: DEC 5,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Provides a set of APIs to store and retrieve data for field #42 (PROVIDER MULTIPLE) in EVENT CAPTURE PATIENT file (#721).

 ROUTINE: ECPRVMUT

 COMPONENT: $$GETPRV(ECIEN,OUTARR)

 VARIABLES: ECIEN Type: Input

 The IEN in EVENT CAPTURE PATIENT file #721.

 OUTARR Type: Output

 The output array with providers. Value store at array:-

 ECH IEN^provider ien^provider description^Primary/Secondary code^

 Primary/Secondary description

 $$GETPRV Type: Output

 Returns:-

 1 if successful or,

 0 if unsuccessful

 Returns providers associated with an Event Capture encounter. Returns 0 if there are providers, otherwise

 returns a 1.

 COMPONENT: $$GETPPRV(ECIEN,ECPPROV)

 VARIABLES: ECIEN Type: Input

 The IEN in the EVENT CAPTURE PATIENT file #721.

 ECPPROV Type: Output

 The output value is:-

 provider ien^provider description

 $$GETPPRV Type: Output

 Returns:-

 1 if successful or,

 0 if unsuccessful

 Returns the primary provider associated with an Event Capture encounter. Returns 0 if there is provider,

 otherwise returns a 1.

 COMPONENT: $$FILPRV(ECIEN,ECPRVARY,ECOUT)

 VARIABLES: ECIEN Type: Input

 The IEN in the EVENT CAPTURE PATIENT file #721. This is required.

 ECPRVARY Type: Input

 Array with encounter providers to be filed. Required.

 ECOUT Type: Input

 Error flag.

 $$FILPRV Type: Output

 Returns

 1 if successful or,

 0^error message if unsuccessful

 Files multiple providers for an Event Capture encounter in EVENT CAPTURE PATIENT, #721.

 COMPONENT: $$ASKPRV(ECIEN,ECDT,ECPRVARY,ECOUT)

 VARIABLES: ECIEN Type: Input

 The IEN in the EVENT CAPTURE PATIENT file #721. Required.

 ECDT Type: Input

 Date/time of encounter.

 ECPRVARY Type: Input

 Array with encounter's providers.

 ECOUT Type: Input

 Error flag (1/0).

 $$ASKPRV Type: Output

 Returns:-

 1 if successful or,

 0 if unsuccessful

 API to prompt and validate primary and multiple secondary providers.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: EVENT CAPTURE
 ICR#: 10100

 NAME: NATIONAL SERVICE FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 730 ROOT: ECC(730,

 DESCRIPTION: TYPE: File

 ^ECC(730,D0,0)

 .01 NAME 0;1 Direct Global Read & w

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5170

 NAME: gov.va.med.monitor.time.AuditTimer

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class AuditTimer extends java.lang.Object:

 The AuditTimer class gives an easy way to capture performance statistics and log them to a log file. Internally

 System.currentTimeMillis() is used. Typical steps for using this class:

 1. Create an instance: auditTimer = new AutitTimer() 2. auditTimer.start() 3. auditTimer.stop() 4.

 auditTimer.getTimeElapsedMillis()

 autitTimer.start() should be called before auditTimer.stop() is called.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: logger Type: Input

 (optional) org.apache.log4j.Logger: logger to use to write AuditTimer output to.

 public AuditTimer(): Default constructor. Default logger gov.va.med.foundations.utilities.AuditTimer will be

 used.

 public AuditTimer(org.apache.log4j.Logger logger): Constructor that accepts logger to be used for output.

 Application can pass in their own loggers to have granual control over logging.

 COMPONENT: start

 VARIABLES: public void start(): Starts the timer.

 COMPONENT: stop

 VARIABLES: return Type: Output

 returns long: elapsed time since timer start in milliseconds (or -1 if timer not started.)

 public long stop(): Stops the timer. If start() was not called at least once before stop() is called

 timeElapsedMillis is set to -1. This method does not throw Exceptions, to keep client code simple.

 COMPONENT: getTimeElapsedMillis()

 VARIABLES: return Type: Output

 returns long: # of elapsed milliseconds between last start()/stop() cycle.

 public long getTimeElapsedMillis(): returns the elapsed milliseconds between the last start()/stop() cycle.

 COMPONENT: log

 VARIABLES: message Type: Input

 (optional) java.lang.String message: message to prepend to output.

 public void log(): Logs a message to the log4j logger in a following format: elapsed_time_milliseconds

 public void log(java.lang.String message): Logs a message to the log4j logger in a following format:

 your_message elapsed_time_milliseconds

 COMPONENT: isAuditTimerEnabled()

 VARIABLES: return Type: Output

 returns boolean: true if info-level logging is on, false if not.

 logger Type: Input

 (optional) org.apache.log4j.Logger: the logger to check. If not passed, the default logger is

 checked.

 public static boolean isAuditTimerEnabled(): returns whether info-level is currently enabled on the default

 logger.

 public static boolean isAuditTimerEnabled(org.apache.log4j.Logger logger): returns whether info-level logging

 is currently enabled for the specified logger (AuditTimer log writes use info-level loggers).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5171

 NAME: gov.va.med.crypto.VistaKernelHash

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class VistaKernelHash extends java.lang.Object:

 Implements static methods to provide the encoding algorithms used by the RPC Broker and Kernel to encode and decode data

 strings. Using these algorithms makes it harder to sniff the contents of text sent over the network. This is not, however,

 encryption-class encoding, nor does it protect against replay attacks of un-decoded strings, and therefore use of this

 algorithm should not be considered to imply or achieve any particular level of security.

 For example:

 String encodedString = VistaKernelHash.encrypt("some text to encode", true);

 ROUTINE:

 COMPONENT: decrypt()

 VARIABLES: encryptedT Type: Input

 java.lang.String: The text to decode. Must be characters between ASCII 32 and 128.

 return Type: Output

 returns java.lang.String: a decrypted (decoded) version of the input string.

 public static java.lang.String decrypt(java.lang.String encryptedText):

 Decrypts a string using the same encoding algorithm as the RPC Broker uses.

 COMPONENT: encrypt()

 VARIABLES: normalText Type: Input

 java.lang.String normalText: the text to encode. Must be characters between ASCII 32 and 128.

 preventEnc Type: Input

 boolean preventEncryptionsContainingCDataSectionBoundaries: if true, the returned encrypted

 strings are guaranteed not to contain either "]]>" or "<![CDATA[". Otherwise, it is possible

 a returned encryption may conta in those character sequences.

 return Type: Output

 returns java.lang.String: an encrypted (encoded) version of the input string.

 throws Type: Output

 throws gov.va.med.crypto.VistaKernelHashCountLimitExceededException: if requested that the

 method not return a result with CData section boundaries, and if the algorithm runs up to a

 count limit (presently 2000 tries) without generating a result without such boundaries, an

 exception is thrown.

 public static java.lang.String encrypt(java.lang.String normalText, boolean

 preventEncryptionsContainingCDataSectionBoundaries) throws VistaKernelHashCountLimitExceededException:

 Encrypts a string using the same encoding algorithm as the RPC Broker uses.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5172

 NAME: gov.va.med.environment.Environment

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class Environment extends java.lang.Object: Environment settings for J2EE server use.

 ROUTINE:

 COMPONENT: getServerType()

 VARIABLES: return val Type: Output

 gov.va.med.environment.ServerType: an enumerated J2EE server type (weblogic, tomcat,

 websphere, etc.)

 public static ServerType getServerType(): Returns the J2EE server type. The source of the setting is the

 gov.va.med.environment.servertype JVM argument passed to the J2EE server upon startup. If JVM arg missing,

 looks for WebLogic-specific classloader classes to determine if server type is WebLogic. Defaults to return

 UNKNOWN if the JVM argument is not present.

 COMPONENT: isProduction()

 VARIABLES: return val Type: Output

 boolean: true if the server is a VA production server, false if not.

 public static boolean isProduction(): Returns whether the administrator has configured the J2EE server to be

 "production" in a VA-medical-center sense, i.e., is this system operating on production VA data. The source of

 the setting is the gov.va.med.environment.production JVM argument passed to the J2EE server upon startup. A

 setting of true desginates the server as a production server; any other value (including not passing the JVM

 argument at all) marks the server as not a VA production server.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5173

 NAME: gov.va.med.environment.ServerType

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class ServerType extends java.lang.Object: Enumerated J2EE server types.

 Example Use:

 if (Environment.getServerType().equals(ServerType.WEBLOGIC)) {

 // weblogic-specific code

 }

 ROUTINE:

 COMPONENT: static ServerType JAVA_SE

 VARIABLES: represents J2SE mode, non-J2EE "server" type

 COMPONENT: static ServerType JBOSS

 VARIABLES:

 COMPONENT: static ServerType ORACLE

 VARIABLES:

 COMPONENT: static ServerType SUN_RI_13

 VARIABLES:

 COMPONENT: static ServerType TOMCAT

 VARIABLES:

 COMPONENT: static ServerType UNKNOWN

 VARIABLES:

 COMPONENT: static ServerType WEBLOGIC

 VARIABLES:

 COMPONENT: static ServerType WEBSPHERE

 VARIABLES:

 COMPONENT: toString()

 VARIABLES: return Type: Output

 returns java.lang.String: the server type as a string value.

 public java.lang.String toString(): returns the server type as a string value.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5174

 NAME: gov.va.med.exception.ExceptionUtils

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class ExceptionUtils extends java.lang.Object: Exposes utility methods for handling exceptions. Note: DEPRECATED CLASS.

 ROUTINE:

 COMPONENT: getFullStackTrace()

 VARIABLES: return Type: Output

 java.lang.String: full stack trace including nested exceptions as a string.

 e Type: Input

 java.lang.Throwable e: Throwable exception to get stack trace from.

 public static java.lang.String getFullStackTrace(java.lang.Throwable e): Deprecated. Superceded by JDK 1.4+

 exception functionality.

 Gets the full stack trace, including nested exceptions, as a string.

 COMPONENT: getNestedExceptionByClass()

 VARIABLES: e Type: Input

 java.lang.Throwable e: Exception to check for nested exceptions within.

 exceptionC Type: Input

 java.lang.Class exceptionClass: class of the type of nested exception to look for.

 return Type: Output

 returns java.lang.Throwable: nested exception matching requested class, if found.

 public static java.lang.Throwable getNestedExceptionByClass(java.lang.Throwable e, java.lang.Class

 exceptionClass): Deprecated. Superceded by JDK 1.4+ exception functionality.

 Gets the nested exception if exception is an instance of the exceptionClass or if any nested exception is an

 instance of the type exceptionClass.

 If desired instance of exceptionClass is not found in the nested exception stack then null is returned.

 Can be used to unwind nested exception stack.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5175

 NAME: gov.va.med.exception.FoundationsExceptionInterface

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public interface FoundationsExceptionInterface: Represents the interface that all Foundations exceptions implement.

 Implementing this interface allows ExceptionUtils to work with the exception.

 ROUTINE:

 COMPONENT: getFullStackTrace()

 VARIABLES: return Type: Output

 returns java.lang.String: full stack trace representation.

 java.lang.String getFullStackTrace(): Deprecated. Use Throwable.getStackTrace() instead.

 Return full stack trace. Full stack trace will include all nested exception messages and the full stack trace

 for the root exception.

 COMPONENT: getNestedException()

 VARIABLES: return Type: Output

 returns java.lang.Throwable: nested exception if any.

 java.lang.Throwable getNestedException(): Deprecated. Use Throwable.getCause() instead.

 Return nested exception that is wrapped within this exception.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5176

 NAME: gov.va.med.net.SocketManager

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class SocketManager extends java.lang.Object implements java.io.Serializable: Represents a socket that can be used to

 communicate with IP end points.

 ROUTINE:

 COMPONENT: getBufferSize()

 VARIABLES: return Type: Output

 returns int: buffer size.

 public int getBufferSize(): Returns the buffer size (int).

 COMPONENT: setBufferSize()

 VARIABLES: value Type: Input

 int: size to set buffer to.

 void setBufferSize(int value): Sets the buffer size.

 COMPONENT: getSoc()

 VARIABLES: return Type: Output

 returns java.net.Socket: socket associated with this socket manager.

 public java.net.Socket getSoc(): Gets the socket associated with this SocketManager.

 COMPONENT: constructor

 VARIABLES: socket Type: Input

 (optional) java.net.Socket: construct the Socket Manager and set its socket to the specified

 socket.

 public SocketManager(): constructs a Socket Manager instance.

 public SocketManager(java.net.Socket soc): constructs a Socket Manager instance.

 COMPONENT: setSoc()

 VARIABLES: value Type: Input

 java.net.Socket: the socket to associate with this SocketManager.

 void setSoc(java.net.Socket value): Sets the socket associated with this SocketManager.

 COMPONENT: sendData()

 VARIABLES: data Type: Input

 java.lang.String: data to write to the open socket.

 public void sendData(java.lang.String xmlRequest) throws VistaSocketException:

 Writes data to the open socket.

 COMPONENT: receiveData()

 VARIABLES: return Type: Output

 returns java.lang.String: return value.

 throws Type: Output

 throws: gov.va.med.net.VistaSocketException, gov.va.med.net.VistaSocketTimeOutException.

 public java.lang.String receiveData() throws VistaSocketException, VistaSocketTimeOutException:

 Reads the socket for a response and writes to String.

 COMPONENT: getMatchingIdentifier()

 VARIABLES: return Type: Output

 returns java.lang.String: socket's identifier.

 public java.lang.String getMatchingIdentifier(): Gets the socket's identifier (if any).

 COMPONENT: setMatchingIdentifier()

 VARIABLES: string Type: Input

 java.lang.String: identifier for socket.

 void setMatchingIdentifier(java.lang.String string): Sets an identifier to identify the socket.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5177

 NAME: gov.va.med.xml.XmlUtilities

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class XmlUtilities extends java.lang.Object: Deprecated. Need for XML utilities has been superceded by the many

 JRE-built-in and external XML frameworks.

 This class contains a number of static utility methods to help developers work with XML documents, nodes, attributes and

 strings.

 ROUTINE:

 COMPONENT: XML_HEADER

 VARIABLES: Deprecated. public static final java.lang.String XML_HEADER: Represents the default header used for all xml

 documents that communicate with an M server via VistALink. It is important to use this header as keeps the

 client and M server in sync. Note that that as a String constant, this value is compiled into the calling class

 at compile time; it is not dynamically linked at runtime.

 COMPONENT: convertXmlToStr()

 VARIABLES: doc Type: Input

 org.w3c.dom.Document doc: document to convert.

 return Type: Output

 returns java.lang.String: string conversion of DOM document.

 throws Type: Output

 Throws: FoundationsException

 public static java.lang.String convertXmlToStr(org.w3c.dom.Document doc) throws FoundationsException:

 Deprecated. Need for XML utilities has been superceded by the many JRE-built-in and external XML frameworks.

 Converts a DOM document to a string.

 COMPONENT: getNode()

 VARIABLES: xpathStr Type: Input

 java.lang.String xpathStr: xpath location specification

 node Type: Input

 org.w3c.dom.Node node: Node to search.

 return Type: Output

 returns org.w3c.dom.Node: first node found.

 public static org.w3c.dom.Node getNode(java.lang.String xpathStr, org.w3c.dom.Node node): Deprecated. Need for

 XML utilities has been superceded by the many JRE-built-in and external XML frameworks

 Returns the first node at the specified XPath location. Example:

 This example returns the Customer/Address node in the specified document object.

 Node address = XmlUtilities.getNode("/Customer/Address", custDoc);

 COMPONENT: getAttr()

 VARIABLES: node Type: Input

 org.w3c.dom.Node node: Node to search.

 attrName Type: Input

 java.lang.String attrName: Name of the attribute to find.

 return Type: Output

 returns org.w3c.dom.Attr: attribute found.

 public static org.w3c.dom.Attr getAttr(org.w3c.dom.Node node, java.lang.String attrName): Deprecated. Need for

 XML utilities has been superceded by the many JRE-built-in and external XML frameworks.

 Returns the Attribute with the given attrName at node. Example:

 This example returns the 'state' attribute from the address node.

 Attr state = getAttr(address,"state")

 COMPONENT: getDocumentForXmlString()

 VARIABLES: xml Type: Input

 java.lang.String xml: serialized XML document.

 return Type: Output

 returns org.w3c.dom.Document: XML document

 throws Type: Output

 Throws: gov.va.med.exception.FoundationsException

 public static org.w3c.dom.Document getDocumentForXmlString(java.lang.String xml) throws FoundationsException:

 Deprecated. Need for XML utilities has been superceded by the many JRE-built-in and external XML frameworks.

 Returns an XML DOM Document for the specified String. Example:

 This example creates a customer XML document for a serialized customer:

 Document cust = XmlUtilities.getDocumentForXmlString(custXmlString);

 COMPONENT: getDocumentForXmlInputStream()

 VARIABLES: xmlInput Type: Input

 java.io.InputStream xmlInput: input stream to be processed.

 return Type: Output

 returns org.w3c.dom.Document: XML document.

 throws Type: Output

 Throws: gov.va.med.exception.FoundationsException

 public static org.w3c.dom.Document getDocumentForXmlInputStream(java.io.InputStream xml) throws

 FoundationsException:

 Deprecated. Need for XML utilities has been superceded by the many JRE-built-in and external XML frameworks.

 Returns an XML DOM Document for the specified InputStream Example:

 This example creates a customer XML document from an input stream.

 Document cust = XmlUtilities.getDocumentForXmlInputStream(custStream);

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: FOUNDATIONS
 ICR#: 5245

 NAME: vljFoundationsLib Exceptions

 USAGE: Supported ENTERED: JUL 9,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Exceptions that can be thrown from public methods of classes distributed in vljFoundationsLib jar.

 ROUTINE:

 COMPONENT: gov.va.med.crypto.VistaKernelHashCountLimitExceededException

 VARIABLES: public class VistaKernelHashCountLimitExceededException extends gov.va.med.exception.FoundationsException.

 Represents an exception identifying that the Hash Count Limit (for a call to the VistaKernelHash encrypt

 method) has been exceeded. In this case, the hash algorithm could not return an encrypted hash within a certain

 number of tries, that was free of CDATA boundary character strings ("<![CDATA[" and "]]>").

 COMPONENT: gov.va.med.exception.FoundationsException

 VARIABLES: public class FoundationsException extends Exception implements FoundationsExceptionInterface.

 FoundationsException provides adds nested exception functionality to standard exceptions. This functionality is

 no longer necessary starting in Java 1.4, whose java.lang.Throwable class introduces built-in support for

 nested exceptions. However, for backwards compatibility, VistALink exceptions still inherit from this class.

 COMPONENT: gov.va.med.net.VistaSocketException

 VARIABLES: public class VistaSocketException extends FoundationsException.

 Represents an exception thrown during read/write operations on a socket.

 COMPONENT: gov.va.med.net.VistaSocketTimeOutException

 VARIABLES: public class VistaSocketTimeOutException extends VistaSocketException.

 Represents an exception identifying a timeout has occurred during read/write operations.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GEN. MED. REC. - VITALS
 ICR#: 1120

 NAME: GMRVUTL

 USAGE: Supported ENTERED: JAN 18,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 User can extract the latest record for a desired vital type from the Vital/Measurement database for a particular patient by

 calling EN6^GMRVUTL.

 Input Variables:

 DFN = The internal entry number in the Patient file (#2) for the

 patient data that is to be retrieved.

 GMRVSTR = The abbreviation of the vital/measurement desired from the

 Vital Type file (#120.51). For example:

 S GMRVSTR="T",DFN=5 D EN6^GMRVUTL

 "T" is the abbreviation of temperature. GMRVSTR will be killed.

 Output Variable:

 X is set to the entire zeroth node for the entry in question in the

 Vital/Measurement file (#120.5), for example, ^GMR(120.5,IEN,0),

 where IEN is the subscript in the file that contains the data. The

 following shows the format of value containd in X.

 X=2920728.06^5^2^2920728.13482^42^2098^6^101.1

 ROUTINE: GMRVUTL

 COMPONENT: EN6

 VARIABLES: DFN Type: Input

 The internal entry number in the Patient file (#2).

 GMRVSTR Type: Input

 The abbreviation of the vital/measurement desired from the Vital Type file (#120.51).

 X Type: Output

 The entire zeroth node for the entry in question in the Vital/Measurement file (#120.5).

 User can extract the latest record for a desired vital type from the Vital/ Measurement database for a

 particular patient.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GEN. MED. REC. - VITALS
 ICR#: 5046

 NAME: GMVUTL

 USAGE: Supported ENTERED: NOV 14,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The CLIO, F1250 and GETREC entry points return a patient vitals record in an array.

 ROUTINE: GMVUTL

 COMPONENT: CLIO(ARRAY,GUID)

 VARIABLES: ARRAY Type: Both

 This is the name of the array to return the record in. It is passed by reference. (Required)

 GUID Type: Input

 This is the Global Unique ID (aka GUID) that identifies a record in the Clinical Observations

 package. (Required)

 This entry point looks for the patient record in the Clinical Observations package.

 Output format:

 ARRAY(0)=A^B^C^D^E^F^G^H^I^J

 ARRAY(2)=K^L^M

 ARRAY(5)=N1^N2^N3^N4

 where:

 A=Date/time of the reading, internal FileMan format (Field .01)

 B=DFN, pointer to FILE 2 (Field .02)

 C=Vital type pointer to FILE 120.51 (Field .03)

 D=Date/time the record was created, internal FileMan format (Field .04)

 E=Hospital location pointer to File 44 (Field .05)

 F=DUZ of person who created the record, pointer to FILE 200 (Field .06)

 G=always null

 H=reading (number or text) (Field 1.2)

 I=always null

 J=Supplemental Oxygen (text) (Field 1.4)

 K=1 means record is marked as an error and null means not an error

 (Field 2)

 L=DUZ of person who marked the record as an error, pointer to FILE 200

 (Field 3)

 M=Set of codes to indicate reason for error. If more than one reason,

 the values are delimited by a tilde (~). (Field 4)

 N1-N4=Qualifier pointer values delimited by up-arrow (^), pointer to

 FILE 120.52. (Field 5)

 Example:

 >D CLIO^GMVUTL(.ARRAY,"{A0E99B2C-9FF6-47DA-8CD2-DDB0E8756DC5}")

 >ZW ARRAY

 >ARRAY(0)="3071101.14^1^22^3071101.155936^125^222222311^^1"

 >ARRAY(2)="^^"

 >ARRAY(5)=""

 COMPONENT: F1205(ARRAY,IEN,ERRORS)

 VARIABLES: ARRAY Type: Both

 This is the name of the array to return the record in. It is passed by reference. (Required)

 IEN Type: Input

 This is the FILE 120.5 internal entry number for the desired record. (Required)

 ERRORS Type: Input

 This is a flag to specify whether records that are marked as errors should be returned. If

 this value is 0 (zero), the record will not be returned if it is marked as an error. If this

 value is 1 (one) the record will be returned even if it is marked as an error. The default is

 0. (Optional)

 This entry point looks for the patient record in the Vitals package (FILE 120.5).

 Output format:

 ARRAY(0)=A^B^C^D^E^F^G^H^I^J

 ARRAY(2)=K^L^M

 ARRAY(5)=N1^N2^N3^N4

 where:

 A=Date/time of the reading, internal FileMan format (Field .01)

 B=DFN, pointer to FILE 2 (Field .02)

 C=Vital type pointer to FILE 120.51 (Field .03)

 D=Date/time the record was created, internal FileMan format (Field .04)

 E=Hospital location pointer to File 44 (Field .05)

 F=DUZ of person who created the record, pointer to FILE 200 (Field .06)

 G=always null

 H=reading (number or text) (Field 1.2)

 I=always null

 J=Supplemental Oxygen (text) (Field 1.4)

 K=1 means record is marked as an error and null means not an error

 (Field 2)

 L=DUZ of person who marked the record as an error, pointer to FILE 200

 (Field 3)

 M=Set of codes to indicate reason for error. If more than one reason,

 the values are delimited by a tilde (~). (Field 4)

 N1-N4=Qualifier pointer values delimited by up-arrow (^), pointer to

 FILE 120.52. (Field 5)

 Example:

 >D F1205^GMVUTL(.ARRAY,12089,0)

 >ZW ARRAY

 >ARRAY(0)="3071108.162622^398^3^3071108.162708^4^547^^6^^"

 >ARRAY(2)="^^"

 >ARRAY(5)="47^50"

 COMPONENT: GETREC(GMVARRAY,GMVID,GMVERR)

 VARIABLES: GMVARRAY Type: Both

 This is the name of the array to return the values in. Passed by reference. (required)

 GMVID Type: Input

 This is the ID of the record to lookup. It is either a File 120.5 internal entry number

 (.001) or a Global Unique ID (aka GUID) for the Clinical Observations database (File 704.117,

 Field .01). (required)

 GMVERR Type: Input

 This is a flag to determine if records marked as errors should be returned. 0 means ignore

 the record and 1 means get the record data. The default is 0. (optional)

 This entry point checks the Vitals (File 120.5) and Clinical Observation databases for the specified record ID.

 The internal values of the record are returned.

 Output format:

 GMVARRAY(0)=A^B^C^D^E^F^G^H^I^J

 GMVARRAY(2)=K^L^M

 GMVARRAY(5)=N1^N2^N3^N4

 where:

 A=Date/time of the reading, internal FileMan format (Field .01)

 B=DFN, pointer to FILE 2 (Field .02)

 C=Vital type pointer to FILE 120.51 (Field .03)

 D=Date/time the record was created, internal FileMan format (Field .04)

 E=Hospital location pointer to File 44 (Field .05)

 F=DUZ of person who created the record, pointer to FILE 200 (Field .06)

 G=always null

 H=reading (number or text) (Field 1.2)

 I=always null

 J=Supplemental Oxygen (text) (Field 1.4)

 K=1 means record is marked as an error and null means not an error

 (Field 2)

 L=DUZ of person who marked the record as an error, pointer to FILE 200

 (Field 3)

 M=Set of codes to indicate reason for error. If more than one reason,

 the values are delimited by a tilde (~). (Field 4)

 N1-N4=Qualifier pointer values delimited by up-arrow (^), pointer to

 FILE 120.52. (Field 5)

 Example:

 >D GETREC^GMVUTL(.GMVARRAY,12089,0)

 >ZW GMVARRAY

 >GMVARRAY(0)="3071108.162622^398^3^3071108.162708^4^547^^6^^"

 >GMVARRAY(2)="^^"

 >GMVARRAY(5)="47^50"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GEN. MED. REC. - VITALS
 ICR#: 5047

 NAME: GMVGETVT

 USAGE: Supported ENTERED: NOV 14,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 APIs that return values for vital types (FILE 120.51).

 ROUTINE: GMVGETVT

 COMPONENT: FIELD(IEN,FIELD,FORMAT)

 VARIABLES: IEN Type: Input

 The FILE 120.51 internal entry number. (Required)

 FIELD Type: Input

 A set of codes to indicate which field value to return. (Required)

 Where:

 1=Name (.01)

 2=Abbreviation (1)

 3=PCE Abbreviation (7)

 4=VUID (99.99)

 5=Master Entry For VUID (99.98)

 FORMAT Type: Input

 A set of codes to indicate if the internal or external value of the field should be returned.

 (Optional)

 Where:

 I=Internal

 E=External

 Default is E.

 Returns the value for the record and field in the format specified. Returns -1 if there is an error.

 Example:

 >W $$FIELD^GMVGETVT(1,1,"E")

 >BLOOD PRESSURE

 COMPONENT: GETIEN(VALUE,TYPE)

 VARIABLES: Value Type: Input

 The value to use to do the lookup. (Required)

 TYPE Type: Input

 A set of codes to indicate the type of value it is. (Required)

 Where:

 1=Name (.01)

 2=Abbreviation (1)

 3=PCE Abbreviation (7)

 4=VUID (99.99)

 Returns the vital type (FILE 120.51) pointer value. Returns null if not found and -1 if there is an error.

 Example:

 >W $$GETIEN^GMVGETVT("TEMPERATURE",1)

 >2

 COMPONENT: LIST(ARRAY,FORMAT)

 VARIABLES: ARRAY Type: Both

 The name of the array to return the values in. (Required)

 FORMAT Type: Input

 A set of codes to indicate if the internal or external values should be returned. (Optional)

 Where:

 I=Internal (the default)

 E=External

 Returns an array with the vital types currently tracked.

 Output format:

 GMVARRAY(0)=piece1

 GMVARRAY(n)=piece2^piece3^piece4^piece5^piece6^piece7

 where:

 n=a sequential number starting with 1

 piece1=number of entries found

 piece2=FILE 120.51 internal entry number (.001)

 piece3=Name (.01)

 piece4=Abbreviation (1)

 piece5=PCE Abbreviation (7)

 piece6=VUID (99.99)

 piece7=Master Entry for VUID (99.98)

 Example:

 >D LIST^GMVGETVT(.ARRAY,"E")

 >ZW ARRAY

 >ARRAY(0)=10

 >ARRAY(1)="1^BLOOD PRESSURE^BP^BP^4500634^YES"

 >ARRAY(2)="19^CENTRAL VENOUS PRESSURE^CVP^^4688719^YES"

 >ARRAY(3)="20^CIRCUMFERENCE/GIRTH^CG^^4688720^YES"

 >ARRAY(4)="8^HEIGHT^HT^HT^4688724^YES"

 >ARRAY(5)="22^PAIN^PN^PN^4500635^YES"

 >ARRAY(6)="5^PULSE^P^PU^4500636^YES"

 >ARRAY(7)="21^PULSE OXIMETRY^PO2^PO2^4500637^YES"

 >ARRAY(8)="3^RESPIRATION^R^RS^4688725^YES"

 >ARRAY(9)="2^TEMPERATURE^T^TMP^4500638^YES"

 >ARRAY(10)="9^WEIGHT^WT^WT^4500639^YES"

 COMPONENT: TYPES()

 VARIABLES: Returns a list of abbreviations as a string delimited by up-arrows for the vitals types currently tracked in

 the package. There are no input parameters.

 Example:

 >W $$TYPES^GMVGETVT()

 >BP^CG^CVP^HT^P^PN^PO2^R^T^WT

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GEN. MED. REC. - VITALS
 ICR#: 5048

 NAME: GMVGETQL

 USAGE: Supported ENTERED: NOV 14,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 APIs that return values for qualifiers (FILE 120.52).

 ROUTINE: GMVGETQL

 COMPONENT: FIELD(IEN,FIELD,FORMAT)

 VARIABLES: IEN Type: Input

 The FILE 120.52 internal entry number. (Required)

 FIELD Type: Input

 A set of codes to indicate which field value to return. (Required)

 Where:

 1=name(.01)

 2=Synonym (.02)

 3=VUID (99.99)

 4=Master Entry For VUID

 FORMAT Type: Input

 A set of codes to indicate if the internal or external value of the field should be returned.

 (Optional)

 Where:

 I=Internal

 E=External (the default)

 Returns the value for the record and field in the format specified.

 Example:

 >W $$FIELD^GMVGETQL(1,1,"E")

 >R ARM

 COMPONENT: GETIEN(VALUE,TYPE)

 VARIABLES: VALUE Type: Input

 The value to use to do the lookup. (Required)

 TYPE Type: Input

 A set of codes to indicate the type of value it returns. (Required)

 Where:

 1=name (.01)

 2=VUID (99.99)

 Returns the qualifier (FILE 120.52) pointer value. Returns null if not found. Returns -1 if there is an error.

 Example:

 >W $$GETIEN^GMVGETQL("L ARM",1)

 >2

 COMPONENT: VT(ARRAY,IEN)

 VARIABLES: ARRAY Type: Input

 The name of the array to return the values in. (Required)

 IEN Type: Input

 The FILE 120.52 internal entry number. (Required)

 Returns the vital types and category values for the specified qualifier.

 Output format:

 ARRAY(0)=piece1

 ARRAY(n)=piece2^piece3^piece4^piece5

 where:

 n=sequential number starting with 1

 piece1=number of entries found or -1 if an error

 piece2=File 120.51 entry number

 piece3=File 120.51 .01 field value

 piece4=File 120.53 entry number

 piece5=File 120.53 .01 field value

 Example:

 >D VT^GMVGETQL(.ARRAY,1)

 >ZW ARRAY

 >ARRAY(0)=1

 >ARRAY(1)="1^BLOOD PRESSURE^1^LOCATION"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GEN. MED. REC. - VITALS
 ICR#: 5050

 NAME: GMVGETC

 USAGE: Supported ENTERED: NOV 14,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 APIs that return values for categories (FILE 120.53).

 ROUTINE: GMVGETC

 COMPONENT: FIELD(IEN,FIELD,FORMAT)

 VARIABLES: IEN Type: Input

 The FILE 120.53 internal entry number. (Required)

 FIELD Type: Input

 A set of codes to indicate which field value to return. (Required)

 Where:

 1=Name (.01)

 2=VUID (99.99)

 3=Master Entry For VUID (99.98)

 FORMAT Type: Input

 A set of codes to indicate if the internal or external value of the field should be returned.

 (Optional)

 Where:

 I=Internal

 E=External (the default)

 Returns the value for the record and field in the format specified. Returns -1 if there is an error.

 Example:

 >W $$FIELD^GMVGETC(1,1,"E")

 >LOCATION

 COMPONENT: GETIEN(VALUE,TYPE)

 VARIABLES: VALUE Type: Input

 The FILE 120.53 value to lookup. (Required)

 TYPE Type: Input

 A set of codes to indicate what kind of value is being used for the lookup. (Required)

 Where:

 1=Name (.01)

 2=VUID (99.99)

 Returns the category (FILE 120.53) pointer value. Returns null if not found. Returns -1 if there is an error.

 Example:

 >W $$GETIEN^GMVGETC("METHOD",1)

 >2

 COMPONENT: VT(ARRAY,IEN)

 VARIABLES: ARRAY Type: Input

 The name of the array to return the values in. (Required)

 IEN Type: Input

 The FILE 120.53 internal entry number. (Required)

 Returns the vital types associated with the category.

 Output format:

 ARRAY(0)=piece1

 ARRAY(n)=piece2^piece3

 where:

 n=a sequential number starting with 1

 piece1=number of entries found or -1 if an error

 piece2=FILE 120.51 entry number

 piece3=FILE 120.51, Field .01 external value

 Example:

 >D VT^GMVGETC(.ARRAY,1)

 >ZW ARRAY

 >ARRAY(0)=4

 >ARRAY(1)="1^BLOOD PRESSURE"

 >ARRAY(2)="2^TEMPERATURE"

 >ARRAY(3)="5^PULSE"

 >ARRAY(4)="20^CIRCUMFERENCE/GIRTH"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GENERIC CODE SHEET
 ICR#: 1089

 NAME: Supported Option File Routines

 USAGE: Supported ENTERED: JAN 9,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This integration agreement contains the entry points supported by the Generic Code Sheet package. For more information on

 using the supported references, please refer to the Generic Code Sheet Technical Manual.

 ROUTINE: GECSCALL

 COMPONENT: CREATE

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Create a Code Sheet Use the OPTION file #19 ENTRY ACTION to call this option using the label 'CREATE' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D CREATE^GECSCALL

 COMPONENT: KEY

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Keypunch a code sheet Use the OPTION file #19 ENTRY ACTION to call this option using the label 'KEY' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D KEY^GECSCALL

 COMPONENT: EDITCOD

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Code Sheet Edit Use the OPTION file #19 ENTRY ACTION to call this option using the label 'EDITCOD' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D EDITCOD^GECSCALL

 COMPONENT: BATCH

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Batch Code Sheets Use the OPTION file #19 ENTRY ACTION to call this option using the label 'BATCH' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D BATCH^GECSCALL

 COMPONENT: EDITBAT

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Batch Edit Use the OPTION file #19 ENTRY ACTION to call this option using the label 'EDITBAT' in the 'GECSCALL'

 routine as follows:

 S GECSSYS="batch name" D EDITBAT^GECSCALL

 COMPONENT: DELCODE

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Delete Code Sheet Use the OPTION file #19 ENTRY ACTION to call this option using the label 'DELCODE' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D DELCODE^GECSCALL

 COMPONENT: RETRAN

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Mark Batch for Retransmission Use the OPTION file #19 ENTRY ACTION to call this option using the label 'RETRAN'

 in the 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D RETRAN^GECSCALL

 COMPONENT: REBAT

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Mark code Sheet for Rebatching Use the OPTION file #19 ENTRY ACTION to call this option using the label 'REBAT'

 in the 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D REBAT^GECSCALL

 COMPONENT: REVCODE

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Review Code Sheet Use the OPTION file #19 ENTRY ACTION to call this option using the label 'REVCODE' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D REVCODE^GECSCALL

 COMPONENT: TRANS

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Transmit Code Sheets Use the OPTION file #19 ENTRY ACTION to call this option using the label 'TRANS' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D TRANS^GECSCALL

 COMPONENT: RBATWA

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Batches Waiting to be Transmitted. Use the OPTION file #19 ENTRY ACTION to call this option using the label

 'RBATWA' in the 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D RBATWA^GECSCALL

 COMPONENT: RCODEBA

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Code Sheets Ready for Batching Use the OPTION file #19 ENTRY ACTION to call this option using the label

 'RCODEBA' in the 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D RCODEBA^GECSCALL

 COMPONENT: RSTATUS

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Status of all Batches Use the OPTION file #19 ENTRY ACTION to call this option using the label 'RSTATUS' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D RSTATUS^GECSCALL

 COMPONENT: PURGE

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Purge Transmission Records/Code Sheets Use the OPTION file #19 ENTRY ACTION to call this option using the label

 'PURGE' in the 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D PURGE^GECSCALL

 COMPONENT: STACRETR

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Retransmit Stack File Document Use the OPTION file #19 ENTRY ACTION to call this option using the label

 'STACRETR' in the 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D STACRETR^GECSCALL

 For Version 2.0, the only "batch name" which uses the stack file, and therefore this option is FINANCIAL

 MANAGEMENT.

 COMPONENT: STACSTAT

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 Stack Status Report Use the OPTION file #19 ENTRY ACTION to call this option using the label 'STACSTAT' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D STACSTAT^GECSCALL

 For Version 2.0, the only "batch name" which uses the stack file, and therefore this option is FINANCIAL

 MANAGEMENT.

 COMPONENT: COMMENT

 VARIABLES: GECSSYS Type: Input

 Set the GECSSYS variable to the name of the batch type from the GENERIC CODE SHEET BATCH TYPE

 file #2101.1.

 User Comments Use the OPTION file #19 ENTRY ACTION to call this option using the label 'COMMENT' in the

 'GECSCALL' routine as follows:

 S GECSSYS="batch name" D COMMENT^GECSCALL

 For Version 2.0, the only "batch name" which uses the stack file, and therefore this option is FINANCIAL

 MANAGEMENT.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GENERIC CODE SHEET
 ICR#: 1107

 NAME: GECSENTR reference

 USAGE: Supported ENTERED: JAN 10,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This integration agreement contains the GECSENTR reference supported by the Generic Code Sheet package. For more information

 on using the supported reference, please refer to the Generic Code Sheet Technical Manual.

 ROUTINE: GECSENTR

 COMPONENT: GECSENTR

 VARIABLES: GECS(STRIN Type: Input

 This variable stores the data to be mapped into the input template. The data is delimited by

 the '^' (up-arrow). The GECSENTR routine will $Order through the GECS("STRING",i) array

 starting with i=<null>. Therfore, when building this array, the value of 'i' must start with

 0 and count up. This variable is required.

 GECS(TTF) Type: Input

 This variable must be set to the GENERIC CODE SHEET TRANSACTION TYPE/SEGMENT File (#2101.2)

 entry (.01 field). The GECSENTR routine will lookup on the 'B' cross-reference in file

 2101.2 using the GECS("TTF") variable. This variable is required.

 GECS(SITEN Type: Input

 This variable GECS("SITENOASK") can be set to the station number which is generating the code

 sheet. This variable is optional. If it is not passed and there is more than one entry in

 the GENERIC CODE SHEET SITE File (#2101.7), the user will be prompted to select the station.

 GECSSYS Type: Input

 This variable must be set to the GENERIC CODE SHEET BATCH TYPE File (#2101.1) entry (.01

 field). The GECSENTR routine will lookup on the "B" cross-reference in file 2101.1 using the

 GECSSYS variable. This variable is required.

 GECSAMIS Type: Input

 This variable can be set to the amis month year in the internal format YYYMM00. For example,

 December 1994 would be passed as 2941200. This variable is optional.

 GECSAUTO Type: Input

 This variable can be set to "BATCH" or "SAVE". If this variable is set to "BATCH", the

 GECSENTR routine will automatically mark the code sheet for batching without asking the user.

 If this variable is set to "SAVE", the GECSENTR routine will automatically save the code

 sheet for editing at a later time by the user. This variable is optional. If this variable

 is not passed or is set to a value different from "BATCH" and "SAVE", the user will be

 prompted to select the status of the code sheet.

 The routine GECSENTR can be called to automatically build a code sheet by stuffing the data into the GENERIC

 CODE SHEET File (#2100). It will take the data in the GECS("STRING",i) array and map it to the input template,

 thus building the code sheet.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GENERIC CODE SHEET
 ICR#: 3466

 NAME: DBIA3466-A

SUBSCRIBING PACKAGE: ACCOUNTS RECEIVABLE

 USAGE: Supported ENTERED: OCT 5,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This IA allows a package to set a key for easily looking up a Generic Code Sheet Stack File document in file 2100.1.

 ROUTINE: GECSSTAA

 COMPONENT: SETKEY(A,B)

 VARIABLES: A Type: Output

 the internal entry number in file 2100.1 that will be returned fro the key when looked up.

 B Type: Input

 the key to lookup used to look up the entry.

 Call this entry point to set the key lookup in file 2100.1.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: GENERIC CODE SHEET
 ICR#: 3467

 NAME: DBIA3466-B

SUBSCRIBING PACKAGE: ACCOUNTS RECEIVABLE

 USAGE: Supported ENTERED: OCT 5,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This IA allows a package to lookup a Generic Code Sheet Stack File document in file 2100.1 based on a key set by

 SETKEY^GECSSTAA.

 ROUTINE: GECSSGET

 COMPONENT: KEYLOOK(A,B)

 VARIABLES: A Type: Input

 the key to pass for looking up a document.

 B Type: Input

 a flag. If it is passed as a number, the code sheet for the document found using the key

 will be returned in the GECSDATA array. If variable B is passed as a 0, the code sheet data

 will not be returned in the GECSDATA array.

 Call this entry point to lookup a Generic Code Sheet Stack File document in file 2100.1. The internal entry

 number of the document will be returned in the GECSDATA variable.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH DATA & INFORMATICS
 ICR#: 4638

 NAME: DBIA4638-A

 USAGE: Supported ENTERED: APR 5,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The NTRTMSG^HDISVAP API is used to direct the user on how to enter a new term using the New Term Rapid Turnaround Process

 (NTRT) being provided by Enterprise Terminology Services (ETS).

 ROUTINE: HDISVAP

 COMPONENT: NTRTMSG(HDISARYF,.HDISARY)

 VARIABLES: HDISARYF Type: Input

 Return Text in an Array Flag (Optional- Default 0)

 1=Yes and 0=No

 HDISARY Type: Output

 Optional. An array containing the NTRT Message is returned otherwise the message is diplayed

 on the screen. The Output variable is assumed to be Null when the API is invoked.

 Array Format:

 HDISARY(1..9) = Text Message

 Display a message or optionally return an array that directs the user on how to enter a new term using the New

 Term Rapid Turnaround Process (NTRT). This API can be placed on the Entry Action of the Option or Protocol

 being inactivated.

 Example:

 >D NTRTMSG()

 In support of national standardization of the contents of this file,

 local site addition and modification functions are no longer available.

 If you wish to request a new term or modify an existing term, please

 refer to the New Term Rapid Turnaround (NTRT) web site located at

 http://vista.med.va.gov/ntrt/. If you have any questions regarding this

 new term request process, please contact the ERT NTRT Coordinator

 via e-mail at VHA OI SDD HDS NTRT.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH DATA & INFORMATICS
 ICR#: 4639

 NAME: DBIA4638-B

 USAGE: Supported ENTERED: APR 6,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The EN^HDISVCMR API is used to invoke the VUID Seeding Process for a specified HDIS Domain.

 Packages may invoke this API without registering another IA only if the domain and files being referenced are in the calling

 package's numberspace.

 ROUTINE: HDISVCMR

 COMPONENT: EN(HDISDOM,HDISFILE)

 VARIABLES: HDISDOM Type: Input

 IEN to the HDIS Domain file

 HDISFILE Type: Input

 Specific file # to be seeded (if not all domain files) (Optional)

 Invoke the VUID Seeding Process for a specified HDIS Domain.

 Example:

 N DOMPTR,TMP

 S TMP=$$GETIEN^HDISVF09("ALLERGIES",.DOMPTR)

 I TMP D EN^HDISVCMR(DOMPTR,"")

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH DATA & INFORMATICS
 ICR#: 4640

 NAME: DBIA4638-C

 USAGE: Supported ENTERED: APR 6,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 API(s) for retrieval and screening of the file/field implementation status.

 ROUTINE: HDISVF01

 COMPONENT: $$GETSTAT(FILE,FIELD,DATE,FAC,DOMAIN,TYPE)

 VARIABLES: FILE Type: Input

 File number

 FIELD Type: Input

 Field number (defaults to .01)

 DATE Type: Input

 FileMan date/time to return status for (Optional- defaults to NOW)

 FAC Type: Input

 Facility number (Optional- defaults to current)

 DOMAIN Type: Input

 Domain/IP address (Optional- defaults to current)

 TYPE Type: Input

 Type of system (Optional- defaults to current)

 0 = Test 1 = Production

 $$GETSTAT Type: Output

 StatusCode ^ StatusPointer ^ StatusDate

 Get file/field implementation status

 Notes:

 - Values for "not started" status and no date are returned

 on bad input or if no entry is found

 - If time is not included with the date, the last status

 for the given day is returned

 - If more than one entry for the same date/time is found,

 the higher entry number is returned

 Example(s):

 1. Get current status for GMRV Vital Qualifier file

 >W $$GETSTAT^HDISVF01(120.52)

 6^18^3050331.135037

 2. Get status of GMRV Vital Qualifier file on 10/1/2004

 >W $$GETSTAT^HDISVF01(120.52,"",3041001)

 0^^

 COMPONENT: $$SCREEN(FILE,FIELD,DATE)

 VARIABLES: FILE Type: Input

 File number

 FIELD Type: Input

 Field number (defaults to .01)

 DATE Type: Input

 FileMan date/time to check against (Optional- defaults to NOW)

 $$SCREEN Type: Output

 Flag indicating if screening logic should be applied

 0 = Don't screen entries during selection

 1 = Screen entries during selection

 Apply screening logic to file/field.

 Notes:

 - 0 (don't screen) is returned on bad input

 - If time is not included with the date, the last status

 for the given day is returned

 Example(s):

 1. Should entries in GMRV Vital Qualifier file be screened

 >W $$SCREEN^HDISVF01(120.52)

 1

 2. Should entries in GMRV Vital Qualifier file on screened on 10/1/2004

 >W $$SCREEN^HDISVF01(120.52,"",3041001)

 0

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH DATA & INFORMATICS
 ICR#: 4651

 NAME: DBIA4638-E

 USAGE: Supported ENTERED: APR 11,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The $$GETIEN^HDISVF09 API is used to get the HDIS Domain file IEN by the Domain.

 The MFSUP^HDISVF09 API is used in the Master File Server Parameters to update the status of the file to Complete and send out

 the HDR Activation bulletin.

 ROUTINE: HDISVF09

 COMPONENT: $$GETIEN(HDISDOM,.HDISDIEN)

 VARIABLES: HDISDOM Type: Input

 Domain

 HDISDIEN Type: Output

 HDIS Domain file IEN

 $$GETIEN Type: Output

 1=Successful and 0=Failure

 Get the HDIS Domain file IEN

 Example:

 N TMP

 S TMP=$$GETIEN^HDISVF09("ALLERGIES",.DOMPTR)

 COMPONENT: MFSUP(HDISFILE,HDISERR,HDISFN)

 VARIABLES: HDISFILE Type: Input

 File Number of file just updated

 HDISERR Type: Input

 Error indicator from MFS (1 or 0)

 HDISFN Type: Input

 Field number (Optional)

 This API should be invoked in the Post-Processing Logic field in the Master File Parameter file (#4.001) for

 the file being standardized. The API updates the status of the file to VUID Implementation Completed and sends

 out the HDR Activation bulletin.

 Example:

 This is an example of the Post-Processing Logic Field for the GMRV Vital Category file (#120.53) which is part

 of the Vitals Domain:

 POST-PROCESSING LOGIC:

 D MFSUP^HDISVF09(120.53,$G(ERROR)),EN^GMVUID($G(ERROR))

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH DATA & INFORMATICS
 ICR#: 4856

 NAME: DBIA4856

 USAGE: Supported ENTERED: SEP 8,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 API will be used by HSITES as part of their software to insure that mirrored test accounts are setup properly.

 ROUTINE: HDISVCUT

 COMPONENT: TESTACT

 VARIABLES: This API will be used by HSITES. HSITES has a software tool which sites use to insure a test account has been

 setup properly. This API will change the mirrored production account data to function properly in the test

 site environment. It will update the Domain/IP Address and the System Type (Production or Test) in the HDIS

 System file (#7118.21).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH DATA & INFORMATICS
 ICR#: 4860

 NAME: HDI

 USAGE: Supported ENTERED: MAY 23,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 API for storage of the file/field implementation status.

 Packages may invoke this API without registering another IA only if the domain and files being referenced are in the calling

 package's numberspace.

 ROUTINE: HDISVF01

 COMPONENT: SETSTAT

 VARIABLES: FILE Type: Input

 File number

 FIELD Type: Input

 Field number (defaults to .01)

 CODE Type: Input

 Status code to set (defaults to "not started")

 DATE Type: Input

 FileMan date/time to return status for (Optional- defaults to NOW)

 STTYPE Type: Input

 Type of status code being used (Optional- defaults to Client)

 1 = Client 2 = Server

 FAC Type: Input

 Facility number (Optional- defaults to current)

 DOMAIN Type: Input

 Domain/IP address (Optional- defaults to current)

 SYTYPE Type: Input

 Type of system (Optional- defaults to current)

 0 = Test 1 = Production

 Set file/field implementation status

 Notes:

 - If time is not included with the date, 1 second past

 midnight will be used as the time

 - If an entry for the given file/field and date/time

 already exists, a new entry will still be added

 Example:

 D SETSTAT^HDISVF01(95.3,"",6,"")

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 2161

 NAME: HLFNC2

 USAGE: Supported ENTERED: OCT 29,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: HLFNC2

 COMPONENT: INIT

 VARIABLES: EID Type: Input

 (required) Name or IEN of the event driver or subscriber protocol in the Protocol file (#101)

 for which the initialization variables are to be returned.

 HL Type: Both

 (required) Pass by reference. The variable in which the array of values

 will be returned or an error message.

 INT Type: Input

 1 indicates that only array values for internal DHCP to DHCP message exchange should be

 initialized.

 API call INIT^HLFNC2(EID,.HL,INT), returns an array of values in the variable specified by parameter HL. If no

 error occurs, the array of values is returned. Otherwise, the single value HL is returned equal to the

 following : error code^error messages.

 COMPONENT: MSH

 VARIABLES: HL Type: Input

 (required) Pass by reference. The array of values returned by the call to INIT^HLFNC2.

 MID Type: Input

 (required) The Message Control ID to be included in the MSH segment. The Batch Control ID

 for the batch is returned by the call to CREATE^HLTF. The application concatenates a

 sequential number to the batch ID to create the MID.

 RESULT Type: Output

 (required) Pass by reference. The variable that will be returned to the calling application

 that contains the MSH segment. If the MSH segment is longer than 245 characters there will

 be a RESULT(1). If the required variables, HL or MID are missing, RESULT will be null.

 SECURITY Type: Input

 An optional input parameter which includes the security to be included in field #8 of the MSH

 segment.

 API call MSH^HLFNC2(.HL,MID,.RESULT,SECURITY), builds an HL7 Message Header (MSH) segment. The MSH segment is

 returned in variable RESULT.

 COMPONENT: RSPINIT

 VARIABLES: EIDS Type: Input

 (required) Name or IEN of the subscriber protocol in the Protocol file (#101) for which the

 initialization variables are to be returned. This is the first parameter. The receiving

 application processing the inbound message should use HL("EIDS") as this first parameter to

 RSPINIT^HLFNC2 API as this variable is created for the application by the HL7 background job.

 This parameter should be used as a call by value.

 HL Type: Output

 (required) Pass by reference. The variable in which the array of values will be returned or

 an error message. The application should use its own namespaced HL array name.

 API call RSPINIT^HLFNC2(HL("EIDS"),.MYNSPCHL), returns an array of values in the variable specified by

 parameter MYNSPCHL. If no error occurs, the array of values is returned. Otherwise, the single value MYNSPCHL

 is returned equal to the following : error code^error messages.

 1. Response message(s) not constructed properly when the HL7 field separator and encoding characters are

 different between sending system and receiving system.

 This issue is a result of the Processing Routine utilizing the environmental variables HL("FS") and HL("ECH")

 for both parsing the inbound HL7 message and constructing the outbound response message. After the Processing

 Routine has constructed the body of the response message, it calls GENACK^HLMA1 to queue up the response

 message. In turn, VistA HL7 constructs the message header based on the application associated with the

 subscriber protocol. Thus, the message header would have a different set of delimiters than the body of the

 HL7 message.

 This patch does not immediately correct this problem. However, it does provide a new API that can be used to

 create environmental variables to assist the Processing Routine in constructing the response message with the

 proper delimiters. This problem will only disappear when all VistA HL7 applications have migrated to using

 this new API to assist each in constructing the response message.

 New API: RSPINIT^HLFNC2

 RSPINIT(EIDS,HL);Initialize Variables in HL array for Building a Response Message

 ;

 ;This is a subroutine call with parameter passing that returns an

 ;array of values in the variable specified by the parameter HL. If no

 ;error occurs, the array of values is returned. Otherwise, the single

 ;value HL is returned equal to the following: error code^error message

 ;

 ;Required Input Parameters

 ; EIDS = Name or IEN of the subscriber protocol in

 ; Protocol file for which the initialization variables are

 ; to be returned

 ; HL = The variable in which the array of values will be returned

 ; This parameter must be passed by reference

 ;

 Usage: D RSPINIT^HLFNC2(HL("EIDS"),.MYHLARRY)

 The Processing Routine should call this RSPINIT^HLFNC2 API to create the environmental variables needed to

 assist in constructing the response message. This API should be used especially when there is a possibility of

 the field separator and Encoding Characters being different between the sending application and the receiving

 application. The second parameter to this API should be an application namespaced variable passed by

 reference. This second parameter should NOT have HL namespace. However, the first parameter should be the

 name or IEN of the subscriber protocol. VistA HL7 provides this information to the Processing Routine through

 the variable HL("EIDS"). Therefore, HL("EIDS") should be used as the first parameter passed by value.

 As before, the Processing Routine should use the environmental variables HL("FS") and HL("ECH") in parsing the

 inbound HL7 message. However, the Processing Routine should use its own namespaced array as the second

 parameter of the call to RSPINIT^HLFNC2. For instance, if the second parameter was MYHLARRY, then the

 Processing Routine should use MYHLARRY("RFS") and MYHLARRY("RECH") as the variables containing the delimiters

 to assist in constructing the response message.

 This RSPINIT^HLFNC2 API may be called by the Processing Routine any time after the VistA HL7 has called the

 Processing Routine to process the inbound message and just before constructing the response message and calling

 GENACK^HLMA1.

 Below is an example of what may be returned in the second parameter:

 Description:

 ============================

 MYHLARRY("RAN")=XWB RECEIVER receiving application name

 MYHLARRY("RECH")=~|\& response encoding characters|

 MYHLARRY("RETN")=R08 response event type name

 MYHLARRY("RFS")=^ response field separator

 MYHLARRY("RMTN")=TBR response message type

 Before referencing the return array with the individual subscripts (as shown above) for the purpose of building

 the response message, the processing routine should first check the top level root (i.e.: MYHLARRY) for a

 possible error. If an error should occur, RSPINIT^HLFNC2 will return the error code and text description in the

 top level root. The format of this of this top level root when an error occurs will look like the following:

 MYHLARRY=Error_Code#^Error_Text

 The following is a list of potential errors returned:

 o Missing EIDS Input Parameter

 o Invalid Subscriber Protocol

 o Susbscriber Applicaton Missing in Protocol File

 The above list is provided only as an example and the actual error code and error text description are subject

 to change. Therefore, the processing routine should merely check to see if an error was returned. For example,

 I $G(MYHLARRY) D ALERT ... Q

 D BLDRSPNs

 D GENACK^HLMA1(...

 Note, the processing routine should check for an error to determine whether it should proceed with building the

 response message and subsequently call GENACK^HLMA1. If an error was returned by RSPINIT^HLFNC2, the

 processing routine should not proceed. However, if the processing routine already parsed and processed the

 inbound message, it should be aware that the sending application may continue to resend the same message

 repeatedly and as such act accordingly.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 2164

 NAME: HL7 MESSAGE ADMINISTRATION

 USAGE: Supported ENTERED: OCT 30,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 API to generate a HL7 message.

 ROUTINE: HLMA

 COMPONENT: GENERATE

 VARIABLES: HLEID Type: Input

 The name or IEN of the event driver protocol in the Protocol File (#101).

 HLARYTYP Type: Input

 Array type. One of the following codes:

 LM = local array containing a single message

 LB = local array containing a batch of messages

 GM = global array containing a single message

 GB = global array containing a batch of messages

 HLFORMAT Type: Input

 Format of array, 1 for pre-formatted in HL7 format, otherwise 0

 HLRESLT Type: Both

 The variable that will be returned to the calling application with either a error message or

 a unique message ID.

 HLMTIEN Type: Input

 Optional IEN of entry in Message Text file where the message being generated is to be stored.

 This parameter is only passed for a batch type message.

 HLP Type: Input

 The HLP parameter is passed-by-reference. The HLP subscripts that are processed by

 GENERATE^HLMA are identical to the DIRECT^HLMA HLP subscripts. These subscripts are listed

 below.

 o HLP("PRIORITY") = I for immediate or D for deferred

 o HLP("SECURITY") = A 1 to 40 character string

 o HLP("CONTPTR") = Continuation pointer, a 1 to 180 character string

 o HLP("NAMESPACE") = Free-text value, 4 character limit, stored that is

 to be stored in the NAMESPACE field (#16) in the

 HL Message Text file (#772.)

 o HLP("SUBSCRIBER") = Free-text, multi-piece value, used to control the

 routing-related fields in the MSH segment. See

 patch HL*1.6*93 documentation for full details.

 The GENERATE^HLMA(HLEID,HLARYTYP,HLFORMAT,HLRSLT,HLMTIEN,HLP) entry point to used to generate a HL7 message.

 It returns a unique message ID if a message is successfully generated.

 COMPONENT: DIRECT

 VARIABLES: HLEID Type: Input

 The name or IEN of the event driver protocol in the Protocol File (#101).

 HLARYTYP Type: Input

 Array type. One of the following codes:

 LM = local array containing a single message

 LB = local array containing a batch of messages

 GM = global array containing a single message

 GB = global array containing a batch of messages

 HLFORMAT Type: Input

 Format of array, 1 for pre-formatted in HL7 format, otherwise 0

 HLRESLT Type: Both

 The variable that will be returned to the calling application with either a error message or

 a unique message ID.

 If the call is successful (message sent), the Result parameter is returned with piece 1 equal

 to the message ID of the message created. If the call failed (message was not sent), the

 Result parameter is returned with the following three pieces of data:

 message ID(0 if none assigned)^error code^error description

 If the call failed, +$P(RESULT,U,2) returns True.

 HLMTIEN Type: Input

 Optional IEN of entry in Message Text file where the message being generated is to be stored.

 This parameter is only passed for a batch type message.

 HLP Type: Input

 The HLP parameter is passed-by-reference. The HLP subscripts that are processed by

 DIRECT^HLMA are identical to the GENERATE^HLMA HLP subscripts. These subscripts are listed

 below.

 o HLP("PRIORITY") = I for immediate or D for deferred

 o HLP("SECURITY") = A 1 to 40 character string

 o HLP("CONTPTR") = Continuation pointer, a 1 to 180 character string

 o HLP("NAMESPACE") = Free-text value, 4 character limit, stored that is

 to be stored in the NAMESPACE field (#16) in the

 HL Message Text file (#772.)

 o HLP("SUBSCRIBER") = Free-text, multi-piece value, used to control the

 routing-related fields in the MSH segment. See

 patch HL*1.6*93 documentation for full details.

 The DIRECT^HLMA(HLEID,HLARYTYP,HLFORMAT,HLRSLT,HLMTIEN,HLP) entry point is used to generate a HL7 message. It

 returns a unique message ID if a message was successfully generated. Unlike the GENERATE^HLMA API, the

 DIRECT^HLMA API opens the connection directly for message delivery. (GENERATE^HLMA delivers messages via

 queued background job.) Applications that use the DIRECT API must provide the guaranteed delivery if needed.

 Call INIT^HLFNC2 before making this call, to set up HL7 environment variables needed to build your message and

 needed by DIRECT^HLMA.

 The DIRECT^HLMA call has the same input parameters as GENERATE^HLMA. Like GENERATE^HLMA, it expects segments

 for the message to be already loaded in the HLA("HLS") local array or the^TMP("HLS") global array. For more

 information on the expected format of HLA("HLS") or^TMP("HLS"), please see the GENERATE^HLMA call.

 To select the subscriber to transmit to, this call first checks the contents of the HLL("LINKS")array; it will

 use first record it finds. If that array is empty, it uses the first subscriber protocol it finds in the

 Subscribers multiple of the event driver protocol.

 Upon return, DIRECT^HLMA does not invoke the event driver protocol's GENERATE/PROCESS ACK ROUTINE to processes

 the acknowledgment. When control is returned to the calling routine, the environment is left in the same

 condition as if you were in the "processing routine environment" when receiving an acknowledgment; the

 variables HLNEXT,HLNODE, and HLQUIT are defined so that you can process the response. Note that DIRECT^HLMA

 supports:

 o All acknowledgment modes (including deferred acknowledgments

 o Batch message transmission The timeout for the synchronous

 transmission is determined by the settings of the TCP used.

 Example:

 D DIRECT^HLMA("EVENT DRIVER PROTOCOL","GB",1,.MYRESULT)

 I +$P(MYRESULT,U,2) D ERR Q ; message was not transmitted

 I HLMTIEN D PROCESS ; response was returned from target system

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 2165

 NAME: HL7 MESSAGE ADMINISTRATION

 USAGE: Supported ENTERED: OCT 30,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 API to generate a HL7 acknowledgement message.

 ROUTINE: HLMA1

 COMPONENT: GENACK

 VARIABLES: HLEID Type: Input

 IEN of the event driver protocol from the Protocol File (#101)

 HLMTIENS Type: Input

 IEN of entry in Message Text file for subscriber application.

 HLEIDS Type: Input

 IEN of subscriber event from the Protocol File (#101)

 HLARYTYP Type: Input

 Array type. One of the following codes:

 LM = local array containing a single message

 LB = local array containing a batch of messages

 GM = global array containing a single message.

 GB = global array containing a batch of messages.

 HLFORMAT Type: Input

 Format of array, 1 for pre-formatted in HL7 format, otherwise 0

 HLRESLTA Type: Both

 Variable returned to the calling application either containing an error message or null if no

 error occurred.

 HLMTIENA Type: Input

 Optional variable of the IEN of the entry in Message Text file where the acknowledgement

 message will be stored. This is only passed for a batch acknowledgement.

 HLP Type: Input

 HLP("PRIORITY") = I for immediate or D for deferred HLP("SECURITY") = A 1 to 40 character

 string

 GENACK(HLEID,HLMTIENS,HLEIDS,HLARYTYP,HLFORMAT,HLRESLTA,HLMTIENA,HLP) Entry point to generate a HL7

 acknowledgement message.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 2270

 NAME: Subscription Management

 USAGE: Supported ENTERED: JAN 23,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following API's support creation, references, and updates to HL7 subscriptions using the SUBSCRIPTION CONTROL FILE (774).

 In addition, Vista applications may set up a pointer to file 774 if needed. An example of this can be found in the Patient

 file. See the CIRN documentation for details on how this is used.

 ROUTINE: HLSUB

 COMPONENT: $$ACT

 VARIABLES: $$ACT^HLSUB

 Purpose: Request a new Subscription Control Number

 Example:

 KRN,KDE>S X=$$ACT^HLSUB

 KRN,KDE>W X 2

 COMPONENT: UPD

 VARIABLES: UPD^HLSUB(HLSCN,HLNN,HLTP,HLAD,HLTD,HLRAP,.HLER)

 Purpose: Subscription Update-add/edit a subscriber

 Input: HLSCN=Subscription Control Number (required)

 HLNN=Logical Link name in file 870 (required)

 HLTP=Subscription Type (required)

 0=descriptive updates only

 1=clinical updates

 2=other (locally defined)

 HLAD=Activation date (optional), defaults to 'now'

 HLTD=Termination date (optional), default is 'open-ended'

 HLRAP=HL7 receiving application

 HLER=error message(s)

 Notes:

 a. The ACTIVATION DATE and TERMINATION DATE fields can be pre-determined

 by the subscriber.

 b. Setting the TERMINATION DATE field is optional. Setting this field is

 effectively setting an expiration date for the subscriber. Messages will

 no longer be delivered to this network node as long as the current date is

 later than the termination date. If the current subscription has a

 Termination Date set and the subscriber changes their mind, the date can

 be changed or deleted with a new subscription update message. The current

 termination date will be deleted when the variable HLTD is set to 'null.'

 c. The Subscription Control Number and the Destination multiple are

 UNEDITABLE fields. d. All modifications to existing subscriber records using this call

 results in an update of the Subscriber History multiple.

 Example:

 a. KRN,KDE>D

 UPD^HLSUB(1,"TEST-LLP",1,"4/29/1997@10:27:57","","CIRN",.HLER)

 b. INQUIRE TO FILE ENTRIES:

 DESTINATION: CIRN@TEST LLP RECEIVING APPLICATION: CIRN

 LOGICAL LINK: TEST LLP TYPE: Patient Clinical and

 Descriptive

 CREATION DATE/TIME: APR 29, 1997@10:27:57

 ACTIVATION DATE/TIME: APR 29, 1997@10:27:57

 MODIFICATION DATE/TIME: APR 29, 1997@10:27:57

 LAST CREATION DATE/TIME: APR 29, 1997@10:25:07

 LAST ACTIVATION DATE/TIME: APR 29, 1997@10:25:07

 LAST SUBSCRIPTION TYPE: Patient Clinical and Descriptive

 COMPONENT: GET

 VARIABLES: GET^HLSUB(HLSCN,HLTP,HLCL,.HLL)

 Purpose: Return active subscriber information

 Input:

 HLSCN=Subscription control number

 HLTP=Subscription type (optional)

 HLCL=HL7 Client Protocol (optional)

 HLL=Array of current subscribers (passed by reference)

 Output:

 HLL("LINKS",n)=CLIENT PROTOCOL^LOGICAL LINK^TYPE^CREATION

 DATE^ACTIVATION DATE^TERMINATION DATE

 Notes:

 a. When HLTP is 'null' all subscribers are returned.

 b. Multiple calls can be made to GET. For example, to route a message to

 both Clinical and Descriptive subscribers, the first call would have HLTP

 set to '0', and in the second call it would be set to '1.' If the HLL

 array already exists, it will be appended to.

 c. The HL7 Package requires the HLL array to contain both the HL7 Client Protocol and the Logical Link. In

 this call, the Client Protocol is optional. If you pass in the Protocol name, it will be returned in the first

 piece of the array. If you are making this call specifically to dynamically route a message, submit the Client

 Protocol. If you make this call to retrieve other information about the subscriber, the first piece of the HLL

 array will be null.

 Examples:

 (1) Return all subscriber information for SCN #1

 KRN,KDE>K HLL D GET^HLSUB(1,,,.HLL)

 KRN,KDE>ZW HLL

 HLL("LINKS",1)=^INDY-TCP^RG

 SUBSCRIPTION@INDY-TCP^9^^23^1^2970501.184903^2970501.184903

 (2) Return all subscribers using multiple calls and selected 'subscriber

 types'

 KRN,KDE>K HLL D GET^HLSUB(1,1,"CIRN ROUTER",.HLL)

 KRN,KDE>ZW HLL

 HLL("LINKS",1)=CIRN ROUTER^ISC-SF^1^2961031.142702^2950617.13

 KRN,KDE>D GET^HLSUB(1,2,"CIRN ROUTER",.HLL)

 KRN,KDE>ZW HLL

 HLL("LINKS",1)=CIRN ROUTER^ISC-SF^1^2961031.142702^2950617.13

 HLL("LINKS",2)=CIRN ROUTER^KERNEL^2^2961031.11144^2961031.110628

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 2271

 NAME: DERIVE LOGICAL LINK FROM INSTITUTION

 USAGE: Supported ENTERED: JAN 23,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 A new API has been created to return an array of Logical links when only

 an institution entry is known. This can be either a single institution or

 a VISN. A new field has been added to the HL LOGICAL LINK file (870)

 pointing to the INSTITUTION FILE.

 ROUTINE: HLUTIL3

 COMPONENT: LINK

 VARIABLES: NOTE: THIS API IS DEPENDENT ON KERNEL PATCH XU*8*43 AND PROPER GROUPING OF INSTITUTIONS WITHIN A VISN AND

 PROPER ASSOCIATION OF A LOGICAL LINK WITH THE CORRESPONDING INSTITUTION.

 API TO RETURN LOGICAL LINKS WHEN YOU INPUT INSTITUTION OR VISN (NAME OR

 IEN)

 1. LINK^HLUTIL3(HLINST,.HLI)

 Purpose: Return Logical Link(s) from DHCP Institution

 Input: HLINST=Institution or VISN name or ien

 Output: HLI(LINK_IEN)=LINK NAME passed by reference

 EXAMPLE:

 DEV,CRN>D LINK^HLUTIL3("VISN 2",.HLZ)

 DEV,CRN>ZW HLZ

 HLZ=

 HLZ(9)=TAMPA, FL

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 2434

 NAME: DBIA2434

 USAGE: Supported ENTERED: JUN 16,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Patch HL*1.6*36 introduces 3 new entry points in routine HLUTIL. These entry points support two new features, "Don't Purge"

 and "Reprocessing" messages, which were originally requested by the CIRN project. Patch HL*1.6*19 added a 4th API and

 restricted the use of all APIs to TCP/IP connections.

 ROUTINE: HLUTIL

 COMPONENT: $$DONTPURG

 VARIABLES: Sets the new flag field "DON'T PURGE" (#773,10) to prevent a message being purged by the "HL PURGE

 TRANSMISSIONS" option.

 input:

 none

 return value:

 1 means field has been successfully set.

 -1 means call has failed; nothing has been changed.

 Call this function from one of the following routines:

 - RTN routine, in $$REPROC^HLUTIL(IEN,RTN).

 - routine in "GENERATE/PROCESS ROUTINE"(#101,771).

 - routine in "GENERATE/PROCESS ACK ROUTINE"(#101,772).

 When called by these routines, HL7 assumes that the variable HLMTIENS (message IEN of file #773) is already

 properly defined. This variable should already be defined if in a message processing context.

 COMPONENT: $$TOPURG

 VARIABLES: Clear the flag field "DON'T PURGE" (#773,10) to allow the message to be purged by the "HL PURGE TRANSMISSIONS"

 option.

 input:

 none

 return value:

 0 means field has been successfully cleared

 -1 means call has failed; nothing has been changed

 Call this function from one of the following routines:

 - RTN routine, in $$REPROC^HLUTIL(IEN,RTN).

 - routine in "GENERATE/PROCESS ROUTINE"(#101,771).

 - routine in "GENERATE/PROCESS ACK ROUTINE"(#101,772).

 When called by these routines, HL7 assumes that the variable HLMTIENS (message IEN of file #773) is already

 properly defined. This variable should already be defined if in a message processing context.

 COMPONENT: $$REPROC

 VARIABLES: IEN Type: Input

 the internal entry number of the message in file 773

 RTN Type: Input

 routine, to be Xecuted for reprocessing the message.

 Call this entry point to reprocess an inbound message in file 773.

 input value:

 IEN is the internal entry number of the message in file 773

 RNT is the routine to execute to process the message

 return value: 0 means call has been successfully completed. -1 means call has failed; nothing has been

 changed.

 The IEN, which is provided to $$REPROC^HLUTIL(IEN,RTN) should be the message IEN of file #773.

 COMPONENT: $$SETPURG

 VARIABLES: STATUS Type: Input

 This variable can have a value of 1 or 0.

 1 sets the message's purge flag such that the message won't be purged.

 0 sets the message's purge flag such that the message will be purged.

 This function can set the new flag field "DON'T PURGE" (#773,10) to prevent or allow a message to be purged by

 the "HL PURGE TRANSMISSIONS" option.

 input:

 STATUS set to 0 or 1.

 1=prevents message from being purged

 0=allows message to be purged

 return value:

 1 means field has been successfully set.

 -1 means call has failed; nothing has been changed.

 Call this function from one of the following routines:

 - RTN routine, in $$REPROC^HLUTIL(IEN,RTN).

 - routine in "GENERATE/PROCESS ROUTINE"(#101,771).

 - routine in "GENERATE/PROCESS ACK ROUTINE"(#101,772).

 When called by these routines, HL7 assumes that the variable HLMTIENS (message IEN of file #773) is already

 properly defined. This variable should already be defined if in a message processing context.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 2887

 NAME: Application Parameter Inquire

 USAGE: Supported ENTERED: SEP 30,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This public API returns the Mail Group and the "active/inactive" flag for an HL7 Application.

 ROUTINE: HLCS2

 COMPONENT: $$GETAPP(HLAPP)

 VARIABLES: HLAPP Type: Input

 APPLICATION NAME OR IEN OF FILE 771

 Returns:

 MAIL GROUP NAME^'a' or 'i' (active or inactive)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 3098

 NAME: HL7 APIs

 USAGE: Supported ENTERED: APR 24,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 APIs for HL7 package. These APIs are available after patch HL*1.6*64.

 ROUTINE: HLUTIL

 COMPONENT: $$MSGSTAT(msg id)

 VARIABLES: msg id Type: Input

 The message identifier that uniquely identifies the message.

 This function will return the message status for the given message id.

 input value: X = message id

 return value: status^status updated^error msg.^error type pointer^queue

 position or # of retries^# open failed^ack timeout

 status:

 0 = message doesn't exist

 1 = waiting in queue

 1.5 = opening connection

 1.7 = awaiting response, # of retries

 2 = awaiting application ack

 3 = successfully completed

 4 = error

 8 = being generated

 9 = awaiting processing

 COMPONENT: $$MSGACT(msg id, action)

 VARIABLES: msg id Type: Input

 The message identifier that uniquely identifies the message in file 773, HL7 MESSAGE

 ADMINISTRATION file.

 action Type: Input

 The action to perform on the message. 1 = cancel, 2 = requeue.

 Take an action on an outgoing HL7 message. Only works on messages going out on a TCP Logical Link.

 Actions: 1 = cancel, 2 = requeue.

 Returns: 1 = sucess, 0 = failed

 COMPONENT: $$CHKLL(institution)

 VARIABLES: institutio Type: Input

 This is the institution name or number.

 This function checks the setup of the Logical Link identified by the institution name or number. This will

 only work with TCP Logical Links. Returns: 1 = Link is setup correctly, 0 = Link is not setup correctly.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 3099

 NAME: HL7 APIs

 USAGE: Supported ENTERED: APR 24,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 HL7 APIs for the routine HLCSUTL. These are available after patch HL*1.6*64.

 ROUTINE: HLCSUTL

 COMPONENT: $$FLD(.HLNODE, field)

 VARIABLES: HLNODE Type: Input

 This variable contains a message segment. It is defined when processing a HL7 message and

 executing HLNEXT.

 field Type: Input

 A number that defines the position in the segment for the value you want.

 This function will return the value for the field in a HL7 message segment.

 input value: HLNODE = HLNODE from the HLNEXT call, passed by reference

 field = number, field position in segment

 note: HL("FS") must be defined

 return value: value for the field in this segment

 COMPONENT: $$MSG(msg id, return ref)

 VARIABLES: msg id Type: Input

 The message identifier that uniquely identifies the message.

 return ref Type: Input

 A closed local or global reference to put the HL7 message.

 This function puts the complete HL7 message, including header, into the close reference, return ref. This is

 only for TCP tcp messages.

 input: msg id = message identifier

 return ref = closed local or global reference

 output: return 1 for success and 0 if message doesn't exist

 The message is returned with blank line between each segment, example:

 ref(1)=MSH^~|\&VOICERAD^^RADIOLOGY^^20000110145151-0800^^ORU~R01^1231^T^2.2| ref(2)=

 ref(3)=PID^^^100~10~M11^^JONES~JOHN^^19421111^M^^^^^^^^^^123456789 ref(4)=

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 3484

 NAME: HL7 Capacity Management Phase I API

 USAGE: Supported ENTERED: NOV 26,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Returns Health Level 7 (HL7) activity totals for a parameter-supplied time range. Additional control over the HL7 activity

 included in the totals is available using passed parameters. (See HL*1.6*103 for additional information.)

 ROUTINE: HLUCM

 COMPONENT: $$CM

 VARIABLES: $$CM Type: Output

 Calling $$CM^HLUCM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR) returns a 3 piece string of data. The

 pieces of data are:

 Piece 1 = Number of characters in all messages found by the API call.

 Piece 2 = Number of messages found by the API call.

 Piece 3 = Total transmission and receipt time for all messages

 found by API call.

 Calling $$CM^HLUCM returns this 3 piece string of data. In addition, when the API is called,

 it creates some ^TMP global data holding additional information about the messages found.

 Full information about the global created can be found in the patch HL*1.6*103 documentation.

 However, a brief overview of the data structure is provided below.

 The fifth parameter passed into the $$CM^HLUCM API is SAVE. This parameter specifies the

 initial subscript to be used in the ^TMP global data. (See the SAVE variable for more

 information.) For example, if the save parameter is passed as "DATA", the ^TMP global data

 is stored in ^TMP("DATA",$J,...).

 The ^TMP global data created by the $$CM^HLUCM call point is subdivided (by sorting

 subscripts) into the following sections:

 Totals by transmission time, namespace, and protocol.

 Totals by namespace, incoming/outgoing, namespace, transmission

 time, and protocol.

 Totals by namepsace, local/remote, namespace, transmission

 time, and protocol.

 Totals by protocol, namespace, and time.

 To explain the above information more fully, consider the last entry. What this means is

 that totals are sorted by protocol, and within protocol the totals are sorted by namespace,

 and within namespace the totals are sorted by transmission time.

 Example data, and additional explanation of the global data created by the API is in patch

 HL*1.6*103.

 SDT (param Type: Input

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The first parameter, SDT, is the start time in Fileman format. An example call is shown

 below.

 W $$CM^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, SDT has the value of 3011123.12.

 EDT (param Type: Input

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The second parameter, EDT, is the end time in Fileman format. An example call is shown

 below.

 W $$CM^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, EDT has the value of 3011123.13.

 NMSP (para Type: Input

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The third parameter, NMSP, is the NAMESPACE of the entry(s) to be included. An example call

 is shown below.

 W $$CM^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, NMSP has the value of "DG".

 See patch HL*1.6*103 documentation for additional details.

 PROT (para Type: Input

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The fourth parameter, PROT, is the PROTOCOL of the entry(s) to be included. An example call

 is shown below.

 W $$CM^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, PROT has the value of "VAFH A08".

 See patch HL*1.6*103 documentation for additional details.

 SAVE (para Type: Input

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The fifth parameter, SAVE, is the initial subscript to use in the ^TMP global data. An

 example call is shown below.

 W $$CM^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, SAVE has the value of "DATA". This would cause the Creation of

 ^TMP("DATA",$J) data.

 COND (para Type: Input

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The sixth parameter, COND, defines criteria to be used when searching For messages. An

 example call is shown below.

 W $$CM^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, COND has the value of "BOTH". Passing the value of "BOTH" requires that

 each message has to have a namespace of "DG" and a protocol of "VAFH A08." In other words,

 'both' the namespace and the protocol values have to be true before a message is counted.

 Instead of "BOTH", the value of "EITHER" can be passed. In the above Example, if "EITHER"

 had been passed as the value of COND, then Messages will be counted if 'either' the namespace

 is "DG" or the Protocol is "VAFH A08." In other words, if either criteria is Matched, a

 message is counted.

 See patch HL*1.6*103 documentation for addition information.

 ERR (param Type: Output

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The sixth parameter, COND, defines criteria to be used when searching For messages. An

 example call is shown below.

 W $$CM^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, ERR is passed by reference. No data is present in The ERR array prior to

 the call, (and even if it did, the ERR local Array is killed as one of the initial API

 actions, in order to ensure That the ERR array is empty at the start of processing.) If any

 Problems are encountered by the API, such as passing in invalid Parameter values, information

 about the error(s) is placed in the ERR local array and "passed back" to the calling process.

 See patch HL*1.6*103 documentation for addition information.

 The syntax for the $$CM call point is:

 $$CM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The passable parameters for this call pointer are explained below.

 SDT - Start date/time in Fileman format. (E.g., 3011123.1234)

 EDT - End date/time in Fileman format.

 NMSP - Namespace(s) of entries to be included.

 PROT - Protocol(s) to be included.

 SAVE - Free text name of inital subscript in ^TMP(SAVE,$j)

 global created by this call point.

 COND - Conditions under which matching entries are to

 be collected.

 ERR - Location for error information returned by the $$CM

 call point. ERR is passed by reference.

 The above information regarding the $$CM call point is provided as an overview of its capabilities. Refer to

 the documentation included in patch HL*1.6*103 for complete explanation.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 3488

 NAME: HL7 Capacity Management Phase II API

 USAGE: Supported ENTERED: DEC 3,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Returns Health Level 7 (HL7) activity totals for a parameter-supplied time range. Additional control over the Hl7 activity

 included in the totals is available using passed parameters. (See HL*1.6*103 for additional information.)

 COMPARISON OF $$CM & $$CM2:

 Patch HL*1.6*79 holds phase I software, and is associated with DBIA# 3484. Phase I software is almost identical to phase II

 software, except in the number of "messages" returned by the two APIs. The call point for

 DBIA# 3484 - phase I software - is $$CM^HLUCM. The call point for this DBIA - phase II software - is $$CM2^HLUCM.

 $$CM^HLUCM returns the number of discrete message occurring during a parameter-defined period of time. $$CM2^HLUCM returns

 the number of "message units" during the same period of time. All other totals returned by both parameters are identical.

 A message is an individual message, such as an application acknowledgement. A message unit is made up of all related

 messages.

 The difference between a message (phase I, $$CM^HLUCM) and a message unit (phase II, $$CM2^HLUCM) can be illustrated using the

 following sequence of events.

 * Baltimore sends a message to Washington. * Washington sends back a commit acknowledgement to Baltimore. * Washington sends

 an application acknowledgement to Washington. * Baltimore sends back to Washington a commit acknowledgement

 for the just sent application acknowledgement.

 In the above example, $$CM^HLUCM would report a count of 4 messages. $$CM2^HLUCM would report a count of 1 message, or

 "message unit." (Since all 4 messages are "related", they are combined into one reported "message.")

 ROUTINE: HLUCM

 COMPONENT: $$CM2

 VARIABLES: $$CM2 Type: Output

 Calling $$CM2^HLUCM(SDT,EDT,NMSP,PROT,SAVE,COND,ERR) returns a 3 piece string of data. The

 pieces of data are:

 Piece 1 = Number of characters in all messages found by the API call.

 Piece 2 = Number of message units found by the API call.

 Piece 3 = Total transmission and receipt time for all message units

 found by API call.

 Calling $$CM2^HLUCM returns this 3 piece string of data. In addition, when the API is

 called, it creates some ^TMP global data holding additional information about the messages

 found. Full information about the global created can be found in the patch HL*1.6*103

 documentation. However, a brief overview of the data structure is provided below.

 The fifth parameter passed into the $$CM2^HLUCM API is SAVE. This parameter specifies the

 initial subscript to be used in the ^TMP global data. (See the SAVE variable for more

 information.) For example, if the save parameter is passed as "DATA", the ^TMP global data

 is stored in ^TMP("DATA",$J,...).

 The ^TMP global data created by the $$CM2^HLUCM call point is subdivided (by sorting

 subscripts) into the following sections:

 Totals by transmission time, namespace, and protocol.

 Totals by namespace, incoming/outgoing, namespace, transmission

 time, and protocol.

 Totals by namepsace, local/remote, namespace, transmission

 time, and protocol.

 Totals by protocol, namespace, and time.

 To explain the above information more fully, consider the last entry. What this means is

 that totals are sorted by protocol, and within protocol the totals are sorted by namespace,

 and within namespace the totals are sorted by transmission time.

 Example data, and additional explanation of the global data created by the API is in patch

 HL*1.6*103.

 SDT Type: Input

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The first parameter, SDT, is the start time in Fileman format. An example call is shown

 below.

 W $$CM2^HLUCM(3011123.12,3011123.13,"DG","VAFHA08","DATA","BOTH",.ERR)

 In this example, SDT has the value of 3011123.12.

 EDT Type: Input

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The second parameter, EDT, is the end time in Fileman format. An example call is shown

 below.

 W $$CM2^HLUCM(3011123.12,3011123.13,"DG","VAFHA08","DATA","BOTH",.ERR)

 In this example, EDT has the value of 3011123.13.

 NMSP Type: Input

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The third parameter, NMSP, is the NAMESPACE of the entry(s) to be included. An example call

 is shown below.

 W $$CM2^HLUCM(3011123.12,3011123.13,"DG","VAFHA08","DATA","BOTH",.ERR)

 In this example, NMSP has the value of "DG".

 See patch HL*1.6*103 documentation for additional details.

 PROT Type: Input

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The fourth parameter, PROT, is the PROTOCOL of the entry(s) to be included. An example call

 is shown below.

 W $$CM2^HLUCM(3011123.12,3011123.13,"DG","VAFHA08","DATA","BOTH",.ERR)

 In this example, PROT has the value of "VAFH A08".

 See patch HL*1.6*103 documentation for additional details.

 SAVE Type: Input

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The fifth parameter, SAVE, is the initial subscript to use in the ^TMP global data. An

 example call is shown below.

 W $$CM2^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, SAVE has the value of "DATA". This would cause the creation of

 ^TMP("DATA",$J) data.

 COND Type: Input

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The sixth parameter, COND, defines criteria to be used when searching for messages. An

 example call is shown below.

 W $$CM2^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, COND has the value of "BOTH". Passing the value of "BOTH" requires that

 each message has to have a namespace of "DG" and a protocol of "VAFH A08." In other words,

 'both' the namespace and the protocol values have to be true before a message is counted.

 Instead of "BOTH", the value of "EITHER" can be passed. In the above example, if "EITHER"

 had been passed as the value of COND, then messages will be counted if 'either' the namespace

 is "DG" or the protocol is "VAFH A08." In other words, if either criteria is matched, a

 message is counted.

 See patch HL*1.6*103 documentation for addition information.

 ERR Type: Output

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The seventh parameter, ERR, is the location for error information returned by the $$CM2 call.

 Here is an example call:

 W $$CM2^HLUCM(3011123.12,3011123.13,"DG","VAFH A08","DATA","BOTH",.ERR)

 In this example, ERR is passed by reference. No data is present in the ERR array prior to

 the call, (and even if it did, the ERR local array is killed as oneof the initial API

 actions, in order to ensure that the ERR array is empty at the start of processing.) If any

 problems are encountered by the API, such as passing in invalid parameter values, information

 about the error(s) is placed in the ERR local array and "passed back" to the calling process.

 See patch HL*1.6*103 documentation for addition information.

 The syntax for the $$CM2 call point is:

 $$CM2(SDT,EDT,NMSP,PROT,SAVE,COND,ERR)

 The passable parameters for this call pointer are explained below.

 SDT - Start date/time in Fileman format. (E.g.,

 3011123.1234)

 EDT - End date/time in Fileman format.

 NMSP - Namespace(s) of entries to be included.

 PROT - Protocol(s) to be included.

 SAVE - Free text name of inital subscript in ^TMP(SAVE,$j)

 global created by this call point.

 COND - Conditions under which matching entries are to

 be collected.

 ERR - Location for error information returned by the $$CM

 call point. ERR is passed by reference.

 The above information regarding the $$CM2 call point is provided as an overview of its capabilities. Refer to

 the documentation included in patch HL*1.6*103 for complete explanation.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 3988

 NAME: Dynamic Routing Header Help Code

 USAGE: Supported ENTERED: MAR 6,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The Dynamic Routing patch HL*1.6*93 gives application developers writing calls to the VistA HL7 package's DIRECT^HLMA and

 GENERATE^HLMA APIs the ability to directly control the routing-related fields. These fields are the SENDING APPLICATION

 (MSH-3), SENDING FACILITY (MSH-4), RECEIVING APPLICATION (MSH-5), and the RECEIVING FACILITY (MSH-6).

 Refer to chapter 12 of the VistA HL7 Site Manager and Developer manual for complete information about the use of the

 DIRECT^HLMA and the GENERATE^HLMA APIs.

 The Dynamic Routing patch HL*1.6*93 expands the data that can be passed into these APIs to include HLP("SUBSCRIBER") and

 HLP("SUBSCRIBER",n) local array entries. When passing HLP("SUBSCRIBER") or HLP("SUBSCRIBER",n) local array data, an M API

 created by the application developer can be called to evaluate the environment and, if appropriate, change the local variables

 used to create the routing-related fields in the MSH segment.

 A new API, M^HLCSHDR4, has been created to assist application developers in the early stages of using M code to control the

 routing-related fields in the MSH segment.

 When the HLP("SUBSCRIBER") or HLP("SUBSCRIBER",n) local array data references M^HLCSHDR4, this is how M^HLCSHDR4 is executed,

 and the actions taken:

 Step Action and Comments

 #1 DIRECT^HLMA or GENERATE^HLMA is called, with HLP("SUBSCRIBER") or

 HLP("SUBSCRIBER",n) local array defined with a reference to

 M^HLCSHDR4.

 #2 Execution of DIRECT^HLMA or GENERATE^HLMA code proceeds, coming to

 the code that creates the MSH segment.

 #3 The HLP("SUBSCRIBER") and HLP("SUBSCRIBER",n) data is evaluated, and

 the call to M^HLCSHDR4 is found.

 #4 M^HLCSHDR4 is called, and the following actions occur:

 - The local variables that will be used in the creation of the

 routing-related fields in the MSH segment are displayed,

 accompanied with explanation of each variable, it's significance,

 and from what source the variable was created.

 - Application developer can interactively enter new values for the

 routing-related fields.

 - If new values are entered, the application developer is informed

 on-screen the actions taken by M^HLCSHDR4 based on the newly

 entered value for the routing-related field(s). (I.e., the

 local variable(s) used in the creation of the routing-related

 fields is reset to the new value entered by the developer.)

 #5 The MSH segment is built using the routing-related

 local variables, (some of which might have been interactively

 changed by the developer when answering the M^HLCSHDR4 queries.)

 #6 Execution of DIRECT^HLMA or GENERATE^HLMA code proceeds, the MSH

 segment and the complete message is created, and all processing of

 the message completes.

 Because of the display of explanatory information by M^HLCSHDR4, and because the developer is informed of the actions being

 taken in resetting the routing-related variables, this API is a valuable training tool.

 Application developers calling M code via HLP("SUBSCRIBER") or HLP("SUBSCRIBER",n) are encouraged to use the M^HLCSHDR4 API

 during the initial phases of their development. After learning how to use M code to control the routing-related fields in the

 MSH segment, developers must remove the educational M^HLCSHDR4 reference, substituting their own M code API.

 ROUTINE: HLCSHDR4

 COMPONENT: M

 VARIABLES: Local array data can be passed-by-reference into the DIRECT^HLMA and GENERATE^HLMA APIs in the VistA HL7

 package. The local array data may contain HLP("SUBSCRIBER") or HLP("SUBSCRIBER",n) entries, used to control

 the routing related fields. These array entries may also hold references to executable M code that may

 directly control the values of the routing-related fields in the MSH segment.

 The M subroutine in the HLCSHDR4 routine can be called to interactively set the local variables used to create

 the routing-related fields in the MSH segment.

 M^HLCSHDR4 is to be used as an educational aid by the application developer learning how to create their own

 application-specific executable M code APIs. This API must be removed prior to release of any software, and

 appropriate application-specific APIs substituted.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4262

 NAME: MESSAGE BODY DELETION

 USAGE: Supported ENTERED: SEP 29,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This integration covers the use of the DELBODY^HLUOPT2 API. This API deletes all segments of a VistA HL7 message except the

 MSH segment. See patch HL*1.6*98 for additional explanation and information.

 ROUTINE: HLUOPT2

 COMPONENT: DELBODY(IEN772,APP,STORE)

 VARIABLES: IEN772 Type: Input

 IEN772 is the first parameter for the DELBODY^HLUOPT2(IEN772,APP,STORE) API, and it is the

 internal entry number of an entry in the HL Message Text file (#772.) Passing this parameter

 is mandatory. Full explanation and examples is provided in this agreement's component

 description above.

 APP Type: Input

 Free-text information stored with ^XTMP data at the time of message body deletion. Passing

 this parameter (and the STORE parameter) is optional. If passed, it can be null and any

 value up to 60 characters. APP may not contain any up-arrows. Full explanation and examples

 is provided in this agreement's component description above.

 STORE Type: Input

 Global reference to the data to be stored in the ^XTMP data. The passing of this parameter

 is optional. Full explanation and examples is provided in this agreement's component

 description above.

 All Health Level 7 (HL7) messages are composed of a MSH segment, and other optional segments. The MSH segment

 is stored in the HL Message Administration file (#773), and the other segments are stored in the HL Message

 Text file (#772). In addition to the MSH and other segments, these files hold other tracking and

 administrative data.

 Some messages handled by the VistA HL7 package are extremely large, and consume enough disk space as to cause

 storage problems. A new VistA HL7 application programmer interface (API) hass being released in patch HL*1.6*98

 to allow applications to selectively delete the "other optional segments" of a message. (The MSH segment is not

 deleted by this API.)

 When this API is called the following actions occur:

 (1) All segments other than the MSH segment are deleted. (No data is

 removed from the HL Message Administration file (#773). Only data

 stored in the ^HL(772,IEN,"IN") nodes is killed; all other

 HL Message Text file (#772) file data is retained.)

 (2) A record is created in the ^XTMP global of the deletion action.

 The ^XTMP global data is stored for 7 days after which it is

 deleted. (More details are provided below.)

 The API syntax is shown next:

 D DELBODY^HLUOPT2(IEN772,APP,STORE)

 The three parameters of the DELBODY API are explained below.

 IEN772: The internal entry number for the HL Message Text file (#772)

 entry containing the "optional segments" to be deleted.

 The passing of IEN772 is mandatory.

 APP: Free-text information passed to the DELBODY API by the

 application identifying the calling process. This information

 is stored in the ^XTMP global as shown below.

 APP free-text information may be passed as a null value, or

 may be any free-text information up to 60 characters in

 length. (Up-arrows not allowed.)

 The passing of APP is optional.

 STORE: Reference to data to be stored in the ^XTMP global. The

 reference must be in "closed reference" format , rather than

 "open reference" format. (Pass "TEXT" rather than "TEXT(",

 and pass "^TMP($J)" instead of "^TMP($J,". Additional examples

 are provided below.)

 Example calls to the DELBODY API are provided next.

 D DELBODY(51321523) ... APP and STORE not passed ...

 D DELBODY(51321523,"MUSE EKG") ... STORE not passed ...

 D DELBODY(51321523,"","TEXT") ... APP not passed ...

 D DELBODY(51321523,"MUSE EKG","TEXT")

 D DELBODY(51321523,"MUSE EKG","^TMP($J)")

 D DELBODY(51321523,"MUSE EKG","^TMP($J,""INFO"")")

 Here is an example entry in the HL Message Text file (#772) prior to calling the DELBODY API:

 ^HL(772,5696,0) = 3020830.122552^32^^O^^9985696^^5696^D^269^^^DG^M ^HL(772,5696,"IN",0) = ^^12^12^3020830^

 ^HL(772,5696,"IN",1,0) = PID^^^100~10~M11^^JONES~JOHN~J^^ 19421112

 ^M^^^^^^^^^^123456789 ^HL(772,5696,"IN",2,0) = ^HL(772,5696,"IN",3,0) =

 OBR^^^^7089898.8543-1~043091-66~L^^^19910

 4301200^"^"^^^^^"^^3232~HARRIS~JACK^^^^ME

 DICINE^^199104301010 ^HL(772,5696,"IN",4,0) = ^HL(772,5696,"IN",5,0) =

 OBX^^TX^I~IMPRESSION~L^^HEART NORMAL SIZE ^HL(772,5696,"IN",6,0) = ^HL(772,5696,"IN",7,0) =

 OBX^^ST^D~DIAGNOSTIC CODE~L^^NORMAL ^HL(772,5696,"IN",8,0) = ^HL(772,5696,"IN",9,0) = OBX^^TX^R~REPORT~L^^Heart

 appears to be o

 f normal size. ^HL(772,5696,"IN",10,0) = ^HL(772,5696,"IN",11,0) =

 OBX^^TX^R~REPORT~L^^No infiltrate or abn

 ormal mass noted. ^HL(772,5696,"IN",12,0) = ^HL(772,5696,"P") =

 3^3020830.122553^^^^^600 ^HL(772,5696,"S") = 351^1

 The data remaining in the HL Message Text file (#772) remaining after the call to DELBODY is shown below.

 ^HL(772,5696,0) = 3020830.122552^32^^O^^9985696^^5696^D^269^^^DG^M ^HL(772,5696,"P") = 3^3020830.122553^^^^^600

 ^HL(772,5696,"S") = 351^1

 When a call is made to the DELBODY API, the following information is stored in ^XTMP:

 - Time when "optional segments" were deleted.

 - Value of APP parameter.

 - Number lines deleted.

 - Information stored in @STORE parameter location.

 - Value of XQY0, if it exists.

 - Value of ZTSK, if it exists.

 The ^XTMP data created when the DELBODY API is called is shown next. The initial subscript for the ^XTMP data

 is "HLUOPT2 "_DT. If TODAY is 8/25/2002, the ^XTMP subscript is "HLUOPT2 3020825". Here is how ^XTMP data is

 stored, using "HLUOPT2 3020825" as the subscript:

 ^XTMP("HLUOPT2 3020825",0)=3020901^3020825.1238^HLUOPT2

 Message Body Deletion

 The vaporization date for the ^XTMP data created on 8/25/2002 is "T+7" or 3020901 in FileMan format.

 The value of "3020825.1238" is the FileMan-format date/time when the first deletion occurred for the data.

 After creation, this date/time is never overwritten when subsequent deletions of "optional segments" occur.

 The value of "HLUOPT2 Message Body Deletion" is always placed in piece 3 of the zero node above.

 When the DELBODY API is called and the zero node above created, if not already created, additional information

 is stored in two additional ^XTMP global locations. But, before this can be done a "storage occurrence number"

 must be calculated. This number is just a sequential number; 1 the first time a call is made to DELBODY, 2 the

 next time, etc.

 Assuming that the "storage occurrence number" calculated by the DELBODY API is 23, the following data is

 created:

 ^XTMP("HLUOPT2 3020825",23,0)=3020825.1532^MUSE EKG^25321^MUSE EKG

 OPTION^1391341

 In the above example, the pieces of data are sequentially:

 - 3020825.1532 = Time when message body was deleted.

 - MUSE EKG = Value passed in APP parameter.

 - 25321 = Number lines of "optional segment" data removed.

 - MUSE EKG OPTION = Value of XQY0 at time of call to DELBODY.

 - 1391341 = Task number (i.e., ZTSK) of process calling DELBODY.

 In addition to the above information stored in ^XTMP, the data stored in the STORE storage location is also

 stored as shown next. In this example, let's assume that the local TEXT array exists and has the following

 entries:

 TEXT(1)="This entry was just marked successfully completed."

 TEXT(2)="Therefore, it's message body is no longer needed."

 TEXT(3)="Since this message is extremely large, it's message"

 TEXT(7)="body will be deleted."

 In this case, the TEXT array data will be stored in the ^XTMP global as shown below.

 ^XTMP("HLUOPT2 3020825",23,"S",1)="This entry was just marked

 successfully completed."

 ^XTMP("HLUOPT2 3020825",23,"S",2)="Therefore, it's message body is no

 longer needed."

 ^XTMP("HLUOPT2 3020825",23,"S",3)="Since this message is extremely

 large, it's message"

 ^XTMP("HLUOPT2 3020825",23,"S",7)="body will be deleted."

 It is strongly recommended that the DELBODY API only be called after all related messages (i.e., initial

 message and all related acknowledgement messages) are successfully completed.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4716

 NAME: HLO BUILD MESSAGE APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are used to build HLO messages.

 ROUTINE: HLOAPI

 COMPONENT: $$NEWMSG(.PARMS,.HLMSTATE,.ERROR)

 VARIABLES: PARMS Type: Input

 PARMS ("COUNTRY") - A three-character country code (optional). ("CONTINUATION POINTER") -

 Indicates a fragmented message. ("EVENT") - A three-character event type (required).

 ("FIELD SEPARATOR") - Field separator (optional, defaults to "|").| ("ENCODING CHARACTERS") -

 Four HL7 encoding characters (optional, defaults to "(^~\&"). ("MESSAGE STRUCTURE") - MSH 9,

 component 3 - a code from the standard HL7table ((optional). ("MESSAGE TYPE")- A

 three-character message type (required). ("PROCESSING MODE") - MSH 11, component 2 - A one

 character code (optional). ("VERSION") - The HL7 Version ID, for example, "2.4" (optional,

 defaults to 2.4).

 HLMSTATE Type: Output

 Used by the HL7 package to track the progress of the message.

 ERROR Type: Output

 Optional. Returns an error message on failure.

 $$NEWMSG Type: Output

 Returns 1 on success, 0 on failure.

 This API is to be used by applications that need to send an HL7 message via HLO. It starts the message

 building process.

 COMPONENT: $$NEWBATCH(.PARMS,.HLMSTATE,.ERROR)

 VARIABLES: PARMS Type: Input

 ("COUNTRY") - A three-character country code (optional). ("FIELD SEPARATOR") - Field

 separator (optional, defaults to "|").| ("ENCODING CHARACTERS") - Four HL7 encoding

 characters (optional, defaults to "^~\&"). ("VERSION") - HL7 Version ID, for example, "2.4"

 (optional, defaults to 2.4).

 HLMSTATE Type: Output

 Used by the HL7 package to track the progress of the message.

 ERROR Type: Output

 Returns an error message on failure.

 $$NEWBATCH Type: Output

 Function returns 1 on success, 0 on failure.

 This API is to be used by applications that need to send a batch of HL7 message via HLO. It starts the batch

 building process.

 COMPONENT: $$ADDMSG(.HLMSTATE,.PARMS,.ERROR)

 VARIABLES: $$ADDMSG Type: Output

 The function returns 1 on success, 0 on failure.

 HLMSTATE Type: Both

 An array used by the HL7 package to track the progress of the message as it is being built.

 PARMS Type: Input

 ("EVENT") - A three-character event type (required). ("MESSAGE TYPE") - A three-character

 message type (required).

 ERROR Type: Output

 Optional - returns an error message on failure.

 Used by applications to add a message to a batch that is in the process of being built.

 COMPONENT: SET(.SEG,VALUE,FIELD,COMP,SUBCOMP,REP)

 VARIABLES: SEG Type: Both

 The array where the segment is being built.

 VALUE Type: Input

 The individual value to be set into the segment.

 FIELD Type: Input

 The sequence # of the field (optional, defaults to 0) Note: FIELD=0 is used to denote the

 segment type.

 COMP Type: Input

 The # of the component (optional, defaults to 1).

 SUBCOMP Type: Input

 The # of the subcomponent (optional, defaults to 1).

 REP Type: Input

 The occurrence# (optional, defaults to 1) For a non-repeating field, the occurrence # need

 not be provided, because it would be 1.

 Used to set a value into a segment that is in the process of being built.

 COMPONENT: $$ADDSEG(.HLMSTATE,.SEG,.ERROR)

 VARIABLES: $$ADDSEG Type: Output

 Function returns 1 on success, 0 on failure.

 HLMSTATE Type: Both

 Used by the HL7 package to track the progress of the message as it is being built.

 SEG Type: Input

 Required. Contains the segment built by calls to SET prior to calling $$ADDSEG.

 Note#1: The message control segments, including the MSH and BHS segments, are added

 automatically. Note#2: The 0th field must be a 3 character segment type. Note#3: SEG is

 killed upon successfully adding the segment.

 ERROR Type: Output

 Returns an error message on failure.

 Used to add a segment that has just been built to a message that is still in the process of being built.

 COMPONENT: MOVEMSG(.HLMSTATE,.ARY)

 VARIABLES: HLMSTATE Type: Both

 Created by calling $$NEWMSG^HLOAPI or $$NEWBATCH^HLOAPI. It tracks the progress of the

 message as its is being built.

 ARY Type: Input

 The name of the local or global variable where the message was built. It is accessed via

 indirection to move the message into HLO.

 If a message was built using any other method than the HLO APIs and resides in an array, it will be moved into

 HLO. This API allows segment builders that were created prior to HLO to be used within HLO.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4717

 NAME: HLO SEND MESSAGE APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs provide the ability to address a message that has already been built and put it on an out-going queue for

 transmission.

 ROUTINE: HLOAPI1

 COMPONENT: $$SENDONE(.HLMSTATE,.PARMS,.WHOTO,.ERROR)

 VARIABLES: $$SENDONE Type: Output

 Function call returns the IEN of the message in file 778 on success, 0 on failure.

 HLMSTATE Type: Both

 Used by the HL7 package to track the progress of the message.

 PARMS Type: Input

 ("APP ACK RESPONSE")=<tag^routine> to call in response to app ack (i.e., not received).

 (Optional. This parameter is ignored if the ACK TO parameter is present.) ("APP ACK TYPE")

 = <AL,NE> (Optional, defaults to NE). ("ACCEPT ACK RESPONSE")=<tag^routine> to call in

 response to a commit ack(optional). ("ACCEPT ACK TYPE") = <AL,NE> (Optional, defaults to

 AL). ("FAILURE RESPONSE") - <tag>^<routine> (Optional) The sending application routine to

 execute when the transmission of the message fails, i.e., the message can not be sent or no

 commit ack is received. ("QUEUE") - Optional. An application can name its own private queue

 - just a string under 20 characters, it should be namespaced. ("SECURITY")=Security

 information to include in the header segment, SEQ 8 (Optional). ("SENDING APPLICATION")=name

 of sending application (required, 60 max-length).

 WHOTO Type: Input

 Required. Specifies a single recipient. ("RECEIVING APPLICATION") - String, 60 char max,

 required.

 One of the following four parameters is required to identify the Receiving Facility:

 ("FACILITY LINK IEN") - IEN of the logical link. ("FACILITY LINK NAME") - Name of the

 logical link. ("INSTITUTION IEN") - Pointer to the INSTITUTION file. ("STATION NUMBER") -

 Station # with suffix.

 One of the following two parameters MAY be provided, optionally, to identify the interface

 engine to route the message through:

 ("IE LINK IEN") - Pointer to a logical link for the interface engine. ("IE LINK NAME") -

 Name of the logical link for the interface engine.

 ERROR Type: Output

 Returns an message on error.

 Sends the message to a single recipient. The recipient is identified in the message header by the Receiving

 Facility and the Receiving Application. The message may optionally be routed through an interface engine.

 COMPONENT: $$SENDMANY(.HLMSTATE,.PARMS,.WHOTO)

 VARIABLES: $$SENDMANY Type: Output

 Returns 1 on success, 0 on failure.

 HLMSTATE Type: Both

 This array is used to track the progress of the message.

 PARMS Type: Input

 ("APP ACK RESPONSE")=<tag^routine> to call in response to app ack (i.e., not received).

 (Optional. This parameter is ignored if the ACK TO parameter is present.) ("APP ACK TYPE")

 = <AL,NE> (Optional, defaults to NE). ("ACCEPT ACK RESPONSE")=<tag^routine> to call in

 response to a commit ack (optional). ("ACCEPT ACK TYPE") = <AL,NE> (Optional, defaults to

 AL). ("FAILURE RESPONSE") - <tag>^<routine> (Optional) The sending application routine to

 execute when the transmission of the message fails, i.e., the message can not be sent or no

 commit ack is received. ("QUEUE") - Optional. An application can name its own private queue

 - just a string under 20 characters, it should be namespaced. ("SECURITY")=Security

 information to include in the header segment, SEQ 8 (Optional). ("SENDING APPLICATION")=name

 of sending application (required, 60 max-length).

 WHOTO Type: Both

 For Input: Specifies a list of recipients. Each recipient should be listed individually in

 array WHOTO(i), where i=a recipient. For each recipient the same subscripts may be defined as

 in the $$SENDONE API. For example:

 WHOTO(1,"LINK NAME")="VAALB" WHOTO(1,"RECEIVING APPLICATION")="MPI" WHOTO(2,"STATION

 NUMBER")=500 WHOTO(2,"RECEIVING APPLICATION")="MPI"

 For Output: Returns the status of each message to be sent in the format: (<i>,"QUEUED") - 1

 if queued to be sent, 0 otherwise. (<i>,"IEN") - IEN, file 778. (<i>,"ERROR") - Error

 message if an error was encountered (status=0),not defined otherwise.

 Sends the message that has already been built to a list of recipients.

 COMPONENT: $$SENDSUB(.HLMSTATE,.PARMS,.MESSAGES)

 VARIABLES: $$SENDSUB Type: Output

 Function call returns 1 if a message is queued to be sent to each intended recipient, 0

 otherwise.

 HLMSTATE Type: Both

 Used by HLO internally to track the progress of the message.

 PARMS Type: Input

 Required. Same as $$SENDMANY^HLOAPI1, with one additional subscript:

 ("SUBSCRIPTION IEN") -The IEN of an entry in the HLO SUBSCRIPTION REGISTRY file (#779.4),

 defining the intended recipients of this message

 MESSAGES Type: Output

 Returns the status of each message to be sent in this format, where the sub-IEN is the IEN of

 the recipient in the RECIPIENTS sub-file of the HLO SUBSCRIPTION REGISTRY file (#779.4).

 (<subien>,"QUEUED") - 1 if queued to be sent, 0 otherwise. (<subien>,"IEN") - IEN, HLO

 MESSAGES file (#778). (<subien>,"ERROR") - Error message if an error was encountered

 (status=0),;not defined otherwise.

 Send Messages to Subscription Registry Subscribers

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4718

 NAME: HLO PARSING APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are to be used by applications that receive HL7 messages via HLO. They provide the means of stepping through

 batches of messages, the message segments, and fetching data values from within segments.

 ROUTINE: HLOPRS

 COMPONENT: $$STARTMSG(.HLMSTATE,IEN,.HDR)

 VARIABLES: $$STARTMSG Type: Output

 Returns 1 on success, 0 on failure.

 IEN Type: Input

 The internal entry number of the message in file 778.

 HLMSTATE Type: Output

 Required. This array is used by the HL7 package to track the progress of parsing the message.

 The application MUST NOT touch it.

 HDR Type: Output

 Optional. This array contains the results of parsing the message header.

 This function begins the parsing of the message, parsing the header and returning the individual values in the

 array HDR().

 COMPONENT: $$NEXTSEG(.HLMSTATE,.SEG)

 VARIABLES: $$NEXTSEG Type: Output

 Function returns 1 on success, 0 if there are no more segments in this message. For batch

 messages, a return value of 0 does not preclude the possibility that there are additional

 individual messages within the batch.

 HLMSTATE Type: Both

 HLMSTATE is an array used internally by HLO to track the progress of parsing.

 SEG Type: Output

 The segment is returned in this array.

 Advances parsing to the next segment within the message.

 COMPONENT: $$NEXTMSG(.HLMSTATE,.MSH)

 VARIABLES: $$NEXTMSG Type: Output

 Function returns 1 on success, 0 if there are no more messages.

 HLMSTATE Type: Both

 This array is used by HLO to track the current position in the message.

 MSH Type: Output

 Returns the MSH segment, parsed into its individual values.

 Advances to the next message within the batch, with the MSH segment returned.

 COMPONENT: $$GET(.SEG,FIELD,COMP,SUBCOMP,REP)

 VARIABLES: $$GET Type: Output

 This function returns a specified value from a segment.

 SEG Type: Input

 This is the array where the parsed segment was placed by $$NEXTSEG^HLOPRS.

 FIELD Type: Input

 The sequence # of the field (optional, defaults to 1). If 0 (zero) is specified, then the

 function returns the segment type.

 COMP Type: Input

 The number of the component (optional, defaults to 1).

 SUBCOMP Type: Input

 The number of the subcomponent (optional, defaults to 1).

 REP Type: Input

 The occurrence number (optional, defaults to 1) For a non-repeating field, the occurrence

 number need not be provided, because it would be 1.

 This function gets a specified value from a segment that was parsed by $$NEXTSEG^HLOPRS. The

 FIELD,COMP,SUBCOMP,REP parameters are optional - if not specified, they default to 1.

 Example: $$GET^HLOPRS(.SEG,1) will return the value of the first field, first component, first subcomponent, in

 the first occurrence of field #1.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4722

 NAME: HLO APPLICATION ACKNOWLEDGEMENT APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are used by applications to return application acknowledgments to messages received via HLO.

 ROUTINE: HLOAPI2

 COMPONENT: $$ACK(.HLMSTATE,.PARMS,.ACK,.ERROR)

 VARIABLES: $$ACK Type: Output

 Function call returns 1 on success, 0 on failure.

 HLMSTATE Type: Both

 Obtained by calling $$STARTMSG^HLOPRS when parsing the original message. It is used

 internally by HLO.

 PARMS Type: Input

 Optional. These subscripts may be defined:

 ("ACK CODE") - MSA1 contains AA, AE, or AR. ("ERROR MESSAGE") - MSA3, should be used only if

 AE or AR. ("ACCEPT ACK RESPONSE") - Optional. The <tag^routine> to call in response to a

 commit ack. ("ACCEPT ACK TYPE") - {AL,NE} (Optional, defaults to AL). ("CONTINUATION

 POINTER") -Indicates a fragmented messages. ("COUNTRY") - The three-character country code

 (optional). ("EVENT") - The three-character event type (optional, defaults to the event code

 of the original message). ("ENCODING CHARACTERS") - The four HL7 encoding characters

 (optional, defaults to "^~\&". ("FAILURE RESPONSE") - Optional. The <tag>^<routine> that the

 sending application routine should execute if the transmission of the message fails, i.e.,

 the message can not be sent or a requested commit ack is not received. ("FIELD SEPARATOR") -

 Field separator (optional, defaults to "|").| ("MESSAGE TYPE") - If not defined, ACK is used.

 ("MESSAGE STRUCTURE CODE") - Optional. ("QUEUE")- Optional. An application can name its own

 private queue (a string under 20 characters, it should be namespaced). The default is the

 name of the queue of the original message ("SECURITY") - Optional. Security information to

 include in the header segment, SEQ 8. ("VERSION") - The HL7 Version ID (optional, defaults to

 2.4).

 ACK Type: Output

 The acknowledgement message being built.

 ERROR Type: Output

 On failure, an error message is returned.

 This API initiates (but doesn't complete) an application acknowledgment. This API should NOT be called for

 batch messages, use $$BATCHACK^HLOAPI3 instead.

 COMPONENT: $$SENDACK(.ACK,.ERROR)

 VARIABLES: $$SENDACK Type: Output

 Function call returns 1 on success, 0 on failure.

 ACK Type: Input

 An array that contains the acknowledgment message that was built by calling the other APIs.

 ERROR Type: Output

 If the function fails, an error message is returned.

 Sends the acknowledgment message that was begun by a call to $$ACK^HLAPI2 or a batch of acknowledgement

 messages that was begun by a call to $$$$BATCHACK^HLOAPI3.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4723

 NAME: HLO APPLICATION ACKNOWLEDGEMENT APIS (CONTINUED)

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are part of the set of tools that an application uses to return an application acknowledgement to a message that

 was received via HLO. See integration agreement # 4722 for the related APIs.

 ROUTINE: HLOAPI3

 COMPONENT: $$BATCHACK(.HLMSTATE,PARMS,.ACK,.ERROR)

 VARIABLES: $$BATCHACK Type: Output

 The function returns 1 on success, 0 on failure.

 HLMSTATE Type: Both

 The HLMSTATE array is used internally by HLO to track the processing of the message. It is

 created by the application's earlier call to $$STARTMSG^HLOPRS when parsing the original

 message.

 PARMS Type: Input

 These subscripts may be defined:

 ("ACCEPT ACK RESPONSE") - <tag^routine> to call in response to a commit ack (optional).

 ("ACCEPT ACK TYPE") - <AL,NE> (Optional, defaults to AL). ("COUNTRY") - A three-character

 country code from the HL7 standard table (optional). ("ENCODING CHARACTERS") - The four HL7

 encoding characters; optional, defaults to "^~\&". ("FAILURE RESPONSE") - Optional. The

 <tag>^<routine> that the sending application routine should execute if the transmission of

 the message fails, i.e., the message can not be sent or a requested commit ack is not

 received. ("FIELD SEPARATOR") - Field separator; optional, defaults to "|".| ("QUEUE") -

 Optional. An application can name a private queue (a string under 20 characters, it should be

 namespaced). The default is the name of the queue of the original message. ("SECURITY") -

 Security information to include in the header segment, SEQ 8 (optional). ("VERSION") - The

 HL7 Version ID (optional, defaults to 2.4)

 ACK Type: Output

 The acknowledgement being built.

 ERROR Type: Output

 On failure, the function returns an error message.

 This routine is used to initiate a batch message containing inidividual application acknowledgments to a batch

 of messages that was received via HLO. Individual acks are placed in this batch by calling $$ADDACK^HLOAPI3,

 then the batch of acks is actually sent by calling $$SENDACK^HLOAPI2.

 COMPONENT: $$ADDACK(.ACK,.PARMS,.ERROR)

 VARIABLES: $$ADDACK Type: Output

 The function returns 1 on success, 0 on failure.

 ACK Type: Both

 The batch of acknowledgements that is being built.

 PARMS Type: Input

 These subscripts may be defined:

 ("ACK CODE") - Required. MSA1 contains AA, AE, or AR. ("ERROR MESSAGE") - Optional. MSA3

 should be used only if AE or AR. ("EVENT") - A three-character event type (optional,

 defaults to the event code of the original message). ("MESSAGE CONTROL ID") - Required. The

 message control ID of the original individual message within the batch that is being

 acknowledged. ("MESSAGE STRUCTURE CODE") - Optional. ("MESSAGE TYPE") - Optional, defaults

 to ACK. ("SECURITY") - Optional. Security information to include in the header segment SEQ.

 Type:

 ERROR Type: Output

 On failure, the function also returns an error message.

 This API adds an application acknowledgement to a batch acknowledgement message that was started by calling

 $$BATCHACK^HLOAPI3.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4724

 NAME: HLO MISCELANEOUS APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These are APIs provided by HLO that don't fit into any of the other categories.

 ROUTINE: HLOAPI3

 COMPONENT: $$RESEND(MSGIEN,.ERROR)

 VARIABLES: $$RESEND Type: Output

 The function returns 1 on success, 0 on failure.

 MSGIEN Type: Input

 The IEN of the message that is to be sent from HLO MESSAGES file(#778).

 ERROR Type: Output

 On failure, the function also returns an error message.

 This routine re-transmits a message. It does this by making a copy of the message, reusing all the original

 parameters. Then the message is placed in the same outgoing queue.

 COMPONENT: $$REPROC(MSGIEN,.ERROR)

 VARIABLES: $$REPROC Type: Output

 This function returns 1 on success, 0 on failure.

 MSGIEN Type: Input

 The IEN of the message that is to be sent from HLO MESSAGES file(#778).

 ERROR Type: Output

 On failure, this function also returns an error message.

 This routine reprocesses a message by placing it on the appropriate incoming queue.

 COMPONENT: $$SETPURGE(MSGIEN,TIME)

 VARIABLES: $$SETPURGE Type: Output

 This function returns 1 on success, 0 on failure.

 MSGIEN Type: Input

 The IEN of the message that is to be reprocessed from HLO MESSAGES file (#778).

 TIME Type: Input

 Optional, date/time to which to set the purge time. If not defined, defaults to NOW.

 This API can be used to reset the scheduled purge date/time.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4725

 NAME: HLO SUBSCRIPTION REGISTRY APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs allow applications to create and manage entries in the HLO Subscription Registry. Each entry is basically a list

 of recipients that can be used and reused to address HL7 messages. Its similar to a mailing list. See also IA# 4726.

 ROUTINE: HLOASUB

 COMPONENT: $$CREATE(OWNER,DESCRIPTION,.ERROR)

 VARIABLES: $$CREATE Type: Output

 Function call returns the new IEN in the HLO SUBSCRIPTION REGISTRY file (#779.4) if

 successful, 0 if error.

 OWNER Type: Input

 The name of the owning application. It should be pre-fixed with the owning application's

 namespace.

 DESCRIPTIO Type: Input

 Optional. A short description of the subscription registry entry.

 ERROR Type: Output

 The function also returns an error message if it fails.

 This API is used to create a new entry in the HLO Subscription Registry.

 COMPONENT: $$ADD(IEN,.WHO,.ERROR)

 VARIABLES: $$ADD Type: Output

 The function returns the subien of the recipient from the RECIPIENTS multiple, 0 on failure.

 IEN Type: Input

 The IEN of the entry in the HLO SUBSCRIPTION REGISTRY file (#779.4).

 WHO Type: Input

 An array containing the information for a single new recipient to be added to the list. These

 subscripts are allowed:

 ("RECEIVING APPLICATION") - String, 60 char max, required.

 One of the following four parameters must be provided to identify the Receiving Facility:

 ("FACILITY LINK IEN") - IEN of the logical link. ("FACILITY LINK NAME") - Name of the

 logical link. ("INSTITUTION IEN") - Pointer to the INSTITUTION file. ("STATION NUMBER") -

 Station # with suffix.

 ONE of the following two parameters MAY be provided - optionally - to identify the interface

 engine to route the message through:

 ("IE LINK IEN") - Pointer to a logical link for the interface engine. ("IE LINK NAME") -

 Name of the logical link for the interface engine.

 ERROR Type: Output

 On failure, one of these messages will be returned:

 "SUBSCRIPITON REGISTRY ENTRY NOT FOUND" "RECEIVING FACILTY LOGICAL LINK NOT FOUND" "RECEIVING

 APPLICATION NOT FOUND" "INTERFACE ENGINE LOGICAL LINK PROVIDED BUT NOT FOUND" "FAILED TO

 ACTIVATE SUBSCRIBER"

 Add a new recipient to an existing subscription list.

 COMPONENT: $$END(IEN,.WHO)

 VARIABLES: $$END Type: Output

 The function returns 1 on success, 0 on failure.

 IEN Type: Input

 The IEN of the HLO SUBSCRIPTION REGISTRY file (#779.4) entry.

 WHO Type: Input

 If WHO("SUBIEN") is defined, then it should be the IEN of the sub-record to be terminated.

 Otherwise, set the set the parameter as per $$ADD^HLOASUB

 to terminate a recipient from the subscriber list. The recipient isn't deleted, but the DATE/TIME TERMINATED

 field is entered with the current date/time.

 COMPONENT: $$ONLIST(IEN,LINKIEN,APPNAME,FAC1,FAC2,FAC3)

 VARIABLES: $$ONLIST Type: Output

 Function call returns the IEN of the recipient from the RECIPIENTS multiple, 0 on failure.

 IEN Type: Input

 The IEN of the HLO SUBSCRIPTION REGISTRY file (#779.4) entry.

 LINKIEN Type: Input

 IEN of the logical link.

 APPNAME Type: Input

 The name of the receiving application.

 FAC1 Type: Input

 Component 1 of the receiving facility.

 FAC2 Type: Input

 Component 2 of the Receiving Facility.

 FAC3 Type: Input

 Component 3 of the Receiving Facility.

 This function is used to check whether or not a potential recipient is already on a particular subscription

 list.

 COMPONENT: $$NEXT(IEN,.RECIP)

 VARIABLES: $$NEXT Type: Output

 Function call returns the IEN of the recipient from the RECIPIENTS multiple, 0 on failure.

 IEN Type: Input

 The IEN of the HLO SUBSCRIPTION REGISTRY file (#779.4) entry.

 RECIP Type: Both

 Input: If NULL, it gets the first recipient on the list, else it uses the value of

 RECIP("SUBIEN") to find the next recipient.

 Output: RECIP - Required. Returns the next recipient on the list. These subscripts are

 returned:

 ("LINK IEN") ("LINK NAME") ("RECEIVING APPLICATION") ("RECEIVING FACILITY",1) - Component 1

 ("RECEIVING FACILITY",2) - Component 2 ("RECEIVING FACILITY",3) - Component 3 ("SUBIEN") -

 The IEN in the multiple, used to find the next on the list.

 This API is used to loop through a subscription list. It ignores recipients that have been terminated from the

 list.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4726

 NAME: HLO SUBSCRIPTION REGISTRY APIS (CONTINUED)

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This continues the APIs for HLO subscription lists. See IA# 4725.

 ROUTINE: HLOASUB1

 COMPONENT: $$INDEX(IEN,.PARMARY)

 VARIABLES: $$INDEX Type: Output

 The function returns 1 on success, 0 on failure.

 IEN Type: Input

 IEN of the HLO SUBSCRIPTION REGISTRY file (#779.4) entry.

 PARMARY Type: Input

 Array of parameters with which to build the index. The format is: PARMARY(1)=<first

 parameter>, PARMARY(2)=<second parameter> If PARMARY(i)=null, the parameter will be

 translated to a single space.

 This function call allows an application to build an index of its subscriptions. This is optional, but using

 this function allows the application to easily find subscriptions without storing the IEN.

 COMPONENT: $$FIND(OWNER,.PARMARY)

 VARIABLES: $$FIND Type: Output

 This function returns the IEN of the subscription list if found, 0 otherwise.

 OWNER Type: Input

 The name of the owning application, as specified when the subscription list was created.

 PARMARY Type: Input

 The array of parameters with which the index was built. The format is: PARMARY(1)=<first

 parameter>, PARMARY(2)=<second parameter> If PARMARY(i)=null, the parameter will be

 translated to a single space.

 This function call allows an application to find a subscription registry entry. The application must maintain

 a private index in order to utilize this function, via $$INDEX^HLOASUB1.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4727

 NAME: HLO CONVERSION APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These utilities provide help to applications that were developed before HLO convert to HLO. See also IA# 4728 and IA#4731.

 ROUTINE: HLOCNRT

 COMPONENT: $$EN(HLOPRTCL,ARYTYP,.HLP)

 VARIABLES: $$EN Type: Output

 The function returns a string that is one to three piece variable consisting of message

 id^error code^error description. Only the message id will be returned if there is no error.

 HLOPRTCL Type: Input

 Event Protocol IEN

 ARYTYP Type: Input

 Array Type ("GM" is the standard usage, used for a global array containing a single message.

 HLP Type: Input

 Additional MSH parameters. For example: - HLP("SECURITY") - HLP("CONTPTR") -

 HLP("QUEUE")

 Takes a current HL 1.6 message that follows the standard HL 1.6 methodology, converts it to use the HLO engine,

 and places the message into the HLO message queue. A function call to EN^HLOCNRT replaces the HL 1.6 call to

 GENERATE^HLMA.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4728

 NAME: HLO CONVERSION APIS (2)

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These utilities provide help to applications that were developed before HLO convert to HLO. See also IA# 4727 and IA#4731.

 ROUTINE: HLOCVU

 COMPONENT: APAR(HLOEID,.APPARMS,.WHO,.WHOTO)

 VARIABLES: HLOEID Type: Input

 Event Protocol IEN.

 APPARMS Type: Output

 Array containing HLO message parameters.

 Specific translation from HL 1.6 parameters to HLO is as follows:

 HL 1.6 APPLICATION PROTOCOL => HLO APPARMS ARRAY PARAMETERS COUNTRY CODE

 => APPARMS("COUNTRY") APPLICATION ACK TYPE =>

 APPARMS("APP ACK TYPE") EVENT TYPE => APPARMS("EVENT")

 SENDING APPLICATION => APPARMS("SENDING APPLICATION") TRANSACTION

 MESSAGE TYPE => APPARMS("MESSAGE TYPE") VERSION ID

 => APPARMS("VERSION") HL7 FIELD SEPARATOR => APPARMS("FIELD

 SEPARATOR") HL7 ENCODING CHARACTERS => APPARMS("ENCODING

 CHARACTERS")

 HL 1.6 Passed Parameters => HLO APPARMS ARRAY PARAMETERS HLP("SECURITY")

 => APPARMS("SECURITY") HLP("CONTPTR")

 => APPARMS("CONTINUATION POINTER") HLP("QUEUE")* =>

 APPARMS("QUEUE")

 *NOTE: HLP("QUEUE") is not actually a current HL 1.6 parameter but can be added to the HLP

 array to allow a converted application to define HLO private queues.

 For Sending Messages To One Application

 _

 RECEIVING APPLICATION => WHO("RECEIVING APPLICATION") LOGICAL

 LINK => WHO("FACILITY LINK NAME")

 For Sending Messages To Multiple Applications (where "n" is a numeric index (0,1,2,))

 _ RECEIVING APPLICATION => WHOTO(n,"RECEIVING APPLICATION")

 LOGICAL LINK => WHOTO(n,"FACILITY LINK NAME")

 WHO Type: Output

 For single HLO message recipients, receiving application parameters.

 WHOTO Type: Output

 For multiple HLO message recipients, receiving application parameters.

 Designed to retrieve pre-HLO HL 1.6 parameters from the existing HL 1.6 protocol and translate to HLO format.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4730

 NAME: HLO QUEUE MANAGEMENT APIS

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are for applications to use in KIDS distributions of messaging applications. They allow the application to turn on

 and off individual queues during the instalation of a patch.

 ROUTINE: HLOQUE

 COMPONENT: STOPQUE(DIR,QUEUE)

 VARIABLES: DIR Type: Input

 Direction of queue. Values are "IN" or "OUT".

 QUEUE Type: Input

 The name of the queue to be stopped.

 Routine designed to set a "Stop" flag on a named queue. Flag to set is ^HLTMP("STOPPED QUEUES",DIR,QUEUE).

 COMPONENT: STARTQUE(DIR,QUEUE)

 VARIABLES: DIR Type: Input

 Direction of queue. Values are "IN" or "OUT".

 QUEUE Type: Input

 The name of the queue to be started.

 Routine designed to remove a "Stop" flag on a named queue. Flag to remove is ^HLTMP("STOPPED

 QUEUES",DIR,QUEUE).

 COMPONENT: $$STOPPED(DIR,QUEUE)

 VARIABLES: DIR Type: Input

 Direction of queue. Values are "IN" or "OUT".

 QUEUE Type: Input

 The name of the queue to be checked.

 $$STOPPED Type: Output

 The function returns 1 if the named queue is stopped, 0 otherwise.

 Function designed to check the status of a queue by determining if a "Stop" flag has been set on a named queue.

 Flag to check is ^HLTMP("STOPPED QUEUES",DIR,QUEUE).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4731

 NAME: HLO CONVERSOIN APIS (3)

 USAGE: Supported ENTERED: AUG 19,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These utilities provide help to applications that were developed before HLO convert to HLO. See also IA# 4727 and IA#4728.

 ROUTINE: HLOMSG

 COMPONENT: $$HLNEXT(.HLMSTATE,.SEG)

 VARIABLES: HLMSTATE Type: Both

 This array is used by the HL7 package to track the current position in the message. The

 application MUST NOT touch it.

 SEG Type: Output

 The segment is returned in this array.

 $$HLNEXT Type: Output

 The function returns 1 on success, 0 if there are no more segments in this message. For

 batch messages, a return value of 0 does not preclude the possibility that there are

 additional individual messages within the batch.

 This API is NOT to be used in the development of a new messaging application. It is provided for messaging

 applications that were developed prior to HLO where stepping through a message was accomplished by executing

 HLNEXT.

 The new function $$HLNEXT is used to step through the segments of a message stored in the new HLO data

 structures. However, for batch messages, it does not tranverse from one message to the next as executing

 HLNEXT does.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4805

 NAME: HLO APPLICATION REGISTRY

 USAGE: Supported ENTERED: OCT 5,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 779.2 ROOT: HLD(779.2,

 DESCRIPTION: TYPE: File

 Permission is given for any application to create new entries in the HLO Application Registry file and distribute those

 entries via KIDS, under these conditions:

 1) The .01 field must be namespaced by the application. It is the application's

 responsibility to insure that their entry is unqiquely named.

 2) The entry must be distributed via KIDS using the procedure documented

 in the HLO Technical Manual that was released as supplemental documentation

 to HL7 1.6 in patch HL*1.6*126. The procedure includes:

 a) Adding the HLO Application Registry file to the KIDS build.

 b) NOT updating the data dictionary.

 c) Including data.

 d) Including a screen that will select only the application's new entries.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4852

 NAME: HLO DATA TYPE PARSERS

 USAGE: Supported ENTERED: JUN 5,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This provides specialized APIs for parsing HL7 data types from a segment. It applies only to HL7 messages received via the

 HLO software that was released in patch HL*1.6*126.

 ROUTINE: HLOPRS2

 COMPONENT: GETTS(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Input

 (required, pass by reference) The array returned by a call to $$NEXTSEG^HLOPRS.

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is parsed as a component value.

 REP Type: Input

 The occurrence # (optional, defaults to 1). For a non-repeating field, this parameter is not

 necessary.

 VALUE Type: Output

 (required, pass-by-reference IF subscripts are used) The date/time in FileMan format. The

 PRECISION subscript is optional, if provided the time stamp's precision will be determined.

 "PRECISION" - (optional) Expected values are:

 "S" - second

 "M" - minute

 "H" - hour

 "D" - day

 "L" - month

 "Y" - year

 "" - precision not specified

 Note: FM does not allow greater precision than seconds, so greater

 precision will be rounded down to the second.

 Gets a segment value that is a time stamp in HL7 format and converts it to FileMan format. IF the data type

 value includes the time zone then the time is converted to local time. The degree of precision is optionally

 returned. IF the component is specified, then the component is parsed for data type rather than at the higher

 field level.

 COMPONENT: GETDT(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Input

 (required, pass by reference) The array returned by a call to $$NEXTSEG^HLOPRS.

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is parsed as a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence#. For a non-repeating fields, this parameter is not

 necessary.

 VALUE Type: Output

 (required, pass-by-reference if the precisoin is needed) The date/time in FileMan format. The

 "PRECISION" subscript is also returned:

 "PRECISION" Expected values are:

 "S" - second (not valid for DT)

 "M" - minute (not valid for DT)

 "H" - hour (not valid for DT)

 "D" - day

 "L" - month

 "Y" - year

 "" - precision not specified

 Gets a segment value that is a date in HL7 format and converts it to FileMan format. The degree of precision is

 optionally returned. IF the component is specified, then the component is parsed for data type rather than at

 the higher field level.

 COMPONENT: GETCE(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Input

 (required, pass-by-reference) The array returned by a call to NEXTSEG^HLOPRS.

 COMP Type: Input

 (optional) If specified, the data type is parsed as a component value.

 FIELD Type: Input

 (required) The sequence # of the field.

 REP Type: Input

 The occurrence # (optional, defaults to 1). For a non-repeating fields, this parameter is

 not necessary.

 VALUE Type: Output

 (required, pass-by-reference) These subscripts are returned:

 "ID" - the identifier

 "TEXT" -

 "SYSTEM" - name of the code system

 "ALTERNATE ID" - alternate identifier

 "ALTERNATE TEXT"

 "ALTERNATE SYSTEM" - name of the alternate coding system

 Gets an CE data type(Coded Element, HL7 Section Reference 2.9.8)from the

 specified field. IF the component is specified, then the component is

 parsed for data type rather than at the higher field level.

 COMPONENT: GETHD(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Input

 (required, pass-by-reference) The array returned by a call to NEXTSEG^HLOPRS.

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is parsed as a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 VALUE Type: Output

 (required, pass-by-reference) These subscripts are returned:

 "NAMESPACE ID"

 "UNIVERSAL ID"

 "UNIVERSAL ID TYPE"

 Gets an HD data type (Hierarchic Designator, HL7 Section Reference

 2.9.21) from the specified field. IF the component is specified, then

 the component is parsed for data type rather than at the higher field

 level.

 COMPONENT: GETCNE(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Input

 (required, pass-by-reference) The array returned by a call to NEXTSEG^HLOPRS.

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is parsed as a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 VALUE Type: Output

 (required, pass-by-reference) These subscripts are returned:

 "ID" - the identifier

 "TEXT" -

 "SYSTEM" - name of the code system

 "ALTERNATE ID" - alternate identifier

 "ALTERNATE TEXT"

 "ALTERNATE SYSTEM" - name of the alternate coding system

 "SYSTEM VERSION" - version ID of the coding system

 "ALTERNATE SYSTEM VERSION" - version ID of the alternate

 coding system

 "ORIGINAL TEXT"

 Gets an CNE data type (Coded With No Exceptions, HL7 Section

 Reference 2.9.8) from the specified field. IF the component is

 specified, then the component is parsed for data type rather than at the

 higher field level.

 COMPONENT: GETCWE(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Input

 (required, pass-by-reference) The array returned by a call to NEXTSEG^HLOPRS.

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is parsed as a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 VALUE Type: Output

 VALUE (required, pass-by-reference) These subscripts are returned:

 "ID" - the identifier

 "TEXT" -

 "SYSTEM" - name of the code system

 "ALTERNATE ID" - alternate identifier

 "ALTERNATE TEXT"

 "ALTERNATE SYSTEM" - name of the alternate coding system

 "SYSTEM VERSION" - version ID of the coding system

 "ALTERNATE SYSTEM VERSION" - version ID of the alternate

 coding system

 "ORIGINAL TEXT"

 Gets an CWE data type (Coded With Exceptions, HL7 Section

 Reference 2.9.11) from the specified field. . IF the component is

 specified, then the component is parsed for data type rather than at the

 higher field level.

 COMPONENT: GETAD(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Input

 (required, pass-by-reference) The array returned by a call to NEXTSEG^HLOPRS.

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is parsed as a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 VALUE Type: Output

 (required, pass-by-reference) These subscripts are returned:

 "STREET1" -street address

 "STREET2" - other designation

 "CITY"

 "STATE" - state or province

 "ZIP" - zip or postal code

 "COUNTRY"

 "TYPE" - address type

 "OTHER" - other geographic designation

 Gets an AD data type (Address, HL7 Section Reference 2.9.1) from the

 specified field. It can also be used to get the 1st 8 components of the

 XAD (Extended Address) data type. IF the component is specified, then

 the component is parsed for the address rather than at the higher field

 level.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 4853

 NAME: HLO BUILDING MESSAGES WITH DATA TYPES

 USAGE: Supported ENTERED: JUN 5,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This provides specialized APIs for buiding messages with HL7 data types. It applies only to HL7 messages received via the HLO

 software that was released in patch HL*1.6*126.

 ROUTINE: HLOAPI4

 COMPONENT: SETTS(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Both

 (required, pass by reference) The segment that is being built.

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is 'demoted' to a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 VALUE Type: Input

 (required, pass-by-reference to also pass the the "PRECISION" subscript) The date/time in

 FileMan format. You can optionally specify that the value is to be rounded down to a

 particular precision by specifying this subscript:

 "PRECISION" - Allowed values are:

 "S" - second

 "M" - minute

 "H" - hour

 "D" - day

 "L" - month

 "Y" - year

 "" - precision not specified

 Sets a value that is a time stamp in FM format into the segment in HL7

 format. The degree of precision may be optionally specified. The

 inserted value will include the timezone if the input included the time.

 IF the component is specified, then the data type is 'demoted' to a

 component, and its components are 'demoted' to subcomponents.

 COMPONENT: SETDT(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Both

 (required, pass by reference) The segment that is being built.

 VALUE Type: Input

 (required) The date to be set into the segment. Optionally, you may specify that the value

 should be rounded down to a particular precision by specifying this subscript:

 "PRECISION" (If needed, VALUE must be passed by reference.)

 Allowed values are:

 "D" - day (default value)

 "L" - month

 "Y" - year

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is 'demoted' to a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 Sets a value that is a date in FM format into the segment in HL7 format.

 The degree of precision may be optionally specified. IF the component

 is specified, then the data type is 'demoted' to a component, and its

 components are 'demoted' to subcomponents.

 COMPONENT: SETCE(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Both

 (required, pass-by-reference) The segment that is being built.

 VALUE Type: Input

 (required, pass-by-reference) These subscripts may be passed:

 "ID" - the identifier

 "TEXT" -

 "SYSTEM" - name of the code system

 "ALTERNATE ID" - alternate identifier

 "ALTERNATE TEXT"

 "ALTERNATE SYSTEM" - name of the alternate coding system

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is 'demoted' to a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 Sets a value that is an HL7 Coded Element data type (HL7 Section

 Reference 2.9.3) into the segment in the specified field. IF the

 component is specified, then the data type is 'demoted' to a component,

 and its components are 'demoted' to subcomponents.

 COMPONENT: SETHD(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Both

 (required, pass-by-reference) The array where the segment is being built.

 VALUE Type: Input

 (required, pass-by-reference) These subscripts may be passed:

 "NAMESPACE ID"

 "UNIVERSAL ID"

 "UNIVERSAL ID TYPE"

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is 'demoted' to a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 Sets a value that is an HL7 Hierarchic Designator data type (HL7 Section

 Reference 2.9.21) into the segment in the specified field. IF the

 component is specified, then the data type is 'demoted' to a component,

 and its components are 'demoted' to subcomponents.

 COMPONENT: SETCNE(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Both

 (required, pass-by-reference) The array where the segment is being built.

 VALUE Type: Input

 (required, pass-by-reference) These subscripts may be passed:

 "ID" - the identifier

 "TEXT" -

 "SYSTEM" - name of the code system

 "ALTERNATE ID" - alternate identifier

 "ALTERNATE TEXT"

 "ALTERNATE SYSTEM" - name of the alternate coding system

 "SYSTEM VERSION" - version ID of the coding system

 "ALTERNATE SYSTEM VERSION" - version ID of the alternate coding

 system

 "ORIGINAL TEXT"

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is 'demoted' to a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 Sets a value that is an HL7 Coded With No Exceptions data type (HL7

 Section Reference 2.9.8) into the segment in the specified field. IF the

 component is specified, then the data type is 'demoted' to a component,

 and its components are 'demoted' to subcomponents.

 COMPONENT: SETCWE(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Both

 (required, pass-by-reference) The array where the segment is being built.

 VALUE Type: Input

 (required, pass-by-reference) These subscripts may be passed:

 "ID" - the identifier

 "TEXT" -

 "SYSTEM" - name of the code system

 "ALTERNATE ID" - alternate identifier

 "ALTERNATE TEXT"

 "ALTERNATE SYSTEM" - name of the alternate coding system

 "SYSTEM VERSION" - version ID of the coding system

 "ALTERNATE SYSTEM VERSION" - version ID of the alternate coding

 system

 "ORIGINAL TEXT"

 FIELD Type: Input

 (required) The sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is 'demoted' to a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 Sets a value that is an HL7 Coded With Exceptions data type (HL7 Section

 Reference 2.9.11) into the segment in the specified field. IF the

 component is specified, then the data type is 'demoted' to a component,

 and its components are 'demoted' to subcomponents.

 COMPONENT: SETAD(.SEG,.VALUE,FIELD,COMP,REP)

 VARIABLES: SEG Type: Both

 (required, pass-by-reference) The array where the segment is being built.

 VALUE Type: Input

 (required, pass-by-reference) These subscripts may be passed:

 "STREET1" -street address

 "STREET2" - other designation

 "CITY"

 "STATE" - state or province

 "ZIP" - zip or postal code

 "COUNTRY"

 "TYPE" - address type

 "OTHER" - other geographic designation

 FIELD Type: Input

 (required) the sequence # of the field.

 COMP Type: Input

 (optional) If specified, the data type is 'demoted' to a component value.

 REP Type: Input

 (optional, defaults to 1) The occurrence #. For a non-repeating fields, this parameter is

 not necessary.

 Sets an AD data type (Address, HL7 Section Reference 2.9.1) into the

 segment in the specified field. It can also be used to set the 1st 8

 components of the XAD (Extended Address) data type. IF the component is

 specified, then the data type is 'demoted' to a component, and its

 components are 'demoted' to subcomponents.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10106

 NAME: HLFNC

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: HLFNC

 COMPONENT: $$FMDATE

 VARIABLES: Extrinsic function call $$FMDATE^HLFNC(X), converts HL7 date, date/time, or time to VA FileMan format. X

 required.

 COMPONENT: $$FMNAME

 VARIABLES: Extrinsic function call $$FMNAME^HLFNC(X), converts name in HL7 format to a name in DHCP format. X required.

 HLECH (HL7 encoding characters) must be defined before calling.

 COMPONENT: $$HLADDR

 VARIABLES: Extrinsic function call $$HLADDR^HLFNC(AD,GL), converts address information in DHCP format to HL7 format. AD &

 GL required. HLECH (HL7 encoding characters) must be defined before calling.

 COMPONENT: $$HLDATE

 VARIABLES: Extrinsic function call $$HLDATE^HLFNC(X,Y), date &/or time from VA FileMan format to HL7. X required, Y

 optional.

 COMPONENT: $$HLNAME

 VARIABLES: Extrinsic function call $$HLNAME^HLFNC(X), converts a name in DHCP format (e.g., lastname,firstname) to HL7

 format. X required. HLECH (HL7 encoding characters) must be defined before calling.

 COMPONENT: $$HLPHONE

 VARIABLES: Extrinsic function call $$HLPHONE^HLFNC(X,B,C), converts a phone number from DHCP format to HL7. X requred, B

 & C optional.

 COMPONENT: $$M10

 VARIABLES: Extrinsic function call $$M10^HLFNC(X), calculates checksum using the M10 algorithm. HLECH (HL7 encoding

 characters) required, X required.

 COMPONENT: $$M11

 VARIABLES: Extrinsic function call $$M10^HLFNC(X), calculates checksum using the M11 algorithm. HLECH (HL7 encoding

 characters) required, X required.

 COMPONENT: $$UPPER

 VARIABLES: Extrinsic function call $$UPPER^HLFNC(X), converts lower to uppercase. X required.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10107

 NAME: HLFNC1

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: HLFNC1

 COMPONENT: $$BHS

 VARIABLES: Extrinsic function call $$BHS^HLFNC1(HLMTN,HLSEC,HLMSA), builds HL7 Batch Header (BHS) segment. HLMTN and all

 variables created by INIT^HLTRANS are required. HLSEC & HLMSA are optional.

 COMPONENT: $$HLFLDS

 VARIABLES: Extrinsic function call $$HLFLDS^HLFNC1(APP,SEG), returns HL7 fields used for a specified HL7 segment. APP &

 SEG required.

 COMPONENT: $$MSH

 VARIABLES: Extrinsic function call $$MSH^FLFNC1(HLMTN,HLSEC), builds an HL7 Message Header (MSH) segment. HLMTN and all

 variables created by INIT^HLTRANS are required. HLSEC optional.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10108

 NAME: HLTF

 USAGE: Supported ENTERED: OCT 5,2001

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: HLTF

 COMPONENT: FILE

 VARIABLES: Creates an entry to track delivery of an HL7 message. No input variables. HLDA, HLDT, HLDT1 are output

 variables.

 COMPONENT: CREATE

 VARIABLES: HLMID Type: Both

 The variable in which to return the batch message ID.

 MTIEN Type: Output

 The parameter in which to return the IEN of the message stub in the HL7 Message Text file

 (#772).

 HLDT Type: Both

 The parameter in which to return the message date/time in VA FileMan format.

 HLDT1 Type: Output

 The parameter in which to return the message date/time in HL7 format.

 Use this call to create a message stub for the batch message and reserve a batch message id. If you are

 creating a batch of HL7 messages (more than one), your application processing routine should:

 1. Call INIT^HLFNC2 to initialize variables.

 2. Call CREATE^HLTF to create a message stub for the batch message.

 3. Create and store each message that will be in the batch (requires

 calls to INIT^HLFNC2 and MSH^HLFNC2).

 4. Transmit the completed batch message using GENERATE^HLMA.

 If you are sending only one HL7 message (i.e., you're not sending a batch message), don't call this entry

 point. For single messages, VISTA HL7 creates the MSH segment for you.

 Usage CREATE^HLTF(.HLMID,.MTIEN,.HLDT,.HLDT1)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10109

 NAME: HLTRANS

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: HLTRANS

 COMPONENT: EN

 VARIABLES: Sends a single HL7 message.

 Required input: HLMTN, HLSDATA local array (or ^TMP("HLS")), and all

 INIT^HLTRANS created variables.

 Optional input: HLSEC

 Output variables: HLERR, only if an error occurs.

 COMPONENT: EN1

 VARIABLES: Same as EN^HLTRANS, except no MSH is created.

 COMPONENT: INIT

 VARIABLES: Initializes basic variables for HL7 message creation.

 Required input: HLNDAP

 Output variables: HLDA, HLDAN, HLDAP, HLDT, HLDT1, HLECH, HLFS, HLNDAP,

 HLNDAP0, HLPID, HLQ, HLVER. HLERR if any error.

 HLNDAP reset to internal entry number if HLNDAP was

 originally an application name.

 COMPONENT: KILL

 VARIABLES: Kills all variables created by INIT^HLTRANS.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10110

 NAME: HL7 NON-DHCP APPLICATION PARAMETER

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 770 ROOT: HL(770,'B',

 DESCRIPTION: TYPE: File

 File 770 may be accessed only during package post initialization. The creation of new entries must be cleared through the HL7

 development team. New entries may be added with a call to FILE^DICN and a call to IX1^DIK.

 ^HL(770,'B'

 The "B" cross-reference may be checked. Pre-approved entries may be added to the file.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10136

 NAME: HL7 APPLICATION PARAMETER

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 771 ROOT: HL(771,

 DESCRIPTION: TYPE: File

 The creation of new entries must be cleared through Technical Integration by sending review materials to G.IAC@FORUM.VA.GOV.

 New entries may be exported using KIDS.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10137

 NAME: HL7 SEGMENT NAME FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 771.3 ROOT: HL(771.3,

 DESCRIPTION: TYPE: File

 File 771.3 may be accessed only during package post initialization. The creation of new entries must be cleared through the

 HL7 development team. New entries may be added with a call to FILE^DICN and a call to IX1^DIK.

 ^HL(771.3,'B'

 The "B" cross-reference may be checked. Pre-approved entries may be added to the file.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH LEVEL SEVEN
 ICR#: 10138

 NAME: HL7 TRANSMISSION FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 772 ROOT: HL(772,

 DESCRIPTION: TYPE: File

 Files 770, 771, and 771.3 may be accessed only during package post initialization. The creation of new entries must be

 cleared through the HL7 development team. New entries may be added with a call to FILE^DICN and a call to IX1^DIK.

 ^HL(772,D0,'IN',D1,

 200 INCOMING MESSAGE TEX IN;0 Read w/Fileman

 Applications may loop through this global to process incoming HL7 messages.

 Supported for read access only.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: HEALTH SUMMARY
 ICR#: 3487

 NAME: HEALTH SUMMARY COMPONENT FILE #142.1

 USAGE: Supported ENTERED: JAN 8,2002

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 142.1 ROOT: GMT(142.1,

 DESCRIPTION: TYPE: File

 ^GMT(142.1,

 .01 NAME 0;1 Read w/Fileman

 1 PRINT ROUTINE 0;2 Read w/Fileman

 2 TIME LIMITS APPLICAB 0;3 Read w/Fileman

 3 ABBREVIATION 0;4 Read w/Fileman

 4 MAXIMUM OCCURRENCES 0;5 Read w/Fileman

 5 DISABLE FLAG 0;6 Read w/Fileman

 6 LOCK 0;7 Read w/Fileman

 8 OUT OF ORDER MESSAGE 0;8 Read w/Fileman

 9 DEFAULT HEADER NAME 0;9 Read w/Fileman

 10 HOSPITAL LOCATION AP 0;10 Read w/Fileman

 11 ICD TEXT APPLICABLE 0;11 Read w/Fileman

 12 PROVIDER NARRATIVE A 0;12 Read w/Fileman

 13 PREFIX 0;13 Read w/Fileman

 14 CPT MODIFIER APPLICA 0;14 Read w/Fileman

 ^GMT(142.1,D0,.1,

 .01 EXTERNAL/EXTRACT ROU 0;1 Read w/Fileman

 ^GMT(142.1,D0,1,

 .01 SELECTION FILE 0;1 Read w/Fileman

 1 SELECTION COUNT LIMI 0;2 Read w/Fileman

 ^GMT(142.1,D0,3.5,

 .01 DESCRIPTION 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: IFCAP
 ICR#: 2005

 NAME: DBIA2005

SUBSCRIBING PACKAGE: INTEGRATED PATIENT FUNDS

 USAGE: Supported ENTERED: APR 15,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Integrated Funds of Patient routines PRPFPURG and PRPFSCV2 are invoking an IFCAP programming call ADD^PRCGPM1.

 ROUTINE: PRCGPM1

 COMPONENT: ADD(X,Y,Z)

 VARIABLES: X Type: Input

 Routine entry point (optional) and name to be executed by purgemaster in standard M format -

 entry point^routine name.

 Y Type: Input

 Variable string to be utilized by the routine called in X. Structure of variable is defined

 by developer of routine being executed. Typically this is a ^ delimited string.

 Z Type: Both

 Return variable - 1 if successful, 0 if unsuccessful in adding record to purgemaster.

 Parameter call to add new entry to purge master file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: IFCAP
 ICR#: 4151

 NAME: CoreFLS/Legacy Software Shut Down Status Check

 USAGE: Supported ENTERED: JUL 30,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 As the legacy software packages IFCAP, Engineering (AEMS/MERS) and Equipment/Turn-In Request are converted to Read-Only

 functionality, data conversions are started and then CoreFLS comes on-line for each site, a new PRCL LSSD SHUTDOWN STATUS

 parameter in VistA will be updated. The API described below will enable other packages to check its value, perhaps directing

 the flows their software execution on the basis of it. For example, the IFCAP interface partners might continue to use APIs

 to IFCAP code if IFCAP is fully functional and switch to use APIs to the Communications Service Library (CSL) code if CoreFLS

 is on-line.

 ROUTINE: PRCLOP4

 COMPONENT: SYS

 VARIABLES: Format of call: $$SYS^PRCLOP4. The returned value of the extrinsic function is one of the following codes:

 0 : SYSTEM IS ENABLED (IFCAP, Engineering, and Equipment/Turn-In Request are fully enabled.

 Read/Write/Delete)

 1 : SYSTEM IS SHUT DOWN (IFCAP, Engineering, and Equipment/Turn-In Request are Read-Only.)

 2 : COREFLS CONVERSION COMPLETE (IFCAP, Engineering, and Equipment/Turn-In Request are Read-Only and data

 conversions for CoreFLS implementation are completed.)

 3 : COREFLS ONLINE (IFCAP, Engineering, and Equipment/Turn-In Request are Read-Only and new business

 must be entered into CoreFLS.)

 The calling application should first check for the existence of this API before referencing it. For example:

 S X="PRCLOP4" X ^%ZOSF("TEST") I $T,$$SYS^PRCLOP4=3 MUMPS code

 This approach will enable calling applications to install changes to their software before the Legacy Software

 Shut Down patch PRC*5.1*65 is installed.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: IFCAP
 ICR#: 10085

 NAME: PRCPUSA

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES: JAN 1,1995

 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: PRCPUSA

 COMPONENT: PRCPUSA

 VARIABLES: PRCPUSA - UTILITY PROGRAM TO UPDATE INTERNAL USAGE HISTORY FROM VARIABLES

 THIS IS A UTLIITY PROGRAM THAT CAN BE CALLED BY ANY SYSTEM THAT WISHES TO USE THEIR OWN PROGRAMS FOR SOME

 FUNCTIONS THAT WOULD AFFECT THE INVENTORY LEVEL, BUT WISH TO USE THE GENERAL INVENTORY/DISTRIBUTION SYSTEM FOR

 OTHER INVENTORY FUNCTIONS.

 *** THE FOLLOWING VARIABLES ARE EXPECTED ***

 PRCP("I")=RECORD NUMBER OF THE INVENTORY POINT TO BE UPDATED (TOP LEVEL ON FILE 445)

 PRCP("ITEM")=POINTER TO ITEM MASTER FILE (441)

 PRCP("QTY")=QUANTITY TO AFFECT INVENTORY. NOTE: A PLUS QTY.WILL BE ADDED, A MINUS WILL BE SUBTRACTED.

 PRCP("TYP")=CODE INDICATING TYPE OF TRANSACTION

 'RC'=RECEIVING 'R'=NORMAL DISTRIBUTION 'C'=CALL-IN DISTRIBUTION 'U'=IN-HOUSE OR PATIENT USAGE 'A'=MANUAL

 ADJUSTMENT TO INVENTORY

 PRCP("COM")=THIS FIELD IS OPTIONAL. IF PROVIDED, IT IS A FREE TEXT COMMENT (1-80 CHAR.) EXPLAINING THE

 INVENTORY TRANSACTION.

 NOTE SUCCESSFUL UPDATE WILL KILL ALL 'PRCP' VARIABLES. UNSUCCESSFUL WILL LEAVE ALL VARIABLES AND ERROR

 MESSAGE IN 'X'.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INCOME VERIFICATION MATCH
 ICR#: 3297

 NAME: DBIA3297

 USAGE: Supported ENTERED: APR 21,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is being entered to request access to two IVM APIs by the Registration package. The Registration package is

 creating a GUI version of the Load/Edit Patient Data option. In this option a financial query will be sent if indicated, just

 as in the roll and scroll Load/Edit. The APIs called are NEED^IVMCQ and QUERY^IVMCQ1. They mirror the functionality

 performed by the roll and scroll Load/Edi in REQ^IVMCQ.

 ROUTINE: DGLEIVM

 COMPONENT: EN

 VARIABLES: DFN Type: Input

 This is the IEN from the Patient file (#2).

 RESULT Type: Output

 This array will return RESULT(0)="<RESULT>^1^FINANCIAL QUERY SENT" or S

 RESULT(0)="<RESULT>^1^A FINANCIAL QUERY IS NOT REQUIRED FOR THIS PATIENT" if successful, and

 RESULT(0)="<RESULT>^0^UNABLE TO PERFORM FINANCIAL QUERY", S RESULT(0)="<RESULT>^1^A FINANCIAL

 QUERY IS NOT REQUIRED FOR THIS PATIENT" or S RESULT(0)="<RESULT>^0^Patient Not on File" if

 not.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INPATIENT MEDICATIONS
 ICR#: 4537

 NAME: PSJ53P1

 USAGE: Supported ENTERED: SEP 21,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API shall be provided to return the ORDER NUMBER field (#.01), PROVIDER field (#1), MED ROUTE field (#3), SCHEDULE TYPE

 field (#7), START DATE/TIME field (#10), STOP DATE/TIME field (#25), SCHEDULE field (#26), STATUS field (#28), ORDERABLE ITEM

 field (#108), DOSAGE ORDERED field (#109) and all the Dispensed Drugs from the DISPENSED DRUG field (#2), for an entry from

 the NON-VERIFIED ORDERS (#53.1) File.

 ROUTINE: PSJ53P1

 COMPONENT: PSJ(PSJIEN,LIST)

 VARIABLES: PSJIEN Type: Input

 PSJIEN = IEN of NON-VERIFIED ORDERS file (#53.1). [REQUIRED]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 ~TMP Type: Output

 ^TMP($J,LIST,0)= 1 for successful return of data or -1^NO DATA FOUND

 ^TMP($J,LIST,ORDER NUMBER,.01)=ORDER NUMBER (53.1,.01)

 ^TMP($J,LIST,ORDER NUMBER,1)=PROVIDER (53.1,1 P)^NAME (200,.01)

 ^TMP($J,LIST,ORDER NUMBER,3)=MED ROUTE (53.1,3)^NAME (51.2,.01)

 ^TMP($J,LIST,ORDER NUMBER,7)=SCHEDULE TYPE (53.1,7)^ External Format for the Set of Codes

 ^TMP($J,LIST,ORDER NUMBER,10)=START DATE/TIME (53.1,10)^ External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,ORDER NUMBER,25)=STOP DATE/TIME (53.1,25)^ External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,ORDER NUMBER,26)=SCHEDULE (53.1,26)

 ^TMP($J,LIST,ORDER NUMBER,28)=STATUS (53.1,28)^ External Format for the Set of Codes

 ^TMP($J,LIST,ORDER NUMBER,108)=ORDERABLE ITEM (53.1,108)^NAME (50.7, .01)

 ^TMP($J,LIST,ORDER NUMBER,109)=DOSAGE ORDERED (53.1,109)

 ^TMP($J,LIST,ORDER NUMBER,"DDRUG",0)=Number of drugs returned or -1^NO DATA FOUND

 ^TMP($J,LIST,ORDER NUMBER,"DDRUG",Drug IEN,.01)=DISPENSE DRUG (53.11,.01)^GENERIC NAME

 (50,.01)

 ^TMP($J,LIST,ORDER NUMBER,"DDRUG",Drug IEN,.02)= UNITS PER DOSE (53.11,.02)

 ^TMP($J,LIST,"B",ORDER NUMBER)=""

 FORMAT: D PSJ^PSJ53P1(PSJIEN,LIST)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INPATIENT MEDICATIONS
 ICR#: 4819

 NAME: PSJ59P5

 USAGE: Supported ENTERED: OCT 31,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 59.5 ROOT: 59.5

 DESCRIPTION: TYPE: Routine

 This API shall be provided to return the NAME field (#.01), DIVISION field (#.02) and INACTIVATION DATE field (#19) from the

 IV ROOM file (#59.5) for the IEN or free text entry received.

 ROUTINE: PSJ59P5

 COMPONENT: ALL(PSJIEN,PSJTXT,LIST)

 VARIABLES: PSJIEN Type: Input

 PSJIEN = Internal Entry Number in IV ROOM file 59.5 [optional]

 PSJTXT Type: Input

 PSJTXT = Free text entry (a value of "??" may be used) [optional]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSJIEN,.01)=NAME (59.5,.01)

 ^TMP($J,LIST,PSJIEN,.02)= DIVISION (59.5,.02)^NAME(40.8,.01)

 ^TMP($J,LIST, PSJIEN,19)= INACTIVATION DATE (59.5,19)^External Format

 (ex: Sep. 12, 1999)

 ^TMP($J,LIST,"B",NAME,PSJIEN)=""

 COMPONENT: WRT(PSJIEN,PSJVAL,LIST)

 VARIABLES: PSJIEN Type: Input

 IEN of the IV ROOM file (59.5)[REQUIRED]

 PSJVAL Type: Input

 Division value [REQUIRED AND MUST BE THE POINTER VALUE]

 LIST Type: Input

 defined by the calling application [REQUIRED]

 ~TMP Type: Output

 ^TMP($J,LIST,PSJIEN,0)=0 for failure or 1 for success

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INPATIENT MEDICATIONS
 ICR#: 5001

 NAME: Pointing to the PHARMACY QUICK ORDER (#57.1) File

 USAGE: Supported ENTERED: JUN 5,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 57.1 ROOT: PS(57.1

 DESCRIPTION: TYPE: File

 This agreement allows for other applications to store a pointer to the Vista

 PHARMACY QUICK ORDER (#57.1) file. This number can be used as an Identification Number to retrieve data.

 ^PS(57.1

 .01 NAME 0;1 Pointed to

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE:
 INTEGRATED BILLING

 ICR#: 2034

 NAME: DBIA2034

 USAGE: Supported ENTERED: JUN 16,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This supported reference allows packages to retrieve Sponsor information which is associated with a patient. The sponsors are

 the people who are responsible for the patient's Tricare or CHAMPVA medical benefits coverage.

 ROUTINE: IBCNSU4

 COMPONENT: GET(DFN,.ARRAY)

 VARIABLES: DFN Type: Input

 This is a pointer to the patient in file #2.

 ARRAY Type: Output

 This array, passed into the routine by reference by the calling application, has the

 following structure:

 ARRAY = #, where # equals the number of relationships which

 the patient has with different sponsors.

 For each specific sponsor relationship, the following two

 array elements are returned:

 1. ARRAY(n,"REL") = 1^2^3^4^5, where

 n => sequential number for each relationship, begining with 1

 1 => The Sponsor name

 2 => The sponsor "family prefix." This is the DOD scheme for

 indicating the patient's relationship to the sponsor,

 where 01 indicates spouse, 02 indicates oldest child, 03

 indicates next oldest child, etc.

 3 => Sponsor Type (either TRICARE or CHAMPVA)

 4 => The effective date of the relationship, in FileMan format

 5 => The expiration date of the relationship, in FileMan format

 2. ARRAY(n,"SPON") = 1^2^3^4^5^6, where

 n => sequential number for each relationship, begining with 1

 1 => The Sponsor name

 2 => Sponsor date of birth, in external (displayable) format

 3 => Sponsor social security number, in external (including

 dashes) format

 4 => Sponsor's military status (either ACTIVE DUTY or RETIRED)

 5 => Sponsor Branch of Service (expanded value from entry in

 file #23)

 6 => Sponsor's Rank in Service (free-text value entered by user).

 This is the entry point invoked by the calling application to retrieve patient sponsor information. The output

 is returned in an array which is passed by reference by the calling application.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INTEGRATED BILLING
 ICR#: 3733

 NAME: GMT Related IB utilities (IA#3733)

SUBSCRIBING PACKAGE: ACCOUNTS RECEIVABLE

 The Accounts Receivable will use API call $$ISGMTBIL^IBAGMT(BILLNUM) for two purposes:

 - to prepare Patient's Statement for CCPC

 - to reprint Patient's Statement

 If the API call will return "true" for a bill, included to the Statement, the following message will be

 added to the Statement: "REDUCTION OF INPATIENT COPAYMENT DUE TO GEOGRAPHIC MEANS TEST STATUS"

 USAGE: Supported ENTERED: AUG 21,2002

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This IA provides one GMT-related API call from the IB Package to be used by the PRCA (Accounts Receivable) package.

 ROUTINE: IBAGMT

 COMPONENT: ISGMTBIL

 VARIABLES: BILLNUM Type: Input

 Bill number

 $$ISGMTBIL Type: Output

 The function returns Boolean value (0 or 1), indicating, whether

 the bill's amount was affected by the GMT Copayment status of the

 patient, or not.

 1 - The bill's amount was affected by the Patient's GMT Status

 0 - The bill's amount was not affected by GMT.

 The API call created to check, is the bill GMT-related.

 $$ISGMTBIL^IBAGMT(BILLNUM), where:

 BILLNUM (Input) - The number of AR bill (not IEN!)

 $$ISGMTBIL (Output) - The Boolean value (0 or 1), indicating, whether

 the bill's amount was affected by the GMT Copayment status of the

 patient, or not.

 1 - The bill's amount was affected by the Patient's GMT Status

 0 - The bill's amount was not affected by GMT.

 Comments: the input parameter is Bill Number, not Bill IEN, because the file #350 "INTEGRATED BILLING ACTION"

 stores (and supports Cross-Reference by) Bill Number - see file #350, field #.11 "AR BILL NUMBER".

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INTEGRATED BILLING
 ICR#: 4419

 NAME: DBIA4419

 USAGE: Supported ENTERED: MAY 7,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 IBBAPI is a new routine to return insurance data to calling VistA applications.

 ROUTINE: IBBAPI

 COMPONENT: $$INSUR(DFN,IBDT,IBSTAT,IBR,IBFLDS)

 VARIABLES: DFN Type: Input

 PATIENT IEN

 IBDT Type: Input

 DATE INSURED (optional - default is today's date)

 IBSTAT Type: Input

 INSURANCE STATUS FILTER (combinable based on groups below)

 Group 1

 A = Inactive included (Default is active only)

 Group 2

 R = Not reimbursable included (Default is reimbursable only)

 B = Indemnity included (Default is not included)

 Group 3

 P = Prescription coverage required (Default is all coverages)

 (Note: "E" and "P" are mutually exclusive)

 O = Outpatient coverage required (Default is all coverages)

 I = Inpatient coverage only (Default is all coverages)

 E = ePharmacy billable insurance plans only (Default is all coverages)

 (Note: "E" and "P" are mutually exclusive)

 IBR Type: Input

 Array to return insurance information - passed by reference

 IBFLDS Type: Input

 List of fields to return (1-24) in a comma separated list

 1 = Insurance Company Name

 2 = Insurance Company Street Address Line 1

 3 = Insurance Company City

 4 = Insurance Company State

 5 = Insurance Company Zip

 6 = Insurance Company Phone

 7 = Coordination of Benefits

 8 = Policy Name

 9 = Policy Reimbursable?

 10 = Policy Effective Date

 11 = Policy Expiration Date

 12 = Subscriber Relationship

 13 = Subscriber Name

 14 = Subscriber ID

 15 = Pharmacy Coverage?

 16 = Outpatient Coverage?

 17 = Inpatient Coverage?

 18 = Group Number

 19 = Patient Relationship to Subscriber

 20 = VA Advantage Plan Subscriber (future functionality)

 21 = Plan Type

 22 = Subscriber Sex

 23 = Insurance Company Street Address Line 2

 24 = Insurance Company Street Address Line 3

 $$INSUR Type: Output

 -1 = error occurred (error message passed back in IBR("IBBAPI","INSUR",

 "ERROR",x) where x is error number between 101 & 111

 0 = No insurance found based on parameters

 1 = Insurance found

 If no insurance information is found, then the IBR("IBBAPI","INSUR",y) array will not be

 generated.

 If no errors occur, insurance is found, and IBR is passed by reference, IBR will contain the

 insurance array requested in IBR("IBBAPI","INSUR",x,y) = field y data where 'x' is an

 incremental insurance company count (starting with 1) and 'y' is the field number requested.

 If an error occurs, the extrinsic function will return -1 and the error codes and messages

 will be returned in IBR("IBBAPI","INSUR","ERROR",error code) = error message if IBR is passed

 by reference.

 Return Patient Insurance Information

 COMPONENT: $$CIDC(DFN)

 VARIABLES: DFN Type: Input

 PATIENT IEN

 $$CIDC Type: Output

 Output is based on the patient's insurance and the switch values:

 1 = Ask CIDC questions for the specified patient

 0 = Don't ask CIDC questions for the specified patient

 The API will evaluate both a CIDC switch and the patient's insurance to determine if the CIDC questions should

 be asked.

 The switch will have three internal values:

 0 = Don't ask any patients

 1 = Ask for patients only with active billable insurance

 2 = Ask for all patients

 See output for the two possible return values.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INTEGRATED BILLING
 ICR#: 4663

 NAME: PFSS ON/OFF SWITCH

 USAGE: Supported ENTERED: MAY 23,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The function $$SWSTAT^IBBAPI provides the calling application with the status of the PFSS On/Off Switch. When the switch is

 "ON", the calling application should proceed with processing required to conform with PFSS functionality.

 ROUTINE: IBBAPI

 COMPONENT: $$SWSTAT

 VARIABLES: $$SWSTAT Type: Output

 <switch_status>^<effective_datetime> Where: <switch_status>

 0=OFF

 1=ON <effective_datetime>

 FileMan internal format; date and time.

 Date/time at which switch was set to current status.

 The SWSTAT entry point returns the current value of the MASTER SWITCH field (#1.01) of the PFSS SITE PARAMETERS

 file (#372), and the Effective Date/Time of the switch setting.

 Called as $$SWSTAT^IBBAPI().

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: INTEGRATED BILLING
 ICR#: 10147

 NAME: IBARXEU

 USAGE: Supported ENTERED: APR 12,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: IBARXEU

 COMPONENT: DISP(DFN,date,lns,act)

 VARIABLES: DFN Type: Input

 (required) the internal number of the patient in the patient file^

 date Type: Input

 (optional) the date the programmer is requesting exemption information for. The default is

 today.

 lns Type: Input

 Number of lines - (optional) The number of lines to print. A whole number value from 1-3.

 The lines are 1. the current exemption status, 2. the exemption reason, and 3 the date of the

 last test.

 act Type: Input

 Unknown Action (optional) - If the exemption status has never been determined the programmer

 can suppress any printing of information. This may be useful when displaying information of

 new patients.

 Output: - The lines are written to the current device.

 Example: - The following are example of how to use this call. D DISP^IBARXEU(DFN) ; write current exemption

 status D DISP^IBARXEU(DFN,date,2,1) ; write 2 lines of exemption status on specific date, if unknown, no

 display

 COMPONENT: RXST(DFN,date)

 VARIABLES: DFN Type: Input

 DFN - (required) the internal number of the patient in the patient file

 date Type: Input

 Date - (optional) the date the programmer is requesting exemption information for. The

 default is today.

 Output: 1. Piece 1 - the exemption status, 1 = exem|t, 0 = non-exempt| 2. Piece 2 - the standard text used

 when displayingthe exemption status. (i.e. EXEMPT or NON-EXEMPT) 3. Piece 3 - the exemption reason code 4.

 Piece 4 - the exemption reason text 5. Piece 5 - the date of the last income test.

 Example - This can be used in determining a patients exemption status and in writing messages.

 S X=$$RXST^IBARXEU(DFN,DT)

 W !,"Patient is ",$P(X,"^",2)," - ",$P(X,"^",4)

 D:+X NOCOPAY D:'+X COPAY

 Q

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1157

 NAME: XPDMENU

 USAGE: Supported ENTERED: MAR 8,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Extrinsic functions that can be used to manage the Menu field in the Options file. The ADD and DELETE functions are used to

 add and delete menu items for a given option.

 ROUTINE: XPDMENU

 COMPONENT: ADD

 VARIABLES: MENU Type: Input

 MENU is the name of the Option you want to add a menu item to.

 OPT Type: Input

 OPT is the name of the option you want to add to the menu item of MENU.

 SYN Type: Input

 SYN is the value you want added to the SYNONYM field under the MENU field for OPT.

 ORD Type: Input

 ORD is the value you want added to the DISPLAY ORDER field under the MENU field for OPT.

 ADD(MENU,OPT,SYN,ORD) is used to add an option to the Menu of another option. Return 1 if the function

 succeeded, 0 if it failed.

 COMPONENT: DELETE

 VARIABLES: MENU Type: Input

 MENU is the name of the Option you want to delete a menu item from.

 OPT Type: Input

 OPT is the name of the option you want to delete from the menu item of MENU.

 DELETE(MENU,OPT) is used to delete an option from the Menu field of another option. Return 1 if the function

 succeeded, 0 if it failed.

 COMPONENT: RENAME

 VARIABLES: OLD Type: Input

 OLD is the current name of the option.

 NEW Type: Input

 NEW is the name the option is being renamed to.

 RENAME(OLD,NEW) is used to rename an option.

 COMPONENT: LKOPT

 VARIABLES: X Type: Input

 X is the name of the option. The Option File IEN is returned.

 LKOPT(X) is used to lookup options IEN using the "B" cross reference.

 COMPONENT: OUT

 VARIABLES: OPT Type: Input

 OPT is the name of the Option you want to place Out-of-Order.

 TXT Type: Input

 TXT is the text that will be placed in the Out-of-Order field.

 OUT(OPT,TXT) is used to place an option Out of Order.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1340

 NAME: DBIA1340

 USAGE: Supported ENTERED: SEP 14,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 19.1 ROOT: DIC(19.1,

 DESCRIPTION: TYPE: File

 The Security Key file (#19.1) Name field (.01) can be pointed to. Standard utilities should be used for look-up.

 ^DIC(19.1,ifn,0)

 .01 NAME 0;1 Pointed to

 The .01 NAME field contains the security key name.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1367

 NAME: XPDKEY

 USAGE: Supported ENTERED: SEP 26,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Extrinsic functions that can be used to control the Security Key File.

 ROUTINE: XPDKEY

 COMPONENT: $$RENAME

 VARIABLES: oldname Type: Input

 Name of security key to be renamed.

 newname Type: Input

 New name for security key.

 value Type: Output

 return 1 if operation successful, 0 if operation failed.

 Usage: S value=$$RENAME^XPDKEY(oldname,newname) Use this entry point to rename a security key. All necessary

 indexing is performed to maintain the ^XUSEC global. The return value is 1 for OK, or 0 for failure.

 COMPONENT: $$LKUP

 VARIABLES: Usage: S value=$$LKUP^XPDKEY(key_value)

 This extrinsic function will lookup a Security Key by name or by IEN value. If called with a number it returns

 the name of the KEY. If called with a name it returns the IEN number of the KEY.

 COMPONENT: DEL

 VARIABLES: key_name Type: Input

 The name of the Security Key to delete.

 Usage: D DEL^XPDKEY(key_name)

 This call will delete a Security Key from the Security Key File. All necessary indexing is performed to

 maintain the ^XUSEC global. The KEY is removed from all holders in the NEW PERSON file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1472

 NAME: XUTMOPT Option scheduling interface

 USAGE: Supported ENTERED: JAN 23,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine holds several supported calls for access to the option scheduling file.

 ROUTINE: XUTMOPT

 COMPONENT: EDIT

 VARIABLES: option_nam Type: Input

 The name of the option from the option file that the user is to be allowed to edit.

 This entry point allows users to edit an option's scheduling in the OPTION SCHEDULING file (#19.2).

 Usage D EDIT^XUTMOPT(option_name)

 COMPONENT: DISP

 VARIABLES: option_nam Type: Input

 The name of the option from the option file that the taskman schedule is to be displayed.

 This entry point is used to display the schedule for an option.

 Usage D DISP^XUTMOPT(option_name)

 COMPONENT: RESCH

 VARIABLES: option_nam Type: Input

 Name of the option to be rescheduled.

 when_to_ru Type: Input

 (optional) The new scheduled time for the option to run.

 device_to_ Type: Input

 (optional) The device to use for the rescheduled option.

 re-schedul Type: Input

 (optional) The frequency to run the rescheduled option.

 flags Type: Input

 (optional) If the flag is set to an 'L' LAYGO a new entry if needed.

 error_arra Type: Both

 (optional) Pass by reference. Will be set to -1 if the option was not found.

 This entry point allows an application to set-up the schedule for an option.

 Usage D RESCH^XUTMOPT(option_name,when_to_run,device_to_use,

 re-schedule_freq,flags,error_array)

 COMPONENT: OPTSTAT

 VARIABLES: optionname Type: Input

 This is the name of the OPTION (.01 field of file 19) to return data on.

 ROOT Type: Both

 This variable is passed by reference and returns an array of data about the OPTION in

 question. Example: D OPTSTAT^XUTMOPT("OPTION NAME",.ROOT) Returns an array of data in ROOT

 (pass by ref) in the form. ROOT=count ROOT(1)=task number^scheduled time^reschedule

 freq^special queueing flag This is an array because the same task can be scheduled more that

 once.

 This entry point allows an application to find out when a option is scheduled and get other data.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1519

 NAME: XUTMDEVQ

 USAGE: Supported ENTERED: MAR 29,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The EN^XUTMDEVQ entry point encapsulates the logic to handle both direct printing and queueing in a single call.

 ROUTINE: XUTMDEVQ

 COMPONENT: EN

 VARIABLES: ztrtn Type: Input

 ztdesc Type: Input

 ztsave Type: Input

 %zis Type: Input

 EN^XUTMDEVQ(ztrtn, ztdesc, ztsave [, %zis])

 ztrtn The entry point EN^XUTMDEVQ will DO to start the job. Specify it

 is "LABEL^ROUTINE" or "^ROUTINE" or "ROUTINE"

 ztdesc Task description, up to 200 characters describing the task, with

 the package name at the front.

 ztsave This parameter is passed by reference. Set up this array in the

 same format as the ZTSAVE input array is set up for a ^%ZTLOAD

 taskman entry point.

 %zis (optional) Pass by reference or value. Any parts of the %ZIS

 variable that is to be used in the %ZIS call.

 See the Task Manager: Programmer Tool section of the Kernel manule for upto date information.

 COMPONENT: $$QQ(see description)

 VARIABLES: %RTN Type: Input

 required - [tag]^routine for the 1st job to be run (usually a search and build sorted data

 type process)

 %DESC Type: Input

 optional - ZTDESC value for 1st job (default [tag]~routine)

 %VAR1 Type: Input

 optional - ZTSAVE values for 1st job - see %VAR description

 %VOTH1 Type: Input

 optional - 1st job - see %VOTH description

 %ZIS Type: Input

 optional - see %ZIS description except for one difference

 - the 2nd job will be tasked to this device call

 exception: IF $D(%ZIS)=0 then default value is "MQ" and call

 device handler

 IF $D(%ZIS)=1,%ZIS="" then queue 2nd job also with

 ZTIO="" i.e., do not do device handler call

 IOP Type: Input

 optional - default value "Q" - if IOP is passed and IOP does not

 start with "Q;" then "Q;" will be added

 %WR Type: Input

 optional - if %WR>0 then write text to the screen as to

 whether or not the queueing was successful

 %RTN2 Type: Input

 required - [tag]^routine for the 2nd job to be run (usually a print job)

 %DESC2 Type: Input

 optional - ZTDESC value for 2nd job (default [tag]~routine)

 %VAR2 Type: Input

 optional - ZTSAVE values for 2nd job - see %VAR description if %VAR1 is not passed and

 $D(%VAR) then also send %VAR data to 2nd tasked job. If $D(%VAR1) then do not send %VAR data

 to 2nd tasked job.

 %VOTH2 Type: Input

 optional - 2nd job - see %VOTH description - usually not needed - note: if %VOTH1("ZTDTH") is

 passed it will be ignored as it is necessary to S ZTDTH="@" for the 2nd job - this will

 create the task but not schedule it.

 $$QQ Type: Output

 if successfully queued, return ztsk1^ztsk2 where ztsk1 = ZTSK value of 1st job, ztsk2 = ZTSK

 value of 2nd job

 QQ(%RTN,%DESC,%VAR1,%VOTH1,%ZIS,IOP,%WR,%RTN2,%DESC2,%VAR2,%VOTH2)

 double queuing - queue up the second routine to device, but do not

 schedule the task in TaskMan

 queue up the first job to ZTIO="" and schedule it

 The first set of variables are for the first job (the sort) and the second set of variables is for the print

 job.

 Q. Does it ask the user for the device?

 A. Yes and No - it depends upon the value of .%ZIS that you pass in

 Q. The first task would write the data to a temp global, and the second task would read from that global and

 write to the device, right? The global can't be ^TMP($J, can it? It has to be ^XTMP?

 A. The first task is normally some kind of sort and usually creates a sorted array (local or global) that the

 second routine will need. If it is global, then as you noted, it must be in a translatable global. For

 scratch globals, that is ^XTMP(namespace). Obviously, you need to pass that global reference to the first

 routine somehow. You can decided at the beginning was the temp storage root will be and pass that name of the

 root global to the save local variables for the first task. Of course, you could have a specific node in ^XTMP

 just for this one function and hard code its reference in both the 1st and second jobs.

 Q. Taskman schedules the second task to start when the first one finishes?

 A. It is the responsibility of the 1st job to reschedule the second task. That is why $$QQ returns both task

 numbers. That value needs to be passed to the 1st routine so that it knows what the task number of the second

 job is. Then the last thing that the 1st job normally would do is to reschedule the second task by calling

 REQ^%ZTLOAD. Notice that in REQ^%ZTLOAD you can also pass it ZTSAVE(). Thus if you need to pass some local

 variable values to the second job, you can do so. For example, if you had a process where you did not know

 what the subscripts of the temporary global would be. The first job got its temproary global root. Then when

 REQ^%ZTLOAD is called, you could pass ROOT to the second job. Thus it is not absolutely mandatory that you

 decide on a specific temporary global location at the time when both the first and second job are initially

 queued. Another way you can use this is to have your totals stored in TOT(). Of course you could move that

 information to the temp global. But with REQ^%ZTLOAD, you can pass the TOT array to the second job. For

 example if your sorted data is not very large and it contains summary data only and if that data can fit in the

 local partition then there is no reason to store the data in a temporary global array. Just put it in a local

 global array and pass that information to REQ^%ZTLOAD.

 Remember how double queuing usually works. We have asked the user for a device to output the results. So,

 normally, all the IO* variables are set for that output device. To double queue, you need to call Taskman

 first to schedule the print job (ie. the second job). Taskman uses the IO* variables to set everything up.

 You also pass in ZTDTH="@" as this tells Taskman to create the task but do not schedule it. Then I would

 normally call ^%ZISC to close the device and reset the IO* variables. Then I would queue up the first job

 (sort job) with ZTIO="" which tells Taskman to queue the job to no device. Thus, you do not have to worry did

 you set up ZTIO properly when calling Taskman. Now that you have $$QQ, there are very few situations where

 programmers need to do all these calls and setups. Just call $$QQ API and it is all done for you.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1557

 NAME: E-SIG API'S

 USAGE: Supported ENTERED: JUL 3,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This is the list of supported references to the E-SIG facility.

 ROUTINE: XUSESIG1

 COMPONENT: CHKSUM

 VARIABLES: name_value Type: Input

 This is a global root as would be returned from $NAME.

 flag Type: Input

 Not used at this time.

 $$CHKSUM^XUSESIG1($name_value,flag) This would take a root ($name_value) and build a checksum for all data in

 the root. (Not used now, flag would be used when there is more that one checksum algorithm.)

 COMPONENT: ESBLOCK

 VARIABLES: ien Type: Input

 Optional. The default is to use the DUZ of the current user. This is the IEN of the new

 person file entry to return data for.

 $$ESBLOCK^XUSESIG1(ien) This extrinsic function would return the set of fields from the new person file that

 are need as part of the hash for a acceptable E-Sig. If IEN is not passed in then DUZ is used. (E-Sig block,

 E-Sig title, Degree, Current Date/Time)

 COMPONENT: EN

 VARIABLES: checksum Type: Input

 A number that will reveil if the data in the root has been changed.

 esblock Type: Input

 Optional. This should be the data returned from the $$ESBLOCK^XUSESIG1 call.

 $$EN^XUSESIG1(checksum,esblock) If the ESBLOCK is not passed then the function would get the ESBLOCK. In either

 case it would encode the ESBLOCK using the checksum as the KEY. Return a encoded string.

 COMPONENT: CMP

 VARIABLES: checksum Type: Input

 The output from the $$CHKSUM^XUSESIG1 call.

 name_value Type: Input

 This is a global root as would be returned from $NAME.

 $$CMP^XUSESIG1(checksum,$name_value) The extrinsic function would compare the checksum passed in to the

 calculated value from the $NAME_VALUE. Return 1 for match, 0 for no match.

 COMPONENT: DE

 VARIABLES: checksum Type: Input

 The output from the $$CHKSUM^XUSESIG1 call.

 encoded_st Type: Input

 The output from the $$EN^XUSESIG1 call.

 $$DE^XUSESIG1(checksum,encoded_string) This extrinsic function would decode the string using the checksum as

 the key. Return a decoded string.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1621

 NAME: %ZTER (ERROR RECORDING)

 USAGE: Supported ENTERED: OCT 4,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This IA is to document the supported calls into the %ZTER routine in support of standard error trapping.

 ROUTINE: %ZTER

 COMPONENT: $$NEWERR

 VARIABLES: This is an extrinsic function to report if the current platform supports the new standard error trapping. It

 always returns 1.

 All current VA systems support the new error trapping standard. The SACC has being changed to allow the use of

 $ESTACK, $ETRAP, $ECODE There are still inconsistency when mixing the old and new error trapping.

 To set a new trap:

 N $ESTACK,$ETRAP S $ETRAP="D ERROR^XXX" or

 N $ESTACK,$ETRAP S $ETRAP="S $EC="""" Q -1"

 These are still valid. Usage to set new trap:

 N $ESTACK,$ETRAP S $ETRAP="D ERROR^XXX"

 Usage to set old style trap:

 N $ESTACK,$ETRAP S $ETRAP=""

 S X="ERROR^YYY",@^%ZOSF("TRAP")

 The vendors differ in how they support the mixing of old and new forms of error trapping. A common way is to

 look at the current stack frame and, if it finds the old form, it uses that; otherwise it looks for the new

 style. This gives the old style a local scope of the current stack level.

 COMPONENT: UNWIND

 VARIABLES: This entry point is used after a package error trap to quit back to the calling routine. Control returns to the

 level above the one that NEWED $ESTACK.

 MAIN S X=1 D SUB

 W X

 Q SUB N $ESTACK,$ETRAP S $ETRAP="D ERROR"

 S X=1/0

 Q

 Usage: ERROR D ^%ZTER ;This will record the error info and clear $ECODE

 S ^XXX="Incomplete record"

 G UNWIND^%ZTER

 COMPONENT: %ZTER

 VARIABLES: %ZT Type: Input

 (optional) The %ZT array can be used to identify a global node whose descendents should be

 recorded in the error log. When called within the standard Kernel error trap, %ZT is set to

 record the user's location in the menu system.

 >S %ZT("^TMP($J)")=""

 >D ^%ZTER

 This routine can be called from the top DO ^%ZTER to record the variables at the current time into the error

 trap. This will clear $ZE and $ECODE.

 COMPONENT: APPERROR

 VARIABLES: %ZT Type: Input

 The same as calling %ZTER.

 This entry will point allow developers to pass-in the error message that will be displayed in the error trap

 listing.

 Usage: D APPERROR^%ZTER("My App Error")

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1625

 NAME: PERSON CLASS API'S

 USAGE: Supported ENTERED: NOV 7,1996

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Based on a multiple in the NEW PERSON file (#200) which contains entries that reflect the assignement of HCFA taxonomy to

 providers, these APIs provide data for a given NEW PERSON file entry on HCFA code, profession, specialty, and subspecialty.

 ROUTINE: XUA4A72

 COMPONENT: $$GET(DUZ[,DATE])

 VARIABLES: DUZ Type: Input

 Internal entry number for the Person being checked in the New Person file.

 DATE Type: Input

 Date in internal FileMan format, to indicate effective date for determination.

 Returns the "IEN^Profession^Specialty^Sub-specialty^Effect date^Expired date^VA code" for the person identified

 by the DUZ in effect on the date passed in, in internal FileMan format, (TODAY if no date passed in). Returns

 -1 if DUZ doesn't point to a valid user or user has never had a Person Class assigned. Returns -2 if no active

 Person Class on that date.

 COMPONENT: $$IEN2CODE(IEN)

 VARIABLES: Returns the VA CODE from the PERSON CLASS file that corresponds to the IEN number passed in. If the IEN passed

 in does not match a valid entry in file 8932.1, an empty string is returned

 COMPONENT: $$CODE2TXT(IEN or Vcode)

 VARIABLES: IEN or Vco Type: Input

 Pass in either the IEN or the VA Vcode for the text that should be returned.

 $$CODE2TXT Type: Output

 Text for the code.

 This extrinsic function returns the three parts of the HCFA text from the person class file based on passing in

 the IEN or the VA's Vcode.

 COMPONENT: $$IEN2DATA(IEN or Vcode)

 VARIABLES: $$IEN2DATA Type: Output

 Person class data for an IEN

 IEN Type: Input

 IEN to file 200

 COMPONENT: $$VCLK(X)

 VARIABLES: X Type: Input

 Vcode

 $$VCLK Type: Output

 IEN to file 200

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 1632

 NAME: XUS SIGNON SETUP

 USAGE: Supported ENTERED: JUN 29,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC can be used to check if a user has a given security key.

 Establishes environment necessary for DHCP sign-on

 ROUTINE: SETUP XUSRB

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2067

 NAME: UPDATE PACKAGE APPLICATION HISTORY

 USAGE: Supported ENTERED: JUL 22,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This function can be used during the Pre or Post Install routine to update the PATCH APPLICATION HISTORY of the VERSION

 multiple in the PACKAGE file.

 ROUTINE: XPDIP

 COMPONENT: $$PKGPAT(package ien, version, .X)

 VARIABLES: package ie Type: Input

 PACKAGE file entry ien.

 version Type: Input

 This is the version number, must contain a decimal. i.e. 8.0

 ARRAY Type: Input

 ARRAY needs to be passed by reference if you want to update the DESCRIPTION field in the

 PATCH APPLICATION HISTORY multiple.

 ARRAY = patch number^date installed^installed by

 patch number = number SEQ#number, i.e. 51 SEQ #32 date installed = Fileman format, use DT

 installed by = user ien, use DUZ

 ARRAY(1) = closed global root of location of Description

 i.e. ^XTMP($J,""WP"")

 $$PKGPAT Type: Output

 version ien^patch ien

 Update the PATCH APPLICATION HISTORY of the VERSION multiple in the PACKAGE file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2118

 NAME: DBIA2118

 USAGE: Supported ENTERED: SEP 5,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine is part of the Kernel Device handler. It is used for making TCP/IP connection between computers. It only deals

 with IP address.

 ROUTINE: %ZISTCP

 COMPONENT: CALL(IPaddress,Socket [,Timeout])

 VARIABLES: IPaddress Type: Input

 This first parameter is the IP address of the host system to connect to. It must be in the

 IP format of 4 numbers separated by dots. i.e. 152.128.1.25

 Socket Type: Input

 This second parameter is the socket to connect to on the remote host. It is a integer from

 1-65535. Values below 5000 are for standard internet services like SMTP mail.

 Timeout Type: Input

 This optional third parameter is the timeout to apply to the open.

 IO Type: Output

 If the connection is made then IO will hold the implemention value that is used to reference

 the connection.

 POP Type: Output

 This variable reports the connection status. A value of 0 means the connection was

 successful. A positive value means the connection failed. It works the same as a call to

 %ZIS.

 This entry point is used to make a TCP/IP connection to a remote system.

 COMPONENT: CLOSE

 VARIABLES: IO Type: Both

 This hold the connection to close. It gets reset to the home device for the process.

 This call is used to close the connection opened with the CALL entry point. It works like a call to %ZISC.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2119

 NAME: DBIA2119

 USAGE: Supported ENTERED: SEP 5,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Access to some device handler tools.

 ROUTINE: %ZISUTL

 COMPONENT: OPEN(handle [,valiop] [,.valzis])

 VARIABLES: handle Type: Input

 A unique free text name to associate with a device you want to open.

 valiop Type: Input

 Output device specification, in the same format as the IOP input variable for the %ZIS entry

 point. The one execption to this is passing a value of null: this is like leaving IOP

 undefined. With %ZIS, on the other hand, setting IOP to null specifies the home device. To

 request the home device, pass a value of "HOME" instead.

 valzis Type: Input

 (optional) Input specification array, in the same format (and with the same meanings) as the

 %ZIS input specification array for the ^%ZIS entry point. Must be passed by reference. Please

 see the documentation of the ^%ZIS function for more information.

 One of three functions that support using multiple devices at the same time. OPEN^%ZISUTL returns all the same

 output variables as the ^%ZIS entry point. OPEN^%ZISUTL serves as a "wrapper" arount the ^%ZIS entry point,

 providing additional management of IO variables that ^%ZIS does not (principally to support opening multiple

 devices simultaneously).

 COMPONENT: CLOSE(handle)

 VARIABLES: handle Type: Input

 The handle of a device opened with an OPEN^%ZISUTL call.

 Use the CLOSE^%ZISUTL to close a device opened with the OPEN^%ZISUTL function. When you close a device with

 CLOSE^%ZISUTL, the IO variables are set back to the home device's and the home device is made the current

 device.

 COMPONENT: SAVDEV(handle)

 VARIABLES: handle Type: Input

 A unique free text name to associate with a device you want to use.

 IO* Type: Both

 The standard set of IO variables.

 Use SAVDEV^%ZISUTL to save the current device IO* variables under the handle name.

 COMPONENT: RMDEV(handle)

 VARIABLES: handle Type: Input

 A unique free text name to associate with a device you want to delete.

 This call deletes the data associated with the handle. It doesn't change any of the IO* variables.

 COMPONENT: USE(handle)

 VARIABLES: IO* Type: Output

 Standard IO variables.

 Use the USE^%ZISUTL to restore the variables save with OPEN^%ZISUTL or SAVDEV^%ZISUTL. It then does a USE of

 the device if it is open. The same a a DO USE^%ZISUTL(handle) U IO.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2171

 NAME: DBIA2171

 USAGE: Supported ENTERED: OCT 7,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Function API's to access parts of the Institution file. This DBIA documents some entry point for accessing the Institution

 file that were requested by the CIRN developers or implemented by the IFR project.

 ROUTINE: XUAF4

 COMPONENT: PARENT

 VARIABLES: array Type: Both

 As a input it is the $NAME reference for the Array name you want results back in.

 As output it holds - array("p",ien)=station name ^ station number

 Note: with the business rule that institutions can only have one parent per type, if you

 specific the input variable type - you will get an array that will only have one pien in it.

 If the type variable is left blank, find all parents for the institution and list then in the

 array.

 lookup Type: Input

 Lookup value - either ien, station number, station name. If IEN it will

 have the ` in front of it.

 type Type: Input

 Type (optional) - type of institution from file 4.05 (in cirn case it is = visn)

 PARENT^XUAF4(array,lookup[,type]) for a specified institution who is its VISN or parent.

 COMPONENT: SIBLING

 VARIABLES: array Type: Both

 As a input it is the $NAME reference for the Array name you want results back in.

 As the output array("p",pien,"c",cien)=station name ^ station number

 Note: with the business rule that institution can only have one parent per type, if you

 specific the input variable type - you will get an array that will only have one pien in it.

 If the type variable is left blank, find all parents for the institution and list then in the

 array. Also, the input site is included in the list

 child Type: Input

 Lookup value - either ien, station number, station name. If IEN it will have the ` in front

 of it.

 type Type: Input

 Type (optional) - type of institution from file 4.05 (in cirn case it is = visn)

 SIBLING^XUAF4(array,child [,type]) - all institutions in a specified institutions visn.

 COMPONENT: CHILDREN

 VARIABLES: array Type: Both

 Array - As a input it is the $NAME reference for the Array name you want results back in.

 Output Variable array ("c" , ien)=station name ^ station number

 parent Type: Input

 Parent - Lookup value either ien, station number, station name. If IEN it will have the ` in

 front of it.

 CHILDREN^XUAF4(array,parent) - for a specified VISN return a list of all institutions that make up the VISN.

 COMPONENT: $$NNT

 VARIABLES: ien Type: Input

 ien is the pointer value to file 4.

 $$NNT^XUAF4(ien) - This will return the "station name ^ station number ^ station type"

 COMPONENT: $$CIRN

 VARIABLES: inst Type: Input

 inst - Lookup value either ien, station number, station name. If IEN it will have the ` in

 front of it.

 value Type: Input

 value - (optional) Restricted to use by CIRN. This allows the setting of the field to a new

 value.

 $$CIRN^XUAF4(inst [,value]) - This function returns the value of the CIRN enabled field from the institution

 file.

 COMPONENT: $$LKUP

 VARIABLES: inst Type: Input

 inst - Lookup value either ien, station number, station name. If IEN it will have the ` in

 front of it.

 $$LKUP^XUAF4(inst) - This function does a lookup on the Institution file and returns the IEN OR 0.

 COMPONENT: $$NS

 VARIABLES: IEN Type: Input

 The internal entry number for the institution that is requested.

 This extrinsic function returns a string with the institution name a "^" and the institution station number.

 The input is a valid IEN for the institution.

 COMPONENT: $$WHAT

 VARIABLES: ien Type: Input

 ien is the pointer value to file 4.

 field Type: Input

 "field" is a single valued field in the file. Controls what data is returned.

 This entry point returns the data from one field in the institution file.

 COMPONENT: $$IEN

 VARIABLES: STA Type: Input

 Station number (required)

 $$IEN^XUAF4(STA) - This function returns the Internal Entry Number (IEN) of the entry for a given STATION

 NUMBER (#99) in the INSTITUTION (#4) file.

 COMPONENT: $$STA

 VARIABLES: IEN Type: Input

 Internal Entry Number (required)

 $$STA^XUAF4(IEN) - This function returns the STATION NUMBER (#99) of the INSTITUTION (#4) file entry for a

 given Internal Entry Number (IEN).

 This entry point will be available after patch XU*8*126.

 COMPONENT: $$TF

 VARIABLES: IEN Type: Input

 Internal Entry Number (required)

 Type:

 This function returns the truth-value to the question is this an active treating medical facility?

 COMPONENT: $$O99

 VARIABLES: IEN Type: Input

 The Internal Entry Number of the INSTITUTION (#4) file entry whose STATION NUMBER (#99) was

 deleted.

 IEN Type: Output

 The Internal Entry Number of the INSTITUTION (#4) file entry with a valid STATION NUMBER

 (#99) -- the station number deleted from the input IEN during the clean up process with patch

 XU*8.0*126.

 $$O99^XUAF4(IEN) - This function returns the Internal Entry Number of the valid INSTITUTION (#4) file entry

 with station number that this entry (input IEN) was merged with during the clean up. This function may be used

 by application developers to re-point their INSTITUTION (#4) file references to a valid entry complete with

 station number.

 COMPONENT: F4

 VARIABLES: STA Type: Input

 Station number (required)

 ARRAY Type: Input

 The array for return values (required).

 FLAG Type: Input

 A = Active entries only (optional) M = Medical treating facilities only

 DATE Type: Input

 Return name on this FM internal date (optional)

 ARRAY Type: Output

 ARRAY=IEN or '0^error message' ARRAY("NAME")=name ARRAY("VA NAME")=official VA name

 ARRAY("STATION NUMBER")=station number ARRAY("TYPE")=facility type name

 ARRAY("INACTIVE")=inactive FM internal date (0=not inactive) Note: if inactive date not

 available then 1 ARRAY("REALIGNED TO")='IEN^station number^date' ARRAY("REALIGNED

 FROM")='IEN^station number^date' ARRAY("MERGE",IEN)=merged records

 F4^XUFA4(STA,ARRAY,FLAG,DATE) - This API returns the INSTITUTION (#4) file Internal Entry Number and other

 data, including historical, for a given station number.

 COMPONENT: $$LEGACY

 VARIABLES: STA Type: Input

 Station Number in question.

 This function returns the truth value for a station number. Has this station number been realigned? (Is it a

 legacy station number.)

 COMPONENT: $$NAME

 VARIABLES: IEN Type: Input

 Internal Entry Number

 This function returns the OFFICIAL NAME (#100) of an Institution given its Internal Entry Number. If field

 #100 is null, the #.01 field is returned.

 COMPONENT: $$ACTIVE

 VARIABLES: IEN Type: Input

 Internal Entry Number

 This function returns the truth value for the question -- is this an active facility? (The INACTIVE FACILITY

 FLAG #101 not set.)

 COMPONENT: $$PADD

 VARIABLES: IEN Type: Input

 Internal Entry Number

 This function returns the physcial address information for an Institution in an up-arrow delimited string

 (street addr^city^state^zip) for a given Internal Entry Number.

 COMPONENT: $$MADD

 VARIABLES: IEN Type: Input

 Internal Entry Number

 This function returns the mailing address information for an Institution in an up-arrow delimited string

 (street addr^city^state^zip) for a given Internal Entry Number.

 COMPONENT: $$PRNT

 VARIABLES: STA Type: Input

 STA is station number of the child facility.

 This function returns the string "IEN^station_number^name" of the parent facility of a given child facility

 station number.

 COMPONENT: LOOKUP

 VARIABLES: Y Type: Output

 See FileMan IX^DIC documentation.

 This utility prompts a user for a coding system and then prompts for an identifier -- its an IX^DIC call on a

 new style cross-reference of the ID (#.02) field of the IDENTIFIER (#9999) multiple of the INSTITUTION (#4)

 file.

 COMPONENT: $$IDX

 VARIABLES: CDSYS Type: Input

 CDSYS is an existing CODING SYSTEM (#.01) in the INDENTIFIER (#9999) multiple of the

 INSTITUTION (#4) file. D CDSYS^XUAF4(.Y) to see existing coding systems in the file.

 ID Type: Input

 ID is the ID (#.02) in the INDENTIFIER (#9999) multiple of the INSTITUTION (#4) that

 corresponds to the coding system you input as the first parameter.

 $$ Type: Output

 Internal Entry Number

 This function returns the Internal Entry Number of an Institution file entry for a given coding sytem / ID

 pair.

 COMPONENT: CDSYS

 VARIABLES: Y Type: Both

 Y -- pass by reference returns Y(coding_system) = $D_of_local_system ^ coding_system name

 COMPONENT: $$ID

 VARIABLES: CDSYS Type: Input

 CDSYS is an existing CODING SYSTEM (#.01) in the INDENTIFIER (#9999) multiple of the

 INSTITUTION (#4) file. D CDSYS^XUAF4(.Y) to see existing coding systems in the file.

 IEN Type: Input

 Internal Entry Number

 $$ID Type: Output

 The ID (identifier) that is associated with the given coding system / IEN.

 This function returns the ID of an Institution file entry for a given coding system / IEN.

 COMPONENT: $$BNSTA

 VARIABLES: STA Type: Input

 Station Number

 This function returns the billing facility name for a given station number.

 COMPONENT: $$BNIEN

 VARIABLES: IEN Type: Input

 Internal Entry Number

 This function returns the billing facility name for a given IEN.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2172

 NAME: DBIA2172

 USAGE: Supported ENTERED: OCT 8,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The routine XPDID contains calls to support the Kernel Installation and Distribution System. All of the calls can only be

 used in the context of the KIDS software.

 INIT

 This tag initializes the screen and draws the borders for the box and

 draws the progress bar. It also creates a scrolling region in the box.

 INPUT: none

 OUTPUT: XPDIDVT=1 if output device supports graphics, =0 if not

 TITLE(text)

 This tag displays the text as a title at the top of the box.

 INPUT: text

 OUTPUT: none

 EXIT(text)

 This tag restore the screen to normal, cleans up all variables, and

 displays the text.

 INPUT: text

 OUTPUT: none

 UPDATE(current number of items)

 This tag updates the progress bar to show the percentage complete of the

 installation.

 INPUT: current number of items

 XPDIDTOT = total number of items

 For example, if you are converting 100 records and want to update the user every time you have completed 10% of the records

 you would do the following:

 Set XPDIDTOT=100

 F%=1:1:100 D CONVERT I'(%#10) D UPDATE^XPDID(%)

 ROUTINE: XPDID

 COMPONENT: UPDATE(N)

 VARIABLES: XPDIDTOT Type: Input

 This is the total number of items that is being updated.

 N Type: Input

 The current number of items being updated.

 Update the progress bar by N, current number of items.

 COMPONENT: TITLE(X)

 VARIABLES: X Type: Input

 This is the text you want to display

 Display the text, X, as a title at the top of the box.

 COMPONENT: INIT

 VARIABLES: Initializes the device and draws the borders for the box and draws the progress bar.

 COMPONENT: EXIT(X)

 VARIABLES: X Type: Input

 Text to display on screen after removing box and progress bar.

 Restores the screen to normal, cleans up all variables, and displays the text in the variable X.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2232

 NAME: Resource Device

 USAGE: Supported ENTERED: NOV 5,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This IA describes some API's to support Resource devices.

 ROUTINE: XUDHSET

 COMPONENT: RES

 VARIABLES: $$RES^XUDHSET(device_name,resource_name,slot_count,description,subtype)

 device_name For the resource device.

 resource_name (optional) The resource name if not the same as the

 device name.

 slot_count The number of concurrent jobs that can use this

 device. defaults to 1.

 description The device description, defaults to 'Resource

 Device'.

 subtype The subtype to use, defaults to P-OTHER.

 returns If an error '-1^text'

 The 'IEN^device name' like a DIC call.

 This call is used to setup a Resource device.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2240

 NAME: ENCRYPTING -- CLIENT/SERVER

 USAGE: Supported ENTERED: NOV 19,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Kernel and the RPC Broker provide encryption functions that can be used to encrypt messages sent between the client and the

 server.

 This function encrypts a string before transport to a Client system, where it will be decrypted.

 ROUTINE: XUSRB1

 COMPONENT: $$ENCRYP(STRING)

 VARIABLES: STRING Type: Input

 The string that needs to be encrypted.

 Function performs encryption on the input string, returning the encrypted string.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2241

 NAME: DECRYPTING -- CLIENT/SERVER

 USAGE: Supported ENTERED: NOV 19,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Kernel and the RPC Broker provide encryption functions that can be used to encrypt messages sent between the client and the

 server.

 This function decrypts a string that was encrypted on a Client system.

 ROUTINE: XUSRB1

 COMPONENT: $$DECRYP(ENCRIPTED_STRING)

 VARIABLES: ENCRYPTED_ Type: Input

 Function decrypts a string that has been encrypted using the Encrypt Delphi function supplied by Broker,

 returning the decrypted string.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2320

 NAME: DBIA2320

 USAGE: Supported ENTERED: FEB 9,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The %ZISH calls described in the KERNEL SYSTEM Manual. This is a set of calls to work with Host files of the underlaying

 system.

 ROUTINE: %ZISH

 COMPONENT: CLOSE

 VARIABLES: Close host file opened by OPEN^%ZISH.

 COMPONENT: $$DEL

 VARIABLES: Delete host file.

 COMPONENT: $$FTG

 VARIABLES: Copy lines from a host file into a global.

 COMPONENT: $$GATF

 VARIABLES: Append records from a global to a host file.

 COMPONENT: $$GTF

 VARIABLES: Copy records from a global into a host file.

 COMPONENT: $$LIST

 VARIABLES: Retrieve a list of files in a directory.

 COMPONENT: $$MV

 VARIABLES: Rename host file.

 COMPONENT: OPEN

 VARIABLES: Open host file (bypass device handler).

 COMPONENT: $$PWD

 VARIABLES: Retrieve name of current directory.

 COMPONENT: $$STATUS

 VARIABLES: Return end-of-file status.

 COMPONENT: $$DEFDIR[(df)]

 VARIABLES: df Type: Input

 This is a directory path to be do a simple format check on. For NT it will change "/" to "\"

 and see that there is a trailing "\". There is no error response.

 $$DEFDIR Type: Output

 This api has two modes. If it is called with a null/missing parameter, it returns the "default directory for

 HFS files" from the KSP file (8989.3). If it is called with a parameter, it must be the directory for a file.

 This parameter will be check to see that it is in the correct format for this operating system.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2343

 NAME: DBIA2343

 USAGE: Supported ENTERED: MAR 10,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The routine XUSER has supported entry points to lookup a user and to check if a user is active, and also to return a user's

 full name. Also a CPRS check for provider.

 ROUTINE: XUSER

 COMPONENT: $$LOOKUP

 VARIABLES: $$LOOKUP Type: Output

 The return is in the same format as a call to DIC. IEN^NAME

 Usage S LRDOC=$$LOOKUP^XUSER("") This extrinsic function will do a lookup on the NEW PERSON file screening out

 uses that are TERMINATED. By default the call will ask if the correct user was selected. ie: Select NEW PERSON

 NAME: FORT,WALLY

 Is FORT,WALLY the one you want? YES//

 If the parameter is set to "Q" then this extra question is suppressed.

 The return is in the same format as a call to DIC. IEN^NAME Adding new entry's isn't allowed.

 COMPONENT: $$ACTIVE

 VARIABLES: IEN Type: Input

 This is the IEN for the entry to be checked.

 $$ACTIVE Type: Output

 "" No user record.

 0 User can't sign-on.

 0^DISUSER User can't sign-on because of DISUSER flag.

 0^TERMINATED^2980310 User terminated on date.

 1^NEW A new user, could sign-on.

 1^ACTIVE^2980310.09 An active user, last sign-on date.

 Usage S X=$$ACTIVE^XUSER(ien) Parameter: pointer to the NEW PERSON file.

 It returns the following codes:

 "" No user record.

 0 User can't sign-on.

 0^DISUSER User can't sign-on because of DISUSER flag.

 0^TERMINATED^2980310 User terminated on date.

 1^NEW A new user, could sign-on.

 1^ACTIVE^2980310.09 An active user, last sign-on date.

 COMPONENT: $$PROVIDER

 VARIABLES: IEN Type: Input

 This is the IEN for the entry to be checked.

 $$PROVIDER Type: Output

 "" No user record.

 "0^TERMINATED^2980310" User terminated on date.

 "1" Has a record and no termination date.

 This entry point was added for CPRS. The definition of a provider is any entry in the new person file that

 doesn't have a termination date. A second parameter could be added to invoke other checks.

 Usage S X=$$PROVIDER^XUSER(ien) Parameter: pointer to the NEW PERSON file.

 It returns the following codes:

 "" No user record.

 "0^TERMINATED^2980310" User terminated on date.

 "1" Has a record and no termination date.

 COMPONENT: $$DEA(flag)

 VARIABLES: $$DEA Type: Output

 DEA# DEA# field (#53.2) value or the value returned based on the

 (optional) FLAG input parameter, see "Input Parameter" above.

 Example 1

 DEA# (#53.2) field is "AB1234567"

 FACILITY DEA NUMBER field (#52) is "VA7654321"

 VA# field (#53.3) is "789"

 If the FLAG input parameter is null or "0", this API would return

 "AB1234567".

 If the FLAG input parameter is "1", this API would return "AB1234567".

 Example 2

 DEA# (#53.2) field is null

 FACILITY DEA NUMBER field (#52) is "VA7654321"

 VA# field (#53.3) is "789"

 If the FLAG input parameter is null or "0", this API would return

 "VA7654321-789".

 If the FLAG input parameter is "1", this API would return "789"

 Example 3

 DEA# (#53.2) field is null

 FACILITY DEA NUMBER field (#52) is "VA7654321"

 VA# field (#53.3) is null

 If the FLAG input parameter is null or "0", this API would return "".

 If the FLAG input parameter is "1", this API would return ""

 In both cases it returns an empty string.

 The DEA/VA PKI pilot project requires an API to obtain the value stored in the DEA# field (#53.2) in the NEW

 PERSON file (#200). This patch provides this new API and also adds a new field, FACILITY DEA NUMBER (#52), to

 the INSTITUTION file (#4). The specific API information follows:

 $$DEA^XUSER([FLAG])

 Reference type: Supported, Category: PKI, Integration Agreement: TBD

 Description:

 This routine will return a user's DEA number, if it exists in the

 DEA# field (#53.2) of the NEW PERSON file (#200). If the DEA# field

 value is null, the value returned depends on the optional FLAG

 input parameter, see below.

 Input Parameter

 FLAG (optional) This flag controls what is returned when the user

 does not have a value in the DEA# field (#53.2) of the NEW PERSON

 file (#200).

 * FLAG is null or "0" -- This routine will check to see if

 the user has values in the VA# field (#53.3) of the NEW

 PERSON file (#200) and the (new) FACILITY DEA NUMBER field

 (#52) of the INSTITUTION file (#4). If values are found in

 both of those fields, this routine will return the

 following:

 FACILITY DEA NUMBER field (#52)_"-"_VA# field(#53.3)

 * FLAG is "1" -- This routine will check to see if the user

 has a value in the VA# field (#53.3) of the NEW PERSON file

 (#200). If a value is found in that field, this routine will

 return that field value. Otherwise, this routine returns an

 empty string.

 Output

 DEA# DEA# field (#53.2) value or the value returned based on the

 (optional) FLAG input parameter, see "Input Parameter" above.

 Example 1

 DEA# (#53.2) field is "AB1234567"

 FACILITY DEA NUMBER field (#52) is "VA7654321"

 VA# field (#53.3) is "789"

 If the FLAG input parameter is null or "0", this API would return

 "AB1234567".

 If the FLAG input parameter is "1", this API would return "AB1234567".

 Example 2

 DEA# (#53.2) field is null

 FACILITY DEA NUMBER field (#52) is "VA7654321"

 VA# field (#53.3) is "789"

 If the FLAG input parameter is null or "0", this API would return

 "VA7654321-789".

 If the FLAG input parameter is "1", this API would return "789"

 Example 3

 DEA# (#53.2) field is null

 FACILITY DEA NUMBER field (#52) is "VA7654321"

 VA# field (#53.3) is null

 If the FLAG input parameter is null or "0", this API would return "".

 If the FLAG input parameter is "1", this API would return ""

 In both cases it returns an empty string.

 COMPONENT: $$NAME

 VARIABLES: IEN Type: Input

 This is the IEN of the user in the New Person file #200.

 FORMAT Type: Input

 This should be either "F" or "G", to indicate if the user's name should be returned formatted

 by Family or Given name, respectively. For example,

 "F" -> "Doe,John"

 "G" -> "John Doe" (default)

 $$NAME Type: Output

 The full name of the specified user in a mixed case displayable format; the user's given name

 (i.e. First Last) will be returned unless a second parameter of "F" is passed in to get the

 Family name (i.e. Last,First)

 This entry point returns the full name of the specified user in a mixed case displayable format; the user's

 given name (i.e. First Last) will be returned unless a second parameter of "F" is passed in to get the Family

 name (i.e. Last,First) Usage S NAME=$$NAME^XUSER(IEN)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2433

 NAME: XPDGREF

 USAGE: Supported ENTERED: JUN 10,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Developers can put information in the KIDS Transport Global, ^XTMP. The transport global will be available during the

 Environment Check, Pre-Install, and Post-Install routines. The developer can access the information by using the variable

 XPDGREF to read or set the transport global.

 example: to set the transport global

 S @XPDGREF@("My subscript",1)="Information I need"

 to read the transport global

 S X=@XPDGREF@("My subscript",1)

 Developers can create a routine that will always set information into the transport global whenever a package is transported.

 The field, PRE-TRANSPORTATION ROUTINE, will be run during the transport process. The variable XPDGREF will be available to

 set information into the transport global.

 ROUTINE:

 COMPONENT: XPDGREF

 VARIABLES: XPDGREF Type: Both

 This variable can be used to set or retrieve information from the KIDS transport global,

 ^XTMP. It can be used in the following routine: Pre-Transportation Routine, Pre-Install

 Routine, and Post-Install Routine.

 Example: to set the transport global

 S @XPDGREF@("My subscript",1)="Information I need"

 to read the transport global

 S X=@XPDGREF@("My subscript",1)

 This variable can be used to set or retrieve information from the KIDS transport global, ^XTMP. It can be used

 in the following routine: Pre-Transportation Routine, Pre-Install Routine, and Post-Install Routine.

 Example: to set the transport global

 S @XPDGREF@("My subscript",1)="Information I need"

 to read the transport global

 S X=@XPDGREF@("My subscript",1)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2541

 NAME: DBIA2541

 USAGE: Supported ENTERED: SEP 21,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA documents the supported calls to XUPARAM to get some KERNEL SYSTEM parameters fields.

 ROUTINE: XUPARAM

 COMPONENT: $$KSP

 VARIABLES: $$KSP Type: Output

 Some value from the Kernel system parameter file.

 parameter Type: Input

 This is a string to request a value from the Kernel System Parameter file. Currently

 supported values:

 "SPOOL LINE" returns the max number of lines in one spool document.

 "SPOOL DOC" returns the max number of spool documents the user may have.

 "WHERE" returns the local domain name.

 "INST" returns the IEN of the default institution entry.

 This entry point will return several items of site parameter data to the calling routine. Currently supported

 values:

 SPOOL LINE returns the max number of lines in one spool document.

 SPOOL DOC returns the max number of spool documents the user may have.

 WHERE returns the local domain name.

 INST returns the IEN of the default institution entry.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2542

 NAME: DBIA2542

 USAGE: Supported ENTERED: SEP 21,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These are calls to set or get simple parameters from a file that the site can edit. The file is KERNEL PARAMETERS (#8989.2)

 ROUTINE: XUPARAM

 COMPONENT: $$GET

 VARIABLES: $$GET Type: Output

 Returns user defined data.

 parameter Type: Input

 This is a user defined namespaced name.

 style Type: Input

 This optional input controls what is returned if there isn't a replacement value or a default

 value. Valid values are "N" to return the call name.

 "V" to return ""

 missing returns 0.

 The call is $$GET^XUPARAM(<parameter name>[,style]) where 'parameter name' is a namespaced name for the

 parameter to lookup and return the REPLACEMENT value or DEFAULT. The style parameter controls the return value

 if both of these are empty.

 Where 'style' controls how missing parameter entries are retuened, Valid value are: "N" to return call name.

 "V" to return "".

 missing returns 0.

 Kernel uses this to allow sites to select local edit templates. i.e. S DR="["_$$GET^XUPARAM("XUEDIT

 CHARACTERISTICS","N")_"]"

 COMPONENT: SET

 VARIABLES: parameter Type: Input

 This is a user defined namespaced name.

 value Type: Input

 This is the replacement value.

 This entry point allows the setting of the REPLACEMENT value in the file for a given entry.

 COMPONENT: LKUP

 VARIABLES: $$LKUP Type: Output

 Returns -1 if the lookup was unsuccessful. Returns a positive value for success.

 parameter Type: Input

 This is a user defined namespaced name.

 This entry point allows the creation of a entry. S X=$$LKUP^XUPARAM("XUEDIT PARAM","A")

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2622

 NAME: DBIA2622

 USAGE: Supported ENTERED: OCT 20,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Use of the XLFUTL APIs.

 ROUTINE: XLFUTL

 COMPONENT: $$CCD

 VARIABLES: Compute check digit. See Taylor report Computerworld 1975 Usage: S Y=$$CCD^XLFUTL(X) Input: an integer.

 Returns the input value with the check digit appended.

 COMPONENT: $$VCD

 VARIABLES: Verify check digit (last digit). Usage: IF $$VCD^XLFUTL(X) W "OK" Input: an integer with check digit, from

 $$CCD^XLFUTL Output: 1 if the check digit matches, 0 for non-match.

 COMPONENT: $$BASE

 VARIABLES: Converts the first parameter from the number base of the second parameter to the number base of the third

 parameter. Usage: W $$BASE^XLFUTL("1A",16,2) ==> 11010 Input 1: a string representing the number to convert.

 Input 2: a number from 2 to 16, the base of input 1. Input 3: a number from 2 to 16, the base for the output.

 The useful values for Input 2 and 2 are 2, 8, 10, 16 but other numbers can be used. e.g. W $$BASE("A",12,3) ==>

 101

 Because of the use of division, input is limited by the M vendor to the largest integer they handle, 15 digits.

 COMPONENT: $$DEC(NUMBER,FROMBASE)

 VARIABLES: NUMBER Type: Input

 Number to be converted to base 10

 FROMBASE Type: Input

 Base to convert NUMBER from

 $$DEC Type: Output

 NUMBER converted to Base 10

 COMPONENT: $$CNV(NUMBER,TOBASE)

 VARIABLES: NUMBER Type: Input

 Number to be converted from base 10 to TOBASE

 TOBASE Type: Input

 Base to convert NUMBER to

 $$CNV Type: Output

 NUMBER converted to TOBASE from base 10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2641

 NAME: KIDS VARIABLES

 USAGE: Supported ENTERED: NOV 9,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Variable(s) available pre, during, and post KIDS installation.

 Variable: XPDPKG = Package file entry ien for build that is currently

 being processed.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2788

 NAME: XQALBUTL

 USAGE: Supported ENTERED: MAR 25,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA lists and defines supported references within the routine XQALBUTL.

 AHISTORY(XQAID,ROOT) - Returns info on alert XQAID in ROOT in global format

 $$PENDING(XQAID,XQAUSER) - Indicates whether alert XQAID is pending for user XQAUSER (1=YES, 0=NO).

 $$PKGPEND(XQAUSER,XQAPKG) - Returns 1 if the user indicated by XQAUSER has any pending alerts in which the first ';'-piece of

 XQAID contain the package identifier indicated by XQAPKG.

 ALERTDAT(XQAID,ROOT) - Returns info on alert XQAID in ROOT by field and values (if ROOT is not specified, returned in local

 variable XQALERTD)

 USERLIST(XQAID,ROOT) - Returns list of users who received alert XQAID in array under ROOT (if ROOT is not specified, returned

 in local variable XQAUSRS)

 USERDATA(XQAID,XQAUSER,ROOT) - Returns info on user XQAUSER for alert XQAID in ROOT by field and values (if ROOT is not

 specified, returned in local variable XQALUSER).

 ROUTINE: XQALBUTL

 COMPONENT: AHISTORY

 VARIABLES: XQAID Type: Input

 This is the value XQAID which is the alert identifier. It is passed to the routine or option

 which is run when the alert is selected. It can also be obtained from a listing of all of

 the XQAIDs for a specified user and/or patient.

 ROOT Type: Input

 This argument is a closed reference to a local or global root. The information associated

 with the desired entry in the alert tracking file is returned descendent from the specified

 root. The data returned reflects the global structure of the Alert Tracking file. A more user

 (developer) friendly call would be ALERTDAT described within this same unit which returns the

 data in an array with the field numbers and names as the subscripts and the internal and

 external (if different) values as the value.

 Returns information from the alert tracking file for alert with XQAID as its alert ID. The data is returned

 desendent from the closed root passed in ROOT.

 Usually, XQAID will be known based on alert processing. The following example illustrates the use of this call

 and the format of the data returned.

 S XQAID="NO-ID;20;2990212.11294719"

 D AHISTORY^XQALBUTL(XQAID,"XXXROOT")

 ZW XXXROOT

 XXXROOT(0)=NO-ID;20;2990212.11294719^2990212.112947^NO-ID^^20 XXXROOT(1)=TEST MESSAGE (ROUTINE) 20^^^XM

 XXXROOT(20,0)=^8992.11^20^1 XXXROOT(20,1,0)=20^2990212.112954^2990212.145609^2990212.145621^2990212.145621

 XXXROOT(20,"B",20,1)=

 This is in the basic structure of the nodes taken from the global for this entry, which can be seen from a

 global map view of file 8992.1

 ^XTV(8992.1,D0,0)= (#.01) NAME [1F] ^ (#.02) DATE CREATED [2D] ^ (#.03) PKG

 ==>ID [3F] ^ (#.04) PATIENT [4P] ^ (#.05) GENERATED BY [5P] ^

 ==>(#.06) GENERATED WHILE QUEUED [6S] ^ (#.07) STATUS [7S] ^

 ==>(#.08) RETENTION DATE [8D] ^

 ^XTV(8992.1,D0,1)= (#1.01) DISPLAY TEXT [1F] ^ (#1.02) OPTION FOR PROCESSING

 ==>[2F] ^ (#1.03) ROUTINE TAG [3F] ^ (#1.04) ROUTINE FOR

 ==>PROCESSING [4F] ^

 ^XTV(8992.1,D0,2)= (#2) DATA FOR PROCESSING [E1,245F] ^

 ^XTV(8992.1,D0,20,0)=^8992.11PA^^ (#20) RECIPIENT

 ^XTV(8992.1,D0,20,D1,0)= (#.01) RECIPIENT [1P] ^ (#.02) ALERT FIRST DISPLAYED

 ==>[2D] ^ (#.03) FIRST SELECTED ALERT [3D] ^ (#.04)

 ==>PROCESSED ALERT [4D] ^ (#.05) DELETED ON [5D] ^

 ==>(#.06) AUTO DELETED [6D] ^ (#.07) FORWARDED BY [7P]

 ==>^ (#.08) DATE/TIME FORWARDED [8D] ^ (#.09) DELETED

 ==>BY USER [9P] ^

 A set of newer entry points are available for returning this information in a more user (developer) friendly

 form which may be more desirable than this format.

 ALERTDAT - returns basic information about the alert

 USERLIST - returns the list of users who have received the alert

 USERDATA - returns information about one user with respect to the

 specified alert

 COMPONENT: PENDING

 VARIABLES: XQAUSER Type: Input

 This is the internal entry number in file 200 (DUZ value) for the desired user.

 XQAID Type: Input

 This is the value XQAID which is the alert identifier. It is passed to the routine or option

 which is run when the alert is selected. It can also be obtained from a listing of all of

 the XQAIDs for a specified user and/or patient.

 Returns whether the user specified has the alert indicated by the argument XQAID pending. (1=YES, 0=NO).

 Usage is as $$PENDING^XQALBUTL(XQAUSER,XQAID)

 S XQAID="NO-ID;20;2990212.11294719" W $$PENDING^XQALBUTL(20,XQAID) 0 <=====

 Not pending

 S XQAID="NO-ID;20;2990212.15540723" W $$PENDING^XQALBUTL(20,XQAID) 1 <=====

 Pending

 COMPONENT: ALERTDAT

 VARIABLES: XQAID Type: Input

 This is the value XQAID which is the alert identifier. It is passed to the routine or option

 which is run when the alert is selected. It can also be obtained from a listing of all of

 the XQAIDs for a specified user and/or patient.

 ROOT Type: Input

 This argument is a closed reference to a local or global root. The desired information is

 returned descendent from the specified root.

 Returns information from alert tracking file for alert with XQAID in array specified by ROOT. If ROOT is not

 specified, then the data is returned in an array XQALERTD. If the specified alert is not present, the array

 root is returned with a NULL value.

 Usage: D ALERTDAT^XQALBUTL(XQAID,ROOT)

 S XQAID="NO-ID;20;2990212.11294719" D ALERTDAT^XQALBUTL(XQAID,$NA(^TMP($J,"A")))

 D ^%G Global ^TMP($J,"A"

 TMP($J,"A" ^TMP(539056198,"A",.01) = NO-ID;20;2990212.11294719 ^TMP(539056198,"A",.01,"NAME") =

 ^TMP(539056198,"A",.02) = 2990212.112947^FEB 12, 1999@11:29:47 ^TMP(539056198,"A",.02,"DATE CREATED") =

 ^TMP(539056198,"A",.03) = NO-ID ^TMP(539056198,"A",.03,"PKG ID") = ^TMP(539056198,"A",.04) =

 ^TMP(539056198,"A",.04,"PATIENT") = ^TMP(539056198,"A",.05) = 20^USER,XXX ^TMP(539056198,"A",.05,"GENERATED

 BY") = ^TMP(539056198,"A",.06) = ^TMP(539056198,"A",.06,"GENERATED WHILE QUEUED") = ^TMP(539056198,"A",.07) =

 ^TMP(539056198,"A",.07,"STATUS") = ^TMP(539056198,"A",.08) = ^TMP(539056198,"A",.08,"RETENTION DATE") =

 ^TMP(539056198,"A",1.01) = TEST MESSAGE (ROUTINE) 20 ^TMP(539056198,"A",1.01,"DISPLAY TEXT") =

 ^TMP(539056198,"A",1.02) = ^TMP(539056198,"A",1.02,"OPTION FOR PROCESSING") = ^TMP(539056198,"A",1.03) =

 ^TMP(539056198,"A",1.03,"ROUTINE TAG") = ^TMP(539056198,"A",1.04) = XM ^TMP(539056198,"A",1.04,"ROUTINE FOR

 PROCESSING") = ^TMP(539056198,"A",2) = ^TMP(539056198,"A",2,"DATA FOR PROCESSING") =

 The data elements at the top level of the Activity Tracking file are returned subscripted by the field numbers.

 This subscript is sufficient to obtain the data. The values are shown as internal^external if the internal and

 external forms are different. The next subscript after the field number will provide the field names if they

 are desired.

 COMPONENT: USERLIST

 VARIABLES: XQAID Type: Input

 This is the value XQAID which is the alert identifier. It is passed to the routine or option

 which is run when the alert is selected. It can also be obtained from a listing of all of

 the XQAIDs for a specified user and/or patient.

 ROOT Type: Input

 This argument is a closed reference to a local or global root. The desired information is

 returned descendent from the specified root. If this value is not specified, the data will

 be returned in the local array XQALUSRS.

 Returns recipients of alert with ID of XQAID from alert tracking file in the array specified by ROOT. If ROOT

 is not specified, then the data is returned in the array XQALUSRS. If the specified alert is not present, the

 array root is returned with a NULL value.

 Usage: D USERLIST^XQALBUTL(XQAID,ROOT)

 or

 Usage: D USERLIST^XQALBUTL(XQAID) (DATA RETURNED IN XQALUSRS)

 D USERLIST^XQALBUTL(XQAID)

 ZW XQALUSRS XQALUSRS(1)=20^USER,XXX

 COMPONENT: USERDATA

 VARIABLES: XQAID Type: Input

 This is the value XQAID which is the alert identifier. It is passed to the routine or option

 which is run when the alert is selected. It can also be obtained from a listing of all of

 the XQAIDs for a specified user and/or patient.

 XQAUSER Type: Input

 This is the internal entry number in file 200 (DUZ value) for the desired user.

 ROOT Type: Input

 This argument is a closed reference to a local or global root. The desired information is

 returned descendent from the specified root. If this value is not specified, the data will

 be returned in the local array XQALUSER

 Returns information from alert tracking file related to alert with ID of XQAID for user specified by XQAUSER.

 Data is returned descendent from the closed root specified by ROOT (or if ROOT is not passed, under the array

 XQALUSER). If the specified alert is not present, the array root is returned with a NULL value.

 Usage: D USERDATA^XQALBUTL(XQAID,XQAUSER,ROOT)

 or

 Usage: D USERDATA^XQALBUTL(XQAID,XQAUSER) (data returned in local array XQALUSER)

 D USERDATA^XQALBUTL(XQAID,20,"XXX") ZW XXX XXX(.01)=20^USER,XXX XXX(.01,"RECIPIENT")=

 XXX(.02)=2990212.112954^FEB 12, 1999@11:29:54 XXX(.02,"ALERT FIRST DISPLAYED")= XXX(.03)=2990212.145609^FEB 12,

 1999@14:56:09 XXX(.03,"FIRST SELECTED ALERT")= XXX(.04)=2990212.145621^FEB 12, 1999@14:56:21 XXX(.04,"PROCESSED

 ALERT")= XXX(.05)=2990212.145621^FEB 12, 1999@14:56:21 XXX(.05,"DELETED ON")= XXX(.06)= XXX(.06,"AUTO

 DELETED")= XXX(.07)= XXX(.07,"FORWARDED BY")= XXX(.08)= XXX(.08,"DATE/TIME FORWARDED")= XXX(.09)=

 XXX(.09,"DELETED BY USER")=

 COMPONENT: PKGPEND

 VARIABLES: XQAUSER Type: Input

 This is the internal entry number in file 200 (DUZ value) for the desired user.

 XQAPKG Type: Input

 This variable is the package identifier portion of the alert identifier (XQAID). It is a

 textual identifier for the package which created the alert and is the first ';'-piece of the

 XQAID. It can be used in this context to determine whether the user specified by XQAUSER has

 any alerts pending containing the specified package identifier. The return value of one

 indicates one or more pending alerts for the user containing the specified package string in

 the package part of the XQAID.

 Returns whether the user specified has an alert with XQAID containing the first ';'-piece (PACKAGE identifier)

 indicated by the argument XQAPKG pending. (1=YES, 0=NO). If a value of 1 is returned, it indicates one or

 MORE alerts pending containing the specified package identifier. The package identifier used can be a complete

 package identifier (e.g., XU-TSK) or a more general part (e.g., XU) to find users with any XU package alert.

 Usage is as $$PKGPEND^XQALBUTL(XQAUSER,XQAPKG)

 S XQAPKG="XU" W $$PKGPEND^XQALBUTL(20,XQAPKG) 0 <===== Not pending

 S XQAPKG="XU" W $$PKGPEND^XQALBUTL(20,XQAPKG) 1 <===== Pending (one or more)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 2790

 NAME: XQALSURO

 USAGE: Supported ENTERED: MAR 25,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA describes supported references in the routine XQALSURO which may be used to obtain information on, set, or remove a

 surrogate for alerts for a user.

 ROUTINE: XQALSURO

 COMPONENT: CURRSURO

 VARIABLES: XQAUSER Type: Input

 This is the internal entry number in file 200 (DUZ value) for the user that the surrogate

 inquiry is for.

 This reference is used to obtain the current surrogate for alerts (if any for the user with DUZ specified by

 XQAUSER.

 Usage is $$CURRSURO^XQALSURO(XQAUSER)

 The value returned is the DUZ of the surrogate or -1 if there is no surrogate specified.

 COMPONENT: SETSURO

 VARIABLES: XQAUSER Type: Input

 This is the internal entry number in file 200 (DUZ value) for the user that the surrogate is

 to be set for.

 XQALSURO Type: Input

 This is the internal entry number in file 200 for the NEW PERSON entry who is to act as

 surrogate and receive the alerts instead of the user XQAUSER.

 XQALSTRT Type: Input

 This is an optional date-time value for when the surrogate activity is to start, if this

 value is not specified, then the surrogate will become active at the time it is set.

 XQALEND Type: Input

 This is an optional date-time value for when the surrogate activity is to stop. When an

 alert is sent that is after the specified date-time, the surrogate will be removed and alerts

 will be sent to the user specified instead of the surrogate. If this value is not specified,

 the surrogate will remain active until the removed or another surrogate specified.

 This entry point is used to establish (or replace) a surrogate for the user specified by XQAUSER. The

 Surrogate is specified by passing the value of DUZ in the variable XQALSURO. XQALSTRT is an optional date/time

 for the surrogate to become active. If XQALSTRT is not specified, the surrogate becomes active immediately.

 XQALEND is an optional date/time when the surrogate would be removed. If XQALEND is not specified, the

 surrogate will remain active until removed. During a period with an active surrogate, all alerts for the user

 (XQAUSER) are directed towards the surrogate (XQALSURO).

 COMPONENT: REMVSURO

 VARIABLES: XQAUSER Type: Input

 This is the internal entry number in file 200 (DUZ value) for the desired user.

 This entry point is used to remove any surrogates for alerts for the specified user.

 COMPONENT: ACTVSURO

 VARIABLES: XQAUSER Type: Input

 This is the DUZ value of the user for whom the currently active alert recipient is desired.

 This entry point provides a method to determine who is currently the active recipient for a specified user.

 This may be the DUZ of the user, or the DUZ of a surrogate designated for the user, or if the user is no longer

 an active user, a value of -1.

 Usage is $$ACTVSURO^XQALSURO(XQAUSER)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3009

 NAME: XQALFWD

 USAGE: Supported ENTERED: DEC 8,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This entry point can be used to forward alerts (in most cases, for the current user only). It is a silent (no screen input or

 output) entry point, and so can be used for windowed applications.

 Example ; get open alerts for current user K A6AALRT D USER^XQALERT("A6AALRT")

 ;

 I +A6AALRT D ; if any current alerts... .; loop through A6AALRT array, parse alert id for each open alert .K A6AALRT1 S

 A6ASUB="",A6AI=0 .F S A6ASUB=$O(A6AALRT(A6ASUB)) Q:'$L(A6ASUB) D ..S A6AI=A6AI+1,A6AALRT1(A6AI)=$P(A6ASUB,"^",2)

 .;

 .;forward open alerts of current user to MAS CLERKS mailgroup .K A6AUSER S A6AUSER="G.MAS CLERKS" .D

 FORWARD^XQALFWD(.A6AALRT1,A6AUSER,"A","Forwarded Alert") Q

 ROUTINE: XQALFWD

 COMPONENT: FORWARD

 VARIABLES: [.]alerts Type: Input

 Array of alerts to be forwarded, each identified by its full alert identifier (the value of

 the ALERT ID field in the ALERT DATE/TIME multiple of the current user's entry in the ALERT

 file. Current user is identified by the value of the XQADUZ variable). The alert identifiers

 for a user's current open alerts can be obtained using the USER^XQALERT entry point.

 If only a single alert is to be forwarded, only the top node must be set (set it to the alert

 identifier of the alert to forward, and pass by value). If there are multiple alerts to

 forward, the value of each entry in the array should be one of the desired alert identifier.

 For example,

 A6AALRT(1)="NO-ID;92;2941215.100432" A6AALRT(2)="NO-ID;161;2941220.111907"

 A6AALRT(3)="NO-ID;161;2941220.132401"

 If using an array, the array must be passed by reference in the parameter list.

 [.]users Type: Input

 Users to forward alert to. For forwarding as an alert or as a mail message (when the type

 parameter is A or M), the variable may specify one or more users, and/or mailgroups. For

 users, specify by ien (in the NEW PERSON file). You do not need to precede the user's ien

 with an accent grave. For mail groups, specify in format G.MAILGROUP.

 If there is only a single user or mailgroup, just set the top node of the array to that

 value, and pass it by value. If there are multiple values to be passed, pass them as the

 values of numerically subscripted array nodes (and pass the array by reference). For example,

 A6AUSER(1)="G.MAS CLERKS" A6AUSER(2)="G.MAS OVERNIGHT"

 For forwarding to a printer (when the type parameter is P), there should be only a single

 value specifying the desired entry in the DEVICE file. You can specify the device either by

 name or by internal entry number (ien). If specifying by ien, precede the ien with an accent

 grave (e.g., `202).

 type Type: Input

 Indicates the method of forwarding desired. The options are the single characters 'A' (to

 forward as an Alert), 'M' (to forward as a Mail Message), and 'P' (to print a copy of the

 alert). If the value passed is not either A, M, or P, then no action will be taken.

 comment Type: Input

 A character string to use as a comment to accompany the alert when it is forwarded.

 Usage D FORWARD^XQALFWD([.]alerts,[.]users,type,comment)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3010

 NAME: XQALBUTL

 USAGE: Supported ENTERED: DEC 8,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQALBUTL

 COMPONENT: RECIPURG

 VARIABLES: DUZ Type: Input

 User whose alerts you want to delete

 Called by option ORB PURG RECIP - purge existing notifs: recipient/DUZ

 COMPONENT: PTPURG

 VARIABLES: DFN Type: Input

 DFN of patient whose alerts you want to delete

 called by option ORB PURG PATIENT - purge existing notifs: patient

 COMPONENT: NOTIPURG

 VARIABLES: NOT Type: Input

 IEN of Notification [#100.9] all instances of which will be deleted

 called by option ORB PURG NOTIF - purge existing notifs: notification

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3056

 NAME: DNS lookup

 USAGE: Supported ENTERED: MAR 1,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Call a DNS to resolve Domain names.

 ROUTINE: XLFNSLK

 COMPONENT: $$ADDRESS(domain_name[,type])

 VARIABLES: domain_nam Type: Input

 domain_name is a fully qualified domain name like FORUM.VA.GOV

 type Type: Input

 This is input is optional. Type is from the set A: address (the default), CNAME: alias.

 $$ADDRESS Type: Output

 Returns a coma-separated list of IP address's that are associated with the domain.

 $$ADDRESS^XLFNSLK(domain_name[,type]) This call will call a DNS to convert the domain name into IP address's.

 The IP address of the DNS is in the Kernel System Parameter file, field DNS IP.

 Example: W $$ADDRESS^XLFNSLK("FORUM.VA.GOV") =>> 152.128.1.25

 COMPONENT: MAIL(RETURN, domain_name)

 VARIABLES: domain_nam Type: Input

 domain_name is a fully qualified domain name like FORUM.VA.GOV

 RETURN Type: Output

 Pass by reference a local variable to hold the return array. The data is subscripted by

 priority. domain_name is a full domain name like FORUM.VA.GOV

 Example: K ZX D MAIL(.ZX,"ISC-SF.MED.VA.GOV") ZW ZX

 ZX=2

 ZX(30)=a2.isc-sf.med.va.gov.^152.132.1.57

 ZX(50)=gateway.forum.va.gov.^152.128.1.2

 MAIL^XLFNSLK(RETURN, domain_name) This call will call a DNS to get the MX records for a domain name with their

 IP address.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3057

 NAME: SET~XUS1A

 USAGE: Supported ENTERED: MAR 6,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The is a API for use by code called from the XU USER SIGN-ON protocol to pass text back to the user.

 ROUTINE: XUS1A

 COMPONENT: SET(T)

 VARIABLES: T Type: Input

 Line of text to be displayed.

 The line of text passed in will be displayed to the user after all the XU USER SIGN-ON protocol have completed.

 If the first character is a "!" the text will start on a new line. The "@" as a first character is reserved

 for future use.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3065

 NAME: Name Standardization APIs

 USAGE: Supported ENTERED: MAR 15,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Supported Name Standardization APIs.

 ROUTINE: XLFNAME

 COMPONENT: STDNAME(.NAME,FLAGS,.AUDIT)

 VARIABLES: NAME Type: Both

 (Required) NAME is the name to be converted to standard format. It is assumed that the name

 is in the general format:

 Family_name,Given_name(s) Middle_name Suffix(es)

 If the "F" flag is not used, and the name contains no comma, it is assumed the name is in the

 general format:

 Given_name(s) Middle_name Family_name Suffix(es)

 The standard form of the name is returned in the NAME variable. If the "C" flag is passed in,

 the components of the name are returned in nodes descendent from NAME.

 Output:

 NAME is set to the name that was input converted to standard format.

 If the FLAGS input parameter contains a "C", the component parts of the name are returned in

 the NAME array:

 NAME("FAMILY) = Family (Last) Name

 NAME("GIVEN") = Given (First) Name(s)

 NAME("MIDDLE") = Middle Name

 NAME("SUFFIX") = Suffix(es)

 FLAGS Type: Input

 Flags to control processing. Possible values are:.

 C - Return name components in the NAME array.

 F - If the name passed in the NAME input parameter does not contain a comma, assume it is

 the Family Name only. For example, if the name input is "ST JAMES", return the name as

 "STJAMES" instead of "JAMES,ST"

 G - Don't return AUDIT("GIVEN") even if the Given Name is missing.

 P - Remove text in parentheses (), brackets [], or braces {} from the name. If such text is

 actually removed, return AUDIT("STRIP").

 AUDIT Type: Both

 If provided, this is an array that STDNAME^XLFNAME returns if there are any ambiguities or

 possible problems in stardardizing the name or parsing the name into component parts.

 Output:

 AUDIT is set to the original name that was passed in NAME.

 In addition, if there were any problems in the interpretation of the NAME being standardized,

 descendents of AUDIT are set:

 AUDIT("subscript") = ""

 where "subscript" can be one of the following:

 AUDIT("FAMILY")

 The Family Name starts with ST. (The period and space are removed from the Family Name.

 For example, the name "ST. JOHN" is converted to "STJOHN".)

 AUDIT("GIVEN")

 Returned if there is no Given Name and the "G" flag isn't passed in.

 AUDIT("MIDDLE")

 Returned if there are three or more names between the first comma and the Suffix(es).

 (All name parts except the last are assumed to be part of the Given Name. Only the last part

 is assumed to be the Middle Name.)

 AUDIT("NM")

 Returned if NMI or NMN appears to be used as the Middle Name. (NMI and NMN are removed

 from the standard name, and the Middle Name component is returned as null.)

 AUDIT("NOTE")

 Returned if the name appears to contain a note or flag that may not actually be part of

 the name. For example, the name starts with "C-" or "EEE," or has "FEE" at the end.

 AUDIT("NUMBER")

 Returned if a name part (other than a valid numeric Suffix) contains a number.

 AUDIT("PERIOD")

 Returned if periods were removed.

 AUDIT("PUNC")

 Returned if punctuation was removed.

 AUDIT("SPACE")

 Returned if spaces were removed from the Family Name.

 AUDIT("STRIP")

 Returned if text in parentheses (), brackets [], or braces {} were removed from the Name.

 (This is done only if the "P" flag is passed.)

 AUDIT("SUFFIX")

 Returned if:

 - Suffix(es) are found immediately to the left of the 1st comma.7 I, V, or X, and

 nothing else except valid suffixes, appear immediately after the Given Name. (It is

 interpreted as the Middle Name.)

 - The name immediately after the Given Name appears to be a non-numeric suffix (except

 I, V, and X), and everything after that also appear to be suffixes. (It is assumed there are

 a Given Name and Suffix(es), but no Middle Name.)

 - M.D. or M D is found at the end of the name, or before any valid suffixes at the end

 of the name. (It is assumed that M and D are initials in the Given or Middle Name rather

 than a Suffix.)

 - The name part before any recognizable suffixes is more than one character in length

 and doesn't contain any vowels or Y. It is interpreted as a suffix.

 - A Suffix is found between commas immediately after the Family Name.

 Name Standardization Routine

 ============================

 This procedure parses a name and converts it into the following standard format:

 Family_name,Given_name<space>Middle_name<space>Suffix

 A name in standard format is entirely in upper-case, and contains no Arabic numerals. The Family_name (last

 name) portion of a standard name appears to the left of the comma and contains no spaces and no punctuation

 except hyphens (-). The other parts of a standard name (the portion to the right of the comma) contain no

 punctuation except for hyphens and spaces. NMI and NMN are not used for the Middle_name.

 STDNAME^XLFNAME optionally returns in an array the component parts of the name. It also optionally returns

 information in an array about possible problems encountered during the conversion of the name to standard form

 and the parsing of the name into its component parts.

 Details:

 In forming the standard name, the following changes are made:

 1. The name is converted to uppercase.

 2. In the Family Name:

 a. Semicolons (;) and colons (:) are converted to hyphens (-).

 b. Spaces and all other punctuation except hyphens are removed.

 3. In the other name parts (Given Name, Middle Name, and Suffix).

 a. Semicolon, colons, commas (,), and periods (.) are converted to spaces.

 b. All punctuation except hyphens and spaces are removed.

 4. Hyphens and spaces at the beginning and end of the name are removed.

 5. Two or more consecutive hyphens/spaces are replaced with a single hyphen/space.

 6. Any suffixes immediate preceding the comma are moved to the end.

 7. The suffixes indicating birth positions 1st, 2nd, 3rd, ..., 10th are converted to their Roman numeral

 equivalents I, II, III, X.

 8. DR immediately after the comma (or if there is no comma, at the beginning of the name), is assumed to be a

 suffix and moved to the end of the name.

 9. Any suffixes between two commas immediate after the Family Name are moved to the end of the name.

 10. NMI or NMN used as a Middle Name is deleted.

 In forming the component parts of the name, only the following changes are mode:

 1. The name component is converted to uppercase.

 2. In the Family Name, semicolons (;) and colons (:) are converted to hyphens (-).

 3. In the other name parts (Given Name, Middle Name, and Suffix), semicolons, colons, and commas (,) are

 converted to spaces.

 4. Hyphens and spaces at the beginning and end of the name are removed.

 5. Two or more consecutive hyphens/spaces are replaced with a single hyphen/space.

 6. A Middle Name of NMI or NMN is changed to null.

 7. Spaces after periods are removed.

 8. Accent graves (`) and up-arrows (^) are removed.

 In parsing the name into its component parts, if the name contains a comma or the "F" flag is passed,

 STDNAME^XLFNAME looks for suffixes immediately to the left of the first comma, and at the very end of the name.

 The suffixes it recognizes are 1ST through 10TH, JR, SR, DR, MD, ESQ, DDS, RN and Roman numerals I through X.

 If a name part before any recognizable suffixes is more than one character in length, and contains no vowel or

 'Y', it is also assumed to be a suffix. The Name Standardization looks for the DR suffix immediately after the

 first comma, and for any suffix between two commas immediately after the Family Name. The portion of the name

 to the left of the comma, less any suffixes, is assumed to be the Family Name.

 After STDNAME^XLFNAME accounts for all Suffixes, it looks at the portion of the name after the comma. It

 assumes that the first space-delimited piece is the Given Name. If any other pieces are left, the last one

 (rightmost) is assumed to be the Middle Name, and anything else is appended to the end of the Given Name.

 If the name contains no comma, and the "F" flag is not passed, STDNAME^XLFNAME looks for suffixes at the very

 end of the name. The last space-delimited piece before any suffixes is assumed to be the Family Name. The first

 space-delimited piece is assumed to be the Given Name. If any other pieces are left, the last one (rightmost)

 is assumed to be the Middle Name, and anything else is appended to the end of the Given Name.

 Example:

 In this example, the variable MYNAME is set to the name to be standardized. The "C" flag indicates that the

 name components should be returned in the MYNAME array, and the "P" flag indicates that parenthetical text

 should be removed from the name. STDNAME^XLFNAME sets MYAUD to original name passed in and sets nodes in the

 MYAUD array to flag changes and possible problems.

 >S MYNAME="VAN DOREN,JOHN A. B. 2ND (TEST)"

 >D STDNAME^XLFNAME(.MYNAME,"CP",.MYAUD)

 >ZW MYNAME

 MYNAME=VANDOREN,JOHN A B II

 MYNAME("FAMILY")=VAN DOREN

 MYNAME("GIVEN")=JOHN A.

 MYNAME("MIDDLE")=B.

 MYNAME("SUFFIX")=2ND

 >ZW MYAUD

 MYAUD=VAN DOREN,JOHN A. B. 2ND (TEST)

 MYAUD("MIDDLE")=""

 MYAUD("PERIOD")=""

 MYAUD("SPACE")=""

 MYAUD("STRIP")=""

 STDNAME^XLFNAME returned the standard form of the name in MYNAME as VANDOREN,JOHN A B II. It interpreted JOHN

 A. as the given (first) name and B. as the middle name. Since this may not be correct, MYAUD("MIDDLE") is set.

 Periods were removed and spaces were removed to form the standard name, therefore MYAUD("PERIOD") and

 MYAUD("SPACE") were set. Finally, since the parenthetical text (TEST) was removed, MYAUD("STRIP") was set.

 COMPONENT: $$CLEANC(COMP,FLAGS)

 VARIABLES: COMP Type: Input

 (Required) The name component to be converted to standard format.

 FLAGS Type: Input

 Flags to control processing. Possible values are:

 F - If the name component to be converted is the FAMILY (LAST) NAME, pass the "F" flag.

 With the "F" flag, colons (:), semicolons (;), and commas (,) are converted to hyphens (-).

 Spaces and all punctuation except hyphens are removed. Leading and trailing spaces and

 hyphens are removed. Two or more consecutive spaces or hyphens are replaced with a single

 space or hyphen.

 Without the "F" flag, the component is converted to upper case. Colons, semicolons,

 commas, and periods (.) are converted to spaces. All punctuation except for hyphens and

 spaces are removed. Leading and trailing spaces and hyphens are removed. Two or more

 consecutive spaces or hyphens are replaced with a single space or hyphen. Birth position

 indicators 1ST through 10TH are changed to their Roman numeral equivalents.

 Name Component Standardization Routine

 ======================================

 This extrinsic function takes a single name component and returns that name in standard format.

 Examples:

 1. Standardize family (last) name:

 $$CLEANC^XLFNAME("O'BRIEN-DE LA ROSA","F) --> OBRIEN-DELAROSA

 $$CLEANC^XLFNAME("ST. JAMES","F") --> STJAMES

 2. Standardize other (non-family) name components:

 $$CLEANC^XLFNAME("E.C.) --> E C

 $$CLEANC^XLFNAME("RENEE'") --> RENEE

 $$CLEANC^XLFNAME("MARY ANN") --> MARY ANN

 $$CLEANC^XLFNAME("JO-ANNE") --> JO-ANNE

 COMPONENT: NAMECOMP(.NAME)

 VARIABLES: NAME Type: Both

 (Required) NAME is the name in standard format to be parsed. NAMECOMP^XLFNAME returns the

 component parts of the name in nodes descendent from NAME.

 Output:

 The component parts of the name are returned in the NAME array passed in.

 NAME("FAMILY) = Family (last) Name

 NAME("GIVEN") = Given (first) Name

 NAME("MIDDLE") = Middle Name

 NAME("SUFFIX") = Suffix(es)

 Component Parts from Standard Name

 ==================================

 This procedure takes a name in standard format and returns in an array the component parts of that name.

 Example:

 In this example, the variable MYNAME is set to the standard name, and the NAMECOMP^XLFNAME call is made to

 return in the MYNAME array the component parts of that name:

 >S MYNAME="MCDONALD-STJAMES,MARY ANN S MD"

 >D NAMECOMP^XLFNAME(.MYNAME)

 >ZW MYNAME

 MYNAME=MCDONALD-STJAMES,MARY ANN S MD

 MYNAME("FAMILY")=MCDONALD-STJAMES

 MYNAME("GIVEN")=MARY ANN

 MYNAME("MIDDLE")=S

 MYNAME("SUFFIX")=MD

 COMPONENT: $$NAMEFMT(.NAME,FORMAT,FLAGS)

 VARIABLES: NAME Type: Input

 (Required) An array that contains the component parts of the name:

 NAME("FAMILY) = Family (Last) Name (required)

 NAME("GIVEN") = Given (First) Name(s) (optional)

 NAME("MIDDLE") = Middle Name(s) (optional)

 NAME("SUFFIX") = Suffix(es) (optional)

 NAME("PREFIX") = Prefix (optional)

 NAME("DEGREE") = Degree (optional)

 Alternatively, this array can contain the file number, IENS, and field number of the field

 that contains the name. If the name has a corresponding entry in the NAME COMPONENTS file

 (#20), then the name components are obtained from that entry. Otherwise, the name is obtained

 directly from the file, record, and field specified, and the name components are obtained by

 making a call to STDNAME^XLFNAME.

 NAME("FILE") = Source file number (required)

 NAME("IENS") = IENS of entry in the source file (required)

 NAME("FIELD") = Source field number (required)

 FORMAT Type: Input

 Controls the general formatting of the output. (Default = G) Possible values are:

 F - Return Family (Last) Name first

 G - Return Given (First) Name first

 O - Return Only the Family (Last) Name

 FLAGS Type: Input

 Flags to controls processing. Possible values are:

 C - If the "F" format is used, return a Comma between the Family (Last) and Given (First)

 Names. Otherwise, the Family (Last) Name and the Given (First) Name are separated by a space.

 (Ignored if the "F" format is not used.)

 D - Return the Degree.

 Dc - Return the Degree preceded by a comma and space.

 L# - Truncate the returned name to a maximum Length of # characters, where # is an integer

 between 1 and 256.

 M - Return the name in Mixed case, with the first letter of each name component

 capitalized.

 P - Return the Prefix.

 S - Standardize the name components before building formatted name.

 Xc - Precede the SuffiX with a comma and space.

 Formatted Name from Name Components

 ===================================

 This extrinsic function returns a name converted to a form useful for display.

 Details:

 If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is performed

 to shorten the name:

 1. Drop Degree;

 2. Drop Prefix;

 3. Truncate Middle Name from the right-most position until only the initial character is left;

 4. Drop suffix;

 5. Truncate Given Name from the right-most position until only the initial character is left;

 6. Truncate Family Name from the right-most position;

 7. Truncate the name from the right.

 Examples:

 1. Suppose the MYNAME array contains the following elements:

 MYNAME("PREFIX") = "MR."

 MYNAME("GIVEN") = "JOHN"

 MYNAME("MIDDLE") = "K."

 MYNAME("FAMILY") = "O'BRIEN"

 MYNAME("SUFFIX") = "JR"

 MYNAME("DEGREE") = "PHD"

 Calls to $$NAMEFMT^XLFNAME will return the name as follows:

 $$NAMEFMT^XLFNAME(.MYNAME,"F") --> O'BRIEN JOHN K. JR

 $$NAMEFMT^XLFNAME(.MYNAME,"F","C") --> O'BRIEN,JOHN K. JR

 $$NAMEFMT^XLFNAME(.MYNAME,"F","CS") --> OBRIEN,JOHN K JR

 $$NAMEFMT^XLFNAME(.MYNAME,"F","CSD") --> OBRIEN,JOHN K JR PHD

 $$NAMEFMT^XLFNAME(.MYNAME,"F","CDcXc") --> O'BRIEN,JOHN K., JR, PHD

 $$NAMEFMT^XLFNAME(.MYNAME,"F","CSL12") --> OBRIEN,JOH K

 $$NAMEFMT^XLFNAME(.MYNAME,"F","CMD") --> O'Brien,John K. Jr PhD

 $$NAMEFMT^XLFNAME(.MYNAME,"G") --> JOHN K. O'BRIEN JR

 $$NAMEFMT^XLFNAME(.MYNAME,"G","D") --> JOHN K. O'BRIEN JR PHD

 $$NAMEFMT^XLFNAME(.MYNAME,"G","Dc") --> JOHN K. O'BRIEN JR, PHD

 $$NAMEFMT^XLFNAME(.MYNAME,"G","P") --> MR. JOHN K. O'BRIEN JR

 $$NAMEFMT^XLFNAME(.MYNAME,"G","Xc") --> JOHN K. O'BRIEN, JR

 $$NAMEFMT^XLFNAME(.MYNAME,"G","PDcXc") --> MR. JOHN K. O'BRIEN, JR, PHD

 $$NAMEFMT^XLFNAME(.MYNAME,"G","PDcXcM") --> Mr. John K. O'Brien, Jr, PhD

 $$NAMEFMT^XLFNAME(.MYNAME,"G","S") --> JOHN K OBRIEN JR

 $$NAMEFMT^XLFNAME(.MYNAME,"G","SL12") --> JOH K OBRIEN

 $$NAMEFMT^XLFNAME(.MYNAME,"O") --> O'BRIEN

 $$NAMEFMT^XLFNAME(.MYNAME,"O","S") --> OBRIEN

 $$NAMEFMT^XLFNAME(.MYNAME,"O","M") --> O'Brien

 $$NAMEFMT^XLFNAME(.MYNAME,"O","L3") --> O'B

 2. If an entry in the NAME COMPONENTS stores the components of a name stored in the NAME field (#.01) of

 record number 32 in the NEW PERSON file (#200), and the data in the corresponding record in the NAME COMPONENT

 file is:

 FILE = 200 FIELD = .01

 IENS = "32,"

 PREFIX = "MR."

 GIVEN NAME = "JOHN"

 MIDDLE NAME = "K."

 FAMILY NAME = "O'BRIEN"

 SUFFIX = "JR"

 DEGREE = "PHD"

 you can set:

 MYNAME("FILE") = 200

 MYNAME("FIELD") = .01

 MYNAME("IENS") = "32,"

 and call $$NAMEFMT^XLFNAME as in Example 1, listed previously, to return the name in various formats.

 COMPONENT: $$BLDNAME(.NAME,MAX)

 VARIABLES: NAME Type: Input

 (Required) The component parts of the name:

 NAME("FAMILY") = Family (Last) Name

 NAME("GIVEN") = Given (First) Name(s)

 NAME("MIDDLE") = Middle Name(s)

 NAME("SUFFIX") = Suffix(es)

 Alternatively, this array can contain the file number, IENS, and field number of the file

 field that contains the name. If the name has a corresponding entry in the NAME COMPONENTS

 file, then the name components are obtained from that entry. Otherwise, the name is obtained

 directly from the file, record, and field specified, and the name components are obtained by

 making a call to STDNAME^XLFNAME.

 NAME("FILE") = Source file number (required)

 NAME("IENS") = IENS of entry in the source file (required)

 NAME("FIELD") = Source field number (required)

 MAX Type: Input

 The maximum length of the Name to be returned. (Default = 256)

 Build Name from Component Parts

 ===============================

 This extrinsic function takes the component parts of a name and returns the name, truncated if necessary, in

 the following format:

 Family_name,Given_name<space>Middle_name<space>Suffix(es)

 Details:

 If the MAX input parameter is used, and the resulting name is longer than MAX, the following pruning algorithm

 is performed to shorten the name:

 1. Truncate Middle Name from the right-most position until only the initial character is left;

 2. Drop suffix;

 3. Truncate Given Name from the right-most position until only the initial character is left;

 4. Truncate Family Name from the right-most position;

 5. Truncate the name from the right.

 Examples:

 1. Suppose the MYNAME array contains the following elements:

 MYNAME("FAMILY") = "O'BRIEN"

 MYNAME("GIVEN") = "JOHN"

 MYNAME("MIDDLE") = "K."

 MYNAME("SUFFIX") = "JR"

 Calls to $$BLDNAME^XLFNAME will return the name as follows:

 $$BLDNAME^XLFNAME(.MYNAME) --> OBRIEN,JOHN K JR

 $$BLDNAME^XLFNAME(.MYNAME,12) --> OBRIEN,JOH K

 2. If an entry in the NAME COMPONENTS stores the components of a name stored in the NAME field (#.01) of

 record number 32 in the NEW PERSON file, and the data in the corresponding record in the NAME COMPONENT file

 is:

 FILE = 200

 FIELD = .01

 IENS = "32,"

 GIVEN NAME = "JOHN"

 MIDDLE NAME = "K."

 FAMILY NAME = "O'BRIEN"

 SUFFIX = "JR"

 you can set:

 MYNAME("FILE") = 200

 MYNAME("FIELD") = .01

 MYNAME("IENS") = "32,"

 and call $$BLDNAME^XLFNAME as in Example 1, listed previously:

 $$BLDNAME^XLFNAME(.MYNAME) --> OBRIEN,JOHN K JR

 $$BLDNAME^XLFNAME(.MYNAME,12) --> OBRIEN,JOH K

 COMPONENT: $$HLNAME([.]NAME,FLAGS,DELIM)

 VARIABLES: NAME Type: Input

 (Required) The component parts of the name to be converted:

 NAME("FAMILY) = Family (Last) Name (required)

 NAME("GIVEN") = Given (First) Name(s) (optional)

 NAME("MIDDLE") = Middle Name(s) (optional)

 NAME("SUFFIX") = Suffix(es) (optional)

 NAME("PREFIX") = Prefix (optional)

 NAME("DEGREE") = Degree (optional)

 Alternatively, this array can contain the file number, IENS, and field number of the file

 field that contains the name. If the name has a corresponding entry in the NAME COMPONENTS

 file (#20), then the name components are obtained from that entry. Otherwise, the name is

 obtained directly from the file, record, and field specified, and the name components are

 obtained by making a call to STDNAME^XLFNAME.

 NAME("FILE") = Source file number (required)

 NAME("IENS") = IENS of entry in the source file (required)

 NAME("FIELD") = Source field number (required)

 Another alternative is to pass in the unsubscripted NAME parameter the name to be converted.

 $$HLNAME^XLFNAME obtains the components parts of that name by making a call to

 STDNAME^XLFNAME. This alternative is recommended only for names that do not have associated

 entries on the NAME COMPONENTS file.

 FLAGS Type: Input

 Flags to controls processing. Possible values are:

 L# - Truncate the returned name to a maximum Length of # characters, where # is an integer

 between 1 and 256.

 S - Return the name components in the HL7 formatted name in Standardized form.

 DELIM Type: Input

 The delimiter to use in the HL7 string. (Default = "^")

 Convert Name to HL7 Formatted Name

 ==================================

 This extrinsic function converts a name to HL7 format.

 Details:

 If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is performed

 to shorten the name:

 1. Truncate Middle Name from the right-most position until only the initial character is left;

 2. Drop suffix;

 3. Truncate Given Name from the right-most position until only the initial character is left;

 4. Truncate Family Name from the right-most position;

 5. Truncate the name from the right.

 Examples:

 1. Suppose the MYNAME array contains the following elements:

 MYNAME("PREFIX") = "MR."

 MYNAME("GIVEN") = "JOHN"

 MYNAME("MIDDLE") = "K."

 MYNAME("FAMILY") = "O'BRIEN"

 MYNAME("SUFFIX") = "JR"

 MYNAME("DEGREE") = "PHD"

 Calls to $$HLNAME^XLFNAME will return the name as follows:

 $$HLNAME^XLFNAME(.MYNAME) --> O'BRIEN^JOHN^K.^JR^MR.^PHD

 $$HLNAME^XLFNAME(.MYNAME,"","~") --> O'BRIEN~JOHN~K.~JR~MR.~PHD

 $$HLNAME^XLFNAME(.MYNAME,"S","~") --> OBRIEN~JOHN~K~JR~MR~PHD

 $$HLNAME^XLFNAME(.MYNAME,"L12S") --> OBRIEN^JOH^K

 2. If an entry in the NAME COMPONENTS stores the components of a name stored in the NAME field (#.01) of

 record number 32 in the NEW PERSON file, and the data in the corresponding record in the NAME COMPONENT file

 is:

 FILE = 200

 FIELD = .01

 IENS = "32,"

 PREFIX = "MR."

 GIVEN NAME = "JOHN"

 MIDDLE NAME = "K."

 FAMILY NAME = "O'BRIEN"

 SUFFIX = "JR"

 DEGREE = "PHD"

 you can set:

 MYNAME("FILE") = 200

 MYNAME("FIELD") = .01

 MYNAME("IENS") = "32,"

 and call $$HLNAME^XLFNAME as in Example 1, listed previously, to return the name in various formats.

 3. Convert a name passed by value to HL7 format:

 $$HLNAME^XLFNAME("O'BRIEN,JOHN HOWARD II") --> O'BRIEN^JOHN^HOWARD^II

 $$HLNAME^XLFNAME("O'BRIEN,JOHN HOWARD II","S") --> OBRIEN^JOHN^HOWARD^II

 $$HLNAME^XLFNAME("O'BRIEN,JOHN HOWARD II","SL10","~") --> OBRIEN~J~H

 COMPONENT: $$FMNAME(NAME,FLAGS,DELIM)

 VARIABLES: NAME Type: Both

 (Required) NAME is the HL7 name to be converted. If the "C" flag is used, the name components

 are returned in nodes descendent from NAME.

 FLAGS Type: Input

 Flags to controls processing. Possible values are:

 C - Return name components in the NAME array. (See "Output:" just after this table.)

 L# - Truncate the returned name to a maximum Length of # characters, where # is an integer

 between 1 and 256.

 M - Return the name in Mixed case, with the first letter of each name component

 capitalized.

 S - Return the name in Standardized form.

 DELIM Type: Input

 The delimiter used in the HL7 formatted name. (Default = "^")

 Convert HL7 Formatted Name to Name

 ==================================

 This extrinsic function converts an HL7 formatted name to a name in VISTA format.

 Details:

 If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is performed

 to shorten the name:

 1. Truncate Middle Name from the right-most position until only the initial character is left;

 2. Drop suffix;

 3. Truncate Given Name from the right-most position until only the initial character is left;

 4. Truncate Family Name from the right-most position;

 5. Truncate the name from the right.

 Examples:

 1. Convert an HL7 formatted name to a VISTA name:

 $$FMNAME^XLFNAME("O'BRIEN^JOHN^K.^JR^MR.^PHD") --> O'BRIEN,JOHN K. JR

 $$FMNAME^XLFNAME("O'BRIEN^JOHN^K.^JR^MR.^PHD","S") --> OBRIEN,JOHN K JR

 $$FMNAME^XLFNAME("O'BRIEN^JOHN^K.^JR^MR.^PHD","M") --> O'Brien,John K. Jr

 $$FMNAME^XLFNAME("O'BRIEN^JOHN^K.^JR^MR.^PHD","SL12") --> OBRIEN,JOH K

 2. Convert an HL7 formatted name where "~" is the delimiter to a standard name:

 $$FMNAME^XLFNAME("O'BRIEN~JOHN~K.~JR~MR","S","~") --> OBRIEN,JOHN K JR

 3. Convert an HL7 formatted name to a standard name, and return the components of that name in the MYNAME

 array:

 >S MYNAME="O'BRIEN^JOHN^K.^JR^MR.^PHD"

 >W $$FMNAME^XLFNAME(.MYNAME,"CS")

 OBRIEN,JOHN K JR

 >ZW MYNAME

 MYNAME=O'BRIEN^JOHN^K.^JR^MR.^PHD

 MYNAME("FAMILY")=O'BRIEN

 MYNAME("GIVEN")=JOHN

 MYNAME("MIDDLE")=K.

 MYNAME("SUFFIX")=JR

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3156

 NAME: XLFCRC

 USAGE: Supported ENTERED: AUG 4,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine has two API's, CRC32 and CRC16.

 SET CRC=$$CRC32^XLFCRC(string)

 A check-sum can also be calculated over multiple strings.

 SET (I,C)=0

 FOR SET I=$ORDER(X(I)) QUIT:'I DO

 . SET C=$$CRC16^XLFCRC(X(I),C)

 or

 SET I=0,C=4294967295

 FOR SET I=$ORDER(X(I)) QUIT:'I DO

 . SET C=$$CRC32^XLFCRC(X(I),C)

 as long as the save method is used all the time.

 These have been approved for inclusion in a future ANSI M[UMPS] language standard as part of the library.

 ROUTINE: XLFCRC

 COMPONENT: $$CRC32(string[,seed])

 VARIABLES: string Type: Input

 String to compute the CRC32 on.

 seed Type: Input

 Optional seed value,

 Needed to compute the CRC32 over multiple strings.

 This function computes a Cyclic Redundance Code of the 8-bit character string string, using X^32 + X^26 + X^23

 + X^22 + X^16 + X^12 + X^11 + X^10 + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1 as the polynominal. The optional

 parameter seed may supply an initial value, which allows for running CRC calculations on multiple strings. If

 the parameter seed is not specified, a default value of 4,294,967,295 (2^32-1) is assumed. The value of seed

 is limited to 0 <= seed <= 2^32. The function value will be between 0 and 2^32.

 COMPONENT: $$CRC16(string[,seed])

 VARIABLES: string Type: Input

 String to compute the CRC16 on.

 seed Type: Input

 Optional seed value. Needed to compute the CRC16 over multiple strings.

 This function computes a Cyclic Redundance Code of the 8-bit character string string, using X^16 + X^15 + X^2 +

 1as the polynominal. The optional parameter seed may supply an initial value, which allows for running CRC

 calculations on multiple strings. If the parameter seed is not specified, a default value of 0 is assumed.

 The value of seed is limited to 0 <= seed <= 2^16. The function value will be between 0 and 2^16.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3172

 NAME: Special Printer Variables

 USAGE: Supported ENTERED: AUG 28,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Entry points for special printer variables.

 ROUTINE: %ZISP

 COMPONENT: PKILL

 VARIABLES: Use PKILL^%ZISP to kill printer-specific Device Handler variables. All output variables defined by the

 PSET^%ZISP entry point are killed.

 COMPONENT: PSET

 VARIABLES: IOST(0) Type: Input

 Pointer to the TERMINAL TYPE entry for the printer in question, as set up by the Device

 Handler.

 IOBAROFF Type: Output

 Bar code off

 IOBARON Type: Output

 Bar code on

 IOCLROFF Type: Output

 Color off

 IOCLRON Type: Output

 Color on

 IODPLXL Type: Output

 Duplex, long edge binding

 IODPLXS Type: Output

 Duplex, short edge binding

 IOITLOFF Type: Output

 Italics off

 IOITLON Type: Output

 Italics on

 IOSMPLX Type: Output

 Simplex

 IOSPROFF Type: Output

 Superscript off

 IOSPRON Type: Output

 Superscript on

 IOSUBOFF Type: Output

 Subscript off

 IOSUBON Type: Output

 Subscript on

 Use PSET^%ZISP to define a set of variables that toggle special printer modes. The corresponding fields in the

 TERMINAL TYPE file entry for the terminal type in question must be correctly set up, however; that is where

 PSET^%ZISP retrieves its output values. To toggle a printer mode with one of PSET^%ZISP's output variables,

 write the variable to the printer using indirection, as follows: D PSET^%ZISP W @IOBARON

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3173

 NAME: XGF Function Library

 USAGE: Supported ENTERED: AUG 28,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This XGF Function Library supports terminals that are ANSI-compatible and at least VT100-compatible. As a result, this

 software does not support QUME QVT102/QVT102A terminals.

 Programmer Tools > D ^XGFDEMO: Demo Program To run an interactive demonstration showing the capabilities provided by the XGF

 Function Library, you can run the XGF demo program. From the programmer prompt, type the following: >D ^XGFDEMO <RET>

 Functional Division of XGF Function Library Cursor/Text Output: IOXY^XGF, SAY^XGF, SAYU^XGF. Keyboard Reader: $$READ^XGF.

 Setup/Cleanup: CLEAN^XGF, INITKB^XGF, PREP^XGF, RESETKB^XGF. Text Window: CLEAR^XGF, FRAME^XGF, RESTORE^XGF, SAVE^XGF,

 WIN^XGF. Video Attribute: CHGA^XGF, SETA^XGF.

 ROUTINE: XGF

 COMPONENT: CHGA

 VARIABLES: B1 Type: Input

 Blink on

 B0 Type: Input

 Blink off

 I1 Type: Input

 Intensity high

 I0 Type: Input

 Intensity normal

 R1 Type: Input

 Reverse video on

 R0 Type: Input

 Reverse video off

 G1 Type: Input

 Graphics on

 G0 Type: Input

 Graphics off

 U1 Type: Input

 Underline on

 U0 Type: Input

 Underline off

 E1 Type: Input

 Turn all off

 XGCURATR Type: Output

 This variable always holds the current screen attribute coded as a single character, and is

 updated when you call CHGA^XGF.

 Usage D CHGA^XGF(atr_codes)

 Changes individual video attributes for subsequent screen writes. Use this entry point to change individual

 video attributes for subsequent output. This entry point is different from SETA^XGF in that individual video

 attributes can be set without affecting all video attributes at once. A call to PREP^XGF must be made at some

 point prior to calling CHGA^XGF. The attribute codes are not case sensitive. You can append them if you want to

 set more than one attribute. If you include more than one attribute, their order is not important. B0 and B1

 turn off and on the blink attribute; I0 and I1 turn off and on the intensity attribute; R0 and R1 turn off and

 on the reverse attribute; U0 and U1 turn off and on the underline attribute. E1 turns off all attributes. G0

 and G1 turn off and on recognition of an alternate graphics character set so that you can use special graphic

 characters, in particular those set up by Kernel's GSET^%ZISS entry point. To use graphics characters, be sure

 you turn on graphics first (with G1) and turn graphics off afterwards (with G0).

 The change in attribute remains in effect until another CHGA^XGF, PREP^XGF or SETA^XGF CALL is made.

 COMPONENT: CLEAN

 VARIABLES: Use CLEAN^XGF to exit the XGF screen and keyboard environments. It removes XGF screen and keyboard variables

 and tables, turns all video attributes off, turns echo on, turns the cursor on, and sets the keypad to numeric

 mode.

 COMPONENT: CLEAR

 VARIABLES: top Type: Input

 Top screen coordinate for box

 left Type: Input

 Left screen coordinate for box

 bottom Type: Input

 Bottom screen coordinate for box

 right Type: Input

 Right screen coordinate for box.

 $X,$Y Type: Output

 Set to right and bottom specified as parameters

 Usage D CLEAR^XGF(top,left,bottom,right)

 Clears a rectangular region of the screen. This entry point is useful to clear a portion of the screen. The

 CLEAR function works by printing spaces using the current screen attribute in the specified region. If the

 screen attribute is changed and then the CLEAR function used, the rectangular region is cleared in the new

 attribute.

 Acceptable values for the top and bottom parameters range from 0 to IOSL-1. Acceptable values for the left and

 right parameters range from 0 to IOM-1.

 COMPONENT: FRAME

 VARIABLES: top Type: Input

 Top screen coordinate for box.

 left Type: Input

 Left screen coordinate for box

 bottom Type: Input

 Bottom screen coordinate for box.

 right Type: Input

 Right screen coordinate for box.

 $X,$Y Type: Output

 Set to the right and bottom specified as parameters.

 Usage D FRAME^XGF(top,left,bottom,right)

 Draws a box frame on the screen. Use this entry point to display boxes on the screen. The FRAME function does

 not clear or otherwise change the region that it encompasses. If you need to open an empty framed window you

 should use WIN^XGF entry point instead.

 Acceptable values for the top and bottom parameters range from 0 to IOSL-1. Acceptable values for the left and

 right parameters range from 0 to IOM-1.E

 COMPONENT: INITKB

 VARIABLES: term_str Type: Input

 String of characters that should terminate the read.

 Usage D INITKB^XGF([term_str])

 Sets up the XGF keyboard environment only. You should call INITKB^XGF once, before you start making calls to

 the $$READ^XGF function. This entry point turns on escape processing and any terminators that are passed. Use

 this entry point only if you are using XGF's Keyboard Reader independently from XGF's screen functions.

 Otherwise, a call to PREP^XGF does everything to set up keyboard processing that INITKB^XGF does, and aseparate

 call to INITKB^XGF is not necessary. Unlike PREP^XGF, INITKB^XGF does not set the keypad to application mode.

 INITKB does not call %ZISS. Thus, documented Kernel variables such as IOKPAM and IOKPNM are not available for

 use without a separate call to ENS^%ZISS.

 COMPONENT: IOXY

 VARIABLES: row Type: Input

 Row position to move cursor to.

 col Type: Input

 Column position to move cursor to.

 $X,$Y Type: Output

 Set to the row and column specified as parameters.

 Usage D IOXY^XGF(row,col)

 Positions cursor on the screen at a screen coordinate. This entry point is similar to Kernel's X IOXY function.

 The row parameter must be between 0 and IOSL-1; the column parameter must be between 0 and IOM- 1. A call to

 PREP^XGF must be made at some point prior to calling IOXY^XGF. You can specify row and column parameters

 relative to the current $X and $Y by specifying "+" or "-" to increment or decrement $X or $Y by 1. You can

 increment or decrement by more than one if you add a number as well, such as "-5" or "+10". Note that you must

 use quotes to pass a "+" or "-". Otherwise, to specify exact locations for row and column, pass numbers.

 COMPONENT: PREP

 VARIABLES: XGCURATR Type: Output

 One-character variable containing state of current video attribute.

 Usage D PREP^XGF

 Sets up the XGF screen and keyboard environments. Before using any XGF screen functions, you must call the

 PREP^XGF entry point. PREP^XGF sets up screen control variables and tables. It also turns off all video

 attributes, turns echo off, turns the cursor off, sets the keypad to application mode, and clears the screen.

 In addition, PREP^XGF does everything that INITKB^XGF does to set up the XGF keyboard environment, including

 turning escape processing and terminators on. If you call PREP^XGF, a call to INITKB^XGF would be redundant.

 COMPONENT: $$READ

 VARIABLES: no_of_char Type: Input

 [optional] Maximum # of characters to read.

 timeout Type: Input

 [optional] Maximum duration of read, in seconds.

 return_val Type: Output

 The string read from the user. Set to the mnemonic of the key that terminated the read; see

 list below or the table in routine XGKB for list of possible values.

 DTOUT Type: Output

 If defined, signifies that the read timed out.

 Usage S ZYXSTR=$$READ^XGF([no_of_char][,timeout])

 $$READ^XGF provides a way to perform reads using escape processing. Reads, when escape processing is turned on,

 are terminated by <UP-ARROW>, <DOWN-ARROW>, <PREV>, <NEXT>, <TAB>, and other special keystrokes. $$READ^XGF is

 a low-level reader compared to the VA FileMan reader. In some respects it is as simple as using the M read

 command. This read function incorporates escape processing which puts the burden on the operating system to

 read the arrow, function, and all other keys. A call to INITKB^XGF or PREP^XGF must be made at some point prior

 to calling $$READ^XGF. If the number of characters you request with the first parameter is not entered, the

 read does not terminate until some terminating character is pressed (or the timeout period is reached). If you

 don't pass the timeout parameter, DTIME is used for the timeout period. If the read times out, ^ is returned

 and DTOUT is left defined.

 COMPONENT: RESETKB

 VARIABLES: Usage D RESETKB^XGF

 Exits the XGF keyboard environment. You should use the RESETKB^XGF call once you finish making calls to the

 $$READ^XGF function. The RESETKB^XGF entry point turns terminators and escape processing off and removes any

 XGF keyboard environment variables. Subsequent reads are processed normally. Use this entry point only if you

 are using XGF's Keyboard Reader independently from XGF's screen functions. Otherwise, a call to CLEAN^XGF does

 everything to clean up keyboard processing that RESETKB^XGF does, and a separate call to RESETKB^XGF is not

 necessary. Unlike CLEAN^XGF, RESETKB^XGF does not set the keypad to numeric mode.

 COMPONENT: RESTORE

 VARIABLES: save_root Type: Input

 Global/local array node, closed root form.

 $X,$Y Type: Output

 Set to the bottom right coordinate of the restored window.

 Usage D RESTORE^XGF(save_root)

 Use RESTORE^XGF to restore a previously saved screen region. You can save screen regions using the WIN^XGF and

 SAVE^XGF entry points. RESTORE^XGF restores the saved screen region in the same screen position as the screen

 region was saved from. A call to PREP^XGF must be made at some point prior to calling RESTORE^XGF. Specify the

 array node under which to save the overlaid screen region in closed root and fully resolved form: that is,

 closed right parenthesis and with variable references such as $J fully resolved. Using M $NAME function is a

 quick way to pass fully resolved node specifications.

 COMPONENT: SAVE

 VARIABLES: top Type: Input

 Top screen coordinate for box.

 left Type: Input

 Left screen coordinate for box.

 bottom Type: Input

 Bottom screen coordinate for box.

 right Type: Input

 Right screen coordinate for box.

 save_root Type: Input

 Global/local array node, closed root form.

 Usage D SAVE^XGF(top,left,bottom,right,save_root)

 Use this entry point to save a screen region. In order to save and restore screen regions, you must do all

 screen output using calls in the XGF Function Library output. If you instead use the M write command for

 output, the screen contents cannot be saved and restored. Also, a call to PREP^XGF must be made at some point

 prior to calling SAVE^XGF. Specify the array node under which to save the overlaid screen region in closed root

 and fully resolved form: that is, closed right parenthesis and with variable references such as $J fully

 resolved. Using M $NAME function is a quick way to pass fully resolved node specifications.

 COMPONENT: SAY

 VARIABLES: row Type: Input

 [optional] Row position to start write.

 col Type: Input

 String to write.

 str Type: Input

 [optional] Video attribute to write string with.

 atr Type: Input

 See CHGA^XGF for description of atr codes.

 $X,$Y Type: Output

 Set to position of the last character output.

 Usage D SAY^XGF([row],[col],str[,atr])

 Outputs a string to the screen (with optional positioning and attributecontrol). Use this entry point rather

 than the M write command to output strings to the screen. The row and column parameters specify where to print

 the string. If omitted, the current row and column positions are used. If specified, the row must be between 0

 and IOSL-1, and the column must be between 0 and IOM-1. A call to PREP^XGF must be made at some point prior to

 calling SAY^XGF.

 COMPONENT: SAYU

 VARIABLES: row Type: Input

 [optional] Row position to start write.

 col Type: Input

 [optional] Column position to start write.

 str Type: Input

 String to write ("&" underlines next character).

 atr Type: Input

 [optional] Video attribute to write string with (see CHGA^XGF for description of atr codes).

 $X,$Y Type: Output

 Set to the position of the last character output.

 Usage D SAYU^XGF([row],[col],str[,atr])

 Outputs a string to the screen (with optional position and attribute control), including the ability to

 underline an individual character. This entry point is similar to SAY^XGF. The difference is that the first

 ampersand ("&") character has a special meaning in the output string; it acts as a flag to indicate that the

 next character should be underlined. You are only allowed one underlined character per call. Typically you

 would use SAYU^XGF when writing a menu option's text, in order to underline that option's speed key.A call to

 PREP^XGF must be made at some point prior to calling SAYU^XGF.

 COMPONENT: SETA

 VARIABLES: atr_code Type: Input

 Single character containing the states of all video attributes as the bit values. This

 argument itself should be derived from a previous call to PREP^XGF, CHGA^XGF, or SETA^XGF.

 XGCURATR Type: Output

 This variable always holds the current screen attribute coded as a single character, and is

 updated when you call SETA^XGF.

 Usage D SETA^XGF(atr_code)

 SETA^XGF sets all video attribute simultaneously, for subsequent screen output. This entry point is different

 from CHGA^XGF in that it takes a different form of the attribute argument, and, unlike CHGA^XGF, sets all

 attributes. The change in attribute remains in effect until you make another CHGA^XGF, CLEAN^XGF or SETA^XGF

 call. If you want only a temporary change in attribute, SAY^XGF may be a better function to use. A call to

 PREP^XGF must be made at some point prior to calling SETA^XGF. The value of the attribute parameter uses one

 bit for the value of each video attribute. The format of the bits is not documented. The current setting of all

 video attributes is accessible via the variable XGCURATR, however. Rather than trying to use SETA^XGF to

 control an individual video attribute's setting, you should use it mainly to restore the screen attributes

 based on a previously saved value of XGCURATR.

 COMPONENT: WIN

 VARIABLES: top Type: Input

 Top screen coordinate for box.

 left Type: Input

 Left screen coordinate for box.

 bottom Type: Input

 Bottom screen coordinate for box.

 right Type: Input

 Right screen coordinate for box.

 save_root Type: Both

 [optional] Global/local array node, closed root form.

 $X,$Y Type: Output

 If you specify a node as a fifth parameter for save_root, WIN^XGF saves the screen region you

 overlay in an array at that node. Set to the right and bottom coordinates you specify as

 parameters.

 Usage D WIN^XGF(top,left,bottom,right[,save_root])

 Use this entry point to open a text window on the screen and optionally remember what it overlays. If the save

 root parameter is not passed, you cannot restore the screen behind the window. In order to save the screen

 region that the window overlays it is absolutely necessary that screen output is done using only the functions

 in the XGF Function library. If you use the M write command for output, the screen contents cannot be saved. A

 call to PREP^XGF must be made at some point prior to calling WIN^XGF. Specify the array node under which to

 save the overlaid screen region in closed root and fully resolved form: that is, closed right parenthesis and

 with variable references such as $J fully resolved. Using M $NAME function is a quick way to pass fully

 resolved node specifications. To restore screens you save with the WIN^XGF function, use the RESTORE^XGF entry

 point.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3178

 NAME: Convert String to Soundex

 USAGE: Supported ENTERED: AUG 29,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Use this function to convert a string into a numeric representation of the string, using soundex methods. Soundex represents

 the phonetic properties of a string; its chief feature is that it assigns similar strings the same soundex representation.

 ROUTINE: XUA4A71

 COMPONENT: $$EN

 VARIABLES: string Type: Input

 String to convert into soundex form.

 Usage S X=$$EN^XUA4A71(string)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3213

 NAME: XQALSURO

 USAGE: Supported ENTERED: SEP 27,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This integration agreement adds two additional SUPPORTED entry points or APIs to XQALSURO.

 SETSURO1 should be used in the future instead of SETSURO to establish a surrogate for alerts. SETSURO1 returns a value of 1

 if the surrogate was created successfully, otherwise, it returns a text string explaining why the surrogate was not created.

 SETSURO simply added the specified surrogate, but did not test for cyclic relationships (such that the user eventually would

 become the surrogate). SETSURO1 does these tests and therefore has the possibility of failure.

 GETSURO is an API which can be used to obtain information about the current surrogate, including start and end date/times if

 they are specified.

 SUROLIST is an API which can be used to obtain a list of the current and future surrogate periods for a selected user.

 SUROFOR is an API which can be used to obtain a list of any current users that the selected user is acting as a surrogate for.

 ROUTINE: XQALSURO

 COMPONENT: GETSURO

 VARIABLES: XQAUSER Type: Input

 This is the internal entry number in the NEW PERSON file (file #200) of the user for which

 alert surrogate information is to be returned.

 $$GETSURO^XQALSURO(XQAUSER) returns a string of '^' separated information on the current surrogate for the user

 with XQAUSER as his internal entry number in the NEW PERSON file. The value returned is of the form

 ien^NAME^FM_STARTDATE^FM_ENDDATE

 where ien is the internal entry number of the SURROGATE in the NEW PERSON file, NAME is the contents of the .01

 field for the SURROGATE, FM_STARTDATE is the starting date/time for the SURROGATE in internal Filemanager

 format, and FM_ENDDATE is the ending date/time for the SURROGATE in internal Filemanager format.

 S X=$$GETSURO^XQALSURO(124)

 might yield a value of X containing

 2327^DOE,JOHN^3000929.1630^3001006.0800

 indicating that user #2327 (John Doe) will become active as surrogate at 4:30 PM 9/29/00 and will remain

 surrogate until 8:00 am on 10/06/00.

 If there was no surrogate, the result would be

 ^^^

 If either of the date/times are not specified, they will return a null value for that piece of the return

 string.

 COMPONENT: SETSURO1

 VARIABLES: XQAUSER Type: Input

 XQAUSER is the internal entry number in file 200 (DUZ) for the user for which the surrogate

 should act in receiving alerts.

 XQASURRO Type: Input

 XQASURRO is the internal entry number in file 200 (DUZ) for the user who will receive and

 process alerts for XQAUSER.

 XQASTART Type: Input

 XQASTART is an optional START Date/Time for the surrogate activity in Filemanager format. If

 XQASTART is not specified, the surrogate relationship begins immediately.

 XQAEND Type: Input

 XQAEND is an optional date/time for the end of the surrogate relationship in Filemanager

 format. If XQAEND is not specified, the surrogate remains active until anothersurrogate is

 specified, or the surrogate deleted.

 Type:

 This API should be used instead of the SETSURO^XQALSURO API. The SETSURO1 entry point returns a value

 indicating success (a TRUE (value =1)) or failure (a FALSE (value=message indicating reason for failure)). The

 SETSURO entry point returned no value and, as long as both a user and surrogate were specified, would simply

 store the values. This leaves open the possibility that the user is specified as the surrogate or that a chain

 of surrogates ends up pointing again at the user, cases that could result in a very tight, non-ending, loop

 being generated if an alert was sent. These possibilities have been tested for in the interactive specifiction

 of surrogates, and is tested for non-interactive usage in the SETSURO1^XQALSURO API.

 Usage would be:

 S XQAUSER=DUZ ; user identification

 S XQASURO=45 ; Surrogate's DUZ number (internal entry number in file 200)

 S XQASTRT=3001004.1630 ; Start Date/Time in Filemanager internal format

 S XQAEND=3001008.1630 ; End Date/Time for surrogate in FM internal format

 S X=$$SETSURO1^XQALSURO(USER,SURROGAT,START,END)

 I 'X W !,"Could not activate surrogate",!,?5,X Q

 The Start and End Date/Time values are optional. If the Start Date/Time is not specified, the surrogate

 relationship begins immediately. If the End Date/Time is not specified, the surrogate remains active until

 another surrogate is specified, or the surrogate deleted.

 COMPONENT: SUROLIST

 VARIABLES: XQAUSER Type: Input

 XQAUSER is the internal entry number in file 200 (DUZ) for the user for which the surrogate

 should act in receiving alerts.

 XQALIST Type: Both

 XQALIST is a variable which is passed by reference which will contain the list of current and

 future surogates for the specified user.

 The SUROLIST entry point returns a returns for XQAUSER a list of current and/or future surrogates in XQALIST

 (which must be passed by reference)

 Usage would be:

 S XQAUSER=DUZ ; user identification

 D SUROLIST^XQALSURO(XQAUSER,.USERLIST)

 This returns

 USERLIST=count

 USERLIST(1)=IEN2^NEWPERSON,USER2^STARTDATETIME^ENDDATETIME

 USERLIST(2)=3^NAME,USER3^3050407.1227^3050406

 COMPONENT: SUROFOR

 VARIABLES: XQAUSER Type: Input

 XQAUSER is the internal entry number in file 200 (DUZ) for the user for which the surrogate

 should act in receiving alerts.

 Type:

 XQALIST Type: Both

 XQALIST is a variable which is passed by reference which will contain the list of users for

 whom the specified user is currently acting as a surrogate. The date in the list includes the

 internal entry number (DUZ) for the user, the user's name, and the start and end dates for

 the surrogate period.

 The SUROFOR entry point returns a list of users for which the specified user is currently acting as a surogate

 for.

 Usage would be:

 S XQAUSER=DUZ ; user identification

 D SUROFOR^XQALSURO(XQAUSER,.USERLIST)

 This returns

 USERLIST=count

 USERLIST(1)=IEN2^NEWPERSON,USER2^STARTDATETIME^ENDDATETIME

 USERLIST(2)=3^NAME,USER3^3050407.1227^3050406

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3277

 NAME: XUSRB

 USAGE: Supported ENTERED: DEC 29,2000

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This IA records supported API's in the XUSRB routine. This routine is used by Broker for GUI sign-on.

 ROUTINE: XUSRB

 COMPONENT: OWNSKEY

 VARIABLES: RET Type: Output

 A subscripted array with a value of 1 or 0 to indicated if user holds the security key.

 LIST Type: Input

 A single value or a subscripted array of security keys to be evaluated.

 DUZ Type: Used

 DUZ variable should be defined before calling to this api.

 IEN Type: Input

 Optional. The DUZ of a user that you want to check if they hold keys.

 This api is used by the "XUS KEY CHECK" rpc. This api OWNSKEY^XUSRB can be used to verify if a user has a

 specified security key assigned. The calling routine will send one or a reference to a subscripted array and

 the api will return a subscripted array with a value of 1 (user owns key) or 0 (key not found).

 COMPONENT: $$INHIBIT

 VARIABLES: Is API is used to check if LOGON's have been inhibited. There are no inputs.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3522

 NAME: $$OS EXTRINSIC FUNCTION IN ROUTINE %ZOSV

 USAGE: Supported ENTERED: FEB 12,2002

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The $$OS^%ZOSV() extrinsic function is only available under Cache'/OpenM systems. This function returns the underlying

 operating system such as VMS, UNIX or NT.

 ROUTINE: %ZOSV

 COMPONENT: $$OS

 VARIABLES: Usage: I ^%ZOSF("OS")["OpenM" S Y=$$OS^%ZOSV

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3589

 NAME: Tasking An Event From a New Style Xref

 USAGE: Supported ENTERED: MAY 24,2002

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This support API allows other packages to task an Option(s) or Protocol(s) from a New Style cross-reference.

 For more details on usage please see:

 http://vista.med.va.gov/kernel/apis/OPKG^XUHUI.htm

 ROUTINE: XUHUI

 COMPONENT: OPKG()

 VARIABLES: XUHUIOP Type: Input

 Optional) This parameter is a set of Numeric codes that tells the Unwinder whether to use the

 PROTOCOL file (#101) or the OPTION file (#19). If parameter is null, the default value will

 be used (i.e., "101"):

 101 (default) = PROTOCOL file will be used.

 19 = the OPTION file will be used.

 XUHUINM Type: Input

 (Required) This parameter is the NAME (#.01) value of the Protocol or Option that is to be

 launched.

 XUHUIA Type: Input

 (Optional) This parameter is a Set of Codes. If parameter is null, the default value will be

 used (i.e., "S"):

 S (default) = The data being passed is from the SETting of the

 cross-reference.

 K = The data being passed is from the KILLing of the cross-reference.

 XUHUIXR Type: Input

 (Required) This parameter is the name of the cross-reference.

 For detail about this API please see:

 http://vista.med.va.gov/kernel/apis/OPKG^XUHUI.htm

 For details how this cross-reference handles the changes, please see Patch XU*8*236, Patch Description. For

 more detailed information about the new style cross-reference please see:

 http://vista.med.va.gov/fileman/fileMan_training/online_pres /FMtut_frm.htm

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3618

 NAME: POSTAL CODE AND COUNTY CODE APIS

 USAGE: Supported ENTERED: JUL 11,2002

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Allow access to look-up Postal Code and County Code data based on supported API references.

 ROUTINE: XIPUTIL

 COMPONENT: POSTAL

 VARIABLES: PCODE Type: Input

 Postal Code for which to return the data

 XIP Type: Output

 XIP("POSTAL CODE") - the value used to lookup postal data

 XIP("CITY") - the city that the USPS assigned to this PCODE

 XIP("COUNTY") - The county associated with this PCODE

 XIP("COUNTY POINTER") - pointer to the county in file #5.13

 XIP("STATE") - The state associated with this PCODE

 XIP("STATE POINTER") - pointer to the state in file #5

 XIP("INACTIVE DATE") - date on which this PCODE was inactivated

 XIP("FIPS CODE") - 5 digit FIPS code associated with the county

 XIP("ERROR") - returns errors encountered during look-up

 The POSTAL^XIPUTIL(PCODE,.XIP) entry point will provide all data related to the postal code that is input.

 COMPONENT: $$FIPS

 VARIABLES: PCODE Type: Input

 This is the Postal code for which a 5-digit FIPS code will be found.

 This extrinsic function will return the 5-digit FIPS code that uniquely identifies this county. If the 5-digit

 FIPS code cannot be determined, then "0^error message" is returned.

 COMPONENT: CCODE

 VARIABLES: FIPS Type: Input

 FIPS - 5 digit FIPS County Code for which to return the data

 XIPC Type: Output

 The XIPC array will be returned with the following subscripts:

 XIPC("FIPS CODE") - 5 digit FIPS county code XIPC("COUNTY") - The county associated with this

 FIPS code XIPC("STATE") - The state associated with this FIPS code XIPC("STATE POINTER") -

 pointer to the state in file #5 XIPC("INACTIVE DATE") - date this FIPS code was inactivated

 XIPC("ERROR") - returns errors encountered during look-up

 The CCODE^XIPUTIL(FIPS,.XIPC) entry point will return the XIPC array containing components related to the input

 FIPS county code.

 COMPONENT: $$FIPSCHK

 VARIABLES: FIPS Type: Input

 FIPS - Unique 5-digit FIPS county code associated with the county to be checked.

 This extrinsic function will determine if the 5-digit FIPS county code that is passed in exists in the County

 Code (#5.13) file. If the FIPS code exists, then the 5.13 ien for this entry is returned. If it does not

 exist, then the returned value will be 0.

 COMPONENT: POSTALB

 VARIABLES: PCODE Type: Both

 (required) Postal Code for which the data is being requested.

 .XIP(n) Type: Both

 (required) The number of primary subscripts in an array: XIP(n,"CITY") City that the USPS

 assigned to this PCODE. An asterisk "*" indicates which city is PREFERRED (DEFAULT).

 XIP(n"CITY KEY") USPS's assigned city key. XIP(n,"CITY ABBREVIATION") USPS's assigned

 abbreviation. XIP(n,"COUNTY") County associated with this PCODE. XIP(n,"COUNTY POINTER")

 Pointer to the county in File #5.13. XIP(n,"FIPS CODE") 5-digit FIPS code associated with

 the county. XIP(n,"POSTAL CODE") Value used to look up postal data. XIP(n,"PREFERRED CITY

 KEY") USPS's preferred (DEFAULT) city key. XIP(n,"STATE") State associated with this PCODE.

 XIP(n,"STATE POINTER") Pointer to the state in File #5. XIP(n,"UNIQUE KEY") Unique lookup

 value.

 XIP("ERROR") Errors encountered during lookup.

 This API returns all of the active ZIP Codes for a single ZIP Code.

 S ZCODE=26452

 >S ZTMP=""

 D POSTALB^XIPUTIL(ZCODE,.ZTMP)

 >ZW ZTMP,ZCODE ZCODE=26452 ZTMP=2 ZTMP(1,"CITY")=WESTON* ZTMP(1,"CITY ABBREVIATION")= ZTMP(1,"CITY KEY")=X29362

 ZTMP(1,"COUNTY")=LEWIS ZTMP(1,"COUNTY POINTER")=335 ZTMP(1,"FIPS CODE")=54041 ZTMP(1,"POSTAL CODE")=26452

 ZTMP(1,"PREFERRED CITY KEY")=X29362 ZTMP(1,"STATE")=WEST VIRGINIA ZTMP(1,"STATE POINTER")=54 ZTMP(1,"UNIQUE

 KEY")=26452X29362 ZTMP(2,"CITY")=VALLEY CHAPEL ZTMP(2,"CITY ABBREVIATION")= ZTMP(2,"CITY KEY")=X2A444

 ZTMP(2,"COUNTY")=LEWIS ZTMP(2,"COUNTY POINTER")=335 ZTMP(2,"FIPS CODE")=54041 ZTMP(2,"POSTAL CODE")=26452

 ZTMP(2,"PREFERRED CITY KEY")=X29362 ZTMP(2,"STATE")=WEST VIRGINIA ZTMP(2,"STATE POINTER")=54 ZTMP(2,"UNIQUE

 KEY")=26452X2A444

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3771

 NAME: XUDHGUI

 USAGE: Supported ENTERED: OCT 1,2002

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 VISTA Graphical User Interface (GUI)-based applications can use this API to look up devices. This API retrieves the first 20

 devices that meet the specifications passed. This API was made available with Kernel Patch XU*8.0*220.

 See the Web for more info: http://vista.med.va.gov/kernel/apis/index.shtml

 ROUTINE: XUDHGUI

 COMPONENT: DEVICE

 VARIABLES: STARTING P Type: Input

 (Required) This parameter indicates where to start the $ORDERing of the Global. "P" will only

 return devices whose name starts with "P"; "P*" will return up to 20 devices the first

 starting with "P".

 DIRECTION Type: Input

 (Optional) This parameter indicates whether to $ORDER up or down from the STARTING POINT

 parameter. The acceptable values are 1 and -1:

 RIGHT MARG Type: Input

 (Optional) This parameter is used to specify a width range of devices: Exact Width (e.g.,

 "132-132")

 At Least Width (e.g., "132")

 Range (e.g., "80-132")

 .LIST Type: Both

 (Required) The data will be returned to this array. Data is returned in the following format:

 IEN^NAME^DISPLAY NAME^LOCATION^RIGHT MARGIN^PAGE LENGTH

 VISTA Graphical User Interface (GUI)-based applications can use this API to look up devices. This API retrieves

 the first 20 devices that meet the specifications passed. This API was made available with Kernel Patch

 XU*8.0*220. Usage: DEVICE^XUDHGUI(.LIST,STARTING POINT,DIRECTION,RIGHT MARGIN RANGE)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 3795

 NAME: XUMF

 USAGE: Supported ENTERED: OCT 22,2002

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Master File Server API

 ROUTINE: XUMF

 COMPONENT: $$IEN(IFN,CDSYS,ID)

 VARIABLES: IFN Type: Input

 File Number

 CODSYS Type: Input

 Coding system

 ID Type: Input

 Identifier

 $$IEN Type: Output

 Internal Entry Number

 Returns the IEN for a given IFN, coding system, and identifier.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4334

 NAME: XU USER TERMINATE

 USAGE: Supported ENTERED: JAN 30,2004

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Other pachages can attach to this protocol option and they will be called when a USER is Terminated. The call will be just

 after the users Access and Verify codes have been removed. DUZ will be the person that is running the terminate option.

 XUIFN will point to the NEW PERSON file entry that is being terminated. Returns selected file 200 data to XUSR(field name)

 array for New Person components.

 It is called in XUSTERM from XUSERP.

 Packages may attach or de-attach their options using KIDS.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4409

 NAME: XUP

 USAGE: Supported ENTERED: APR 23,2004

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Supported APIs or extrinsic function in routine XUP.

 ROUTINE: XUP

 COMPONENT: $$DTIME

 VARIABLES: DUZ Type: Input

 The ien of the user in the NEW PERSON file (#200).

 IOS Type: Input

 The ien of the device in the DEVICE file (#3.5).

 This extrinsic function will reset the DTIME variable for user identified by the first parameter 'DUZ' of this

 function.

 This extrinsic function accepts two parameters. The first is the ien or DUZ of the user in the NEW PERSON file

 (#200).

 The second is the ien of the device in the DEVICE file (#3.5). This ien should be the same value of IOS if

 present, and should reflect the current sign-on device of the user.

 The return value should be assigned to the variable DTIME as shown in the USAGE example. This DTIME variable

 will be used on all timed READS where interactive responses are required for a given user.

 The return value will be based on the first available data if present, and in the search order listed below:

 (#200.1) TIMED READ (# OF SECONDS) of NEW PERSON file (#200)

 (#51.1) TIMED READ (# OF SECONDS) of DEVICE file (#3.5)

 (#210) DEFAULT TIMED-READ (SECONDS) of KERNEL SYSTEM PARAMETERS file (#8989.3)

 If data is not available from the above fields, then the return value will default to 300 seconds.

 USAGE: S DTIME=$$DTIME^XUP(DUZ)

 or

 S DTIME=$$DTIME^XUP(DUZ,IOS)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4440

 NAME: DBIA4440

 USAGE: Supported ENTERED: JUN 17,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API is used to tell if the current account is the main production or a clone or test account.

 ROUTINE: XUPROD

 COMPONENT: PROD([force])

 VARIABLES: force Type: Input

 Any non-zero value will cause the API to do a real check calling the OS functions and

 comparing the results with the stored value.

 If the site manager has designated this as the production account for this facility the API will return a 1,

 otherwise it returns 0.

 Because it is unknown how often this will be called or what the cost of the real check is, the default check is

 against a field in the KERNEL SYSTEM PARAMETERS file. The real check is done when Taskman starts or the first

 time the function is called each day. The force flag can be used to force the API to do a real check for this

 call and update the flag.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4558

 NAME: LIBRARY FUNCTIONS

 USAGE: Supported ENTERED: NOV 3,2004

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XLFDT3

 COMPONENT: $$LEAP(%)

 VARIABLES: % Type: Input

 Year

 $$LEAP Type: Output

 1 == a leap year

 0 == not a leap year

 Check if a Leap year

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4574

 NAME: XUPS APIs

 USAGE: Supported ENTERED: APR 18,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Two APIs are contained in routine XUPS to identify the VPID (VA Person ID) for a selected user or identify the DUZ for an

 entry in the New Person (#200) file from a VPID.

 ROUTINE: XUPS

 COMPONENT: $$VPID(DUZ)

 VARIABLES: DUZ Type: Input

 DUZ = Internal entry number in New Person (#200) file.

 $$VPID Type: Output

 Returns the VPID (VA Person ID).

 VPID entry point accepts the internal entry number (DUZ) of an entry in the New Person (#200) file and returns

 the VPID (VA Person ID) for the selected user.

 COMPONENT: $$IEN(VPID)

 VARIABLES: VPID Type: Input

 VPID = VA Person ID.

 $$IEN Type: Output

 Returns the internal entry number (DUZ) of the New Person (#200) file entry.

 IEN entry point accepts the VPID (VA Person ID) and returns the internal entry number (DUZ) from the New Person

 (#200) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4685

 NAME: PROTOCOL

 USAGE: Supported ENTERED: JUN 20,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 101 ROOT: ORD(

 DESCRIPTION: TYPE: File

 Direct access to the Protocol file (#101) to mark protocols out of order and remove the out of order message.

 ^DISABLE 0;3

 2 DISABLE 0;3 Write w/Fileman

 This field disables use of the protocol when there is text in it. The text will be

 a short message explaining why the protocol is disabled.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4770

 NAME: unique handle into XTMP global.

 USAGE: Supported ENTERED: AUG 8,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Create and return a unique handle (subscript) for the ^XTMP global and create the required zero node.

 ROUTINE: XUSRB4

 COMPONENT: $$HANDLE(<namespace>[,<timetolive>])

 VARIABLES: namespace Type: Input

 This is the application namespace that will be used as a prefix to the handle. If this input

 is empty the call will return a null value.

 timetolive Type: Input

 This is the number of days that the record should not be removed by the cleanup process.

 This call creates and returns a unique handle (subscript) for the ^XTMP global and create the required zero

 node.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4851

 NAME: KAAJEE

 USAGE: Supported ENTERED: APR 21,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 KAAJEE addresses the Authentication and Authorization (AA) needs of

 HealtheVet-VistA Web-based applications in the J2EE environment.

 Most major J2EE application servers (e.g., BEA WebLogic V. 8.1 [SP4 or higher] and Oracle's 9iAS) allow enterprises to

 override the default source of AA and replace it with custom, enterprise-specific sources for AA. In order to rapidly develop

 an AA solution for HealtheVet-VistA web-based applications without creating a new enterprise user store, KAAJEE takes full

 advantage of this feature of creating a custom solution. This enables KAAJEE to provide a solution that has a similar

 look-and-feel of what VistA users are currently accustomed to.

 KAAJEE authenticates against a VistA M Server first with Access and Verify codes via VistALink's AV connection spec (i.e.,

 KaajeeVistaLinkConnectionSpec). After the user has been properly authenticated against a VistA M Server, KAAJEE dynamically

 creates a temporary username and password and populates this into a Structured Query Language (SQL) database via custom

 Security Service Provider Interfaces (SSPIs). This username and password is needed for the second level/phase/pass

 authentication for the J2EE container.

 Currently, Kernel maintains the primary HealtheVet-VistA user store (i.e., NEW PERSON file [#200]), and provides both

 Authentication and Authorization (AA) services for all HealtheVet-VistA applications. By leveraging Kernel, KAAJEE aims to

 authenticate and authorize J2EE Web users to their applications using Kernel's AA capabilities.

 ROUTINE:

 COMPONENT: login.jsp

 VARIABLES:

 Login Web page for authentication. This is the Login Web page where users

 enter their Access and Verify codes and choose an Institution from a

 drop-down list.

 For read-only access.

 The consuming application needs to place this file in their deployable artifact in the following

 directory/folder under the web context root:

 Directory File Name

 ========= =========

 ..login\ login.jsp

 In addition, this login.jsp must configured in the application's web.xml file as a form-login-page.

 The following XML tags shows an example of how this may be configured in the application's web.xml file:

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>login/login.jsp</form-login-page>

 <form-error-page>login/loginerror.jsp</form-error-page>

 </form-login-config>

 </login-config>

 COMPONENT: loginerror.jsp

 VARIABLES:

 This is the error page to be used with KAAJEE for Form-based

 authentication.

 When this page is presented to the user, the most likely cause is that the user is lacking the proper Security

 Keys required for the consuming application.

 For read-only access.

 The consuming application needs to place this file in their deployable artifact in the following

 directory/folder under the web context root:

 Directory File Name

 ========= =========

 ..login\ loginerror.jsp

 In addition, this loginerror.jsp must be configured in the application's web.xml file as a form-error-page.

 The following XML tags shows an example of how this may be configured in the application's web.xml file:

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>login/login.jsp</form-login-page>

 <form-error-page>login/loginerror.jsp</form-error-page>

 </form-login-config>

 </login-config>

 COMPONENT: loginerrordisplay.jsp

 VARIABLES:

 This is the error page that KAAJEE redirects to when authentication fails

 against a VistA M server after providing the access & verify codes plus

 the target institution.

 For read-only access.

 The consuming application needs to place this file in their deployable artifact in the following

 directory/folder under the web context root:

 Directory File Name

 ========= =========

 ..login\ loginerrordisplay.jsp

 COMPONENT: SessionTimeout.jsp

 VARIABLES:

 Login session timeout Web page.

 This web page informs the user that his/her session has expired during login.

 For read-only access.

 The consuming application needs to place this file in their deployable artifact in the following

 directory/folder under the web context root:

 Directory File Name

 ========= =========

 ..login\ SessionTimeout.jsp

 COMPONENT: loginCookieInfo.htm

 VARIABLES:

 Login persistent cookie information.

 This web page informs the user how the persistent cookie information is used.

 For read-only access.

 The consuming application needs to place this file in their deployable artifact in the following

 directory/folder under the web context root:

 Directory File Name

 ========= =========

 ..login\ loginCookieInfo.htm

 COMPONENT: kaajeeConfig.xml

 VARIABLES:

 KAAJEE configuration file.

 Access to this file is restricted to read/write/modify as described in the KAAJEE documentation. For more

 detail regarding the parameters that may be modified, refer to the KAAJEE documentation.

 KAAJEE relies on a configuration file (i.e., kaajeeConfig.xml file) to read in all administrator-configurable

 settings. You can use the kaajeeConfig.xml file that is distributed with the KAAJEE software or you can create

 a KAAJEE configuration file in your J2EE Web-based application and export it along with your Web-based

 application.

 The consuming application may use 'kaajeeConfig.xml' as the name of the KAAJEE configuration file or any

 filename with an 'xml' extension. This name is identified by configuring web.xml to include a startup servlet

 (see also component gov.va.med.authentication.kernel.InitKaajeeServlet) similar to the following entry:

 <servlet>

 <servlet-name>KaajeeInit</servlet-name>

 <servlet-class>gov.va.med.authentication.kernel.InitKaajeeServlet</servlet -class>

 <init-param>

 <param-name>kaajee-config-file-location</param-name>

 <param-value>/WEB-INF/kaajeeConfig.xml</param-value>

 </init-param>

 <load-on-startup>3</load-on-startup>

 </servlet>

 The param-value of '/WEB-INF/kaajeeConfig.xml' associated with the param-name of 'kaajee-config-file-location'

 identifies the filename and location of the KAAJEE configuration file.

 COMPONENT: kaajee-x.x.x.xxx.jar

 VARIABLES:

 The kaajee-x.x.x.xxx.jar contains the KAAJEE java classes.

 Access to this file is limited to read-only. No modification are

 permitted.

 Note: The 'x.x.x.xxx' in the name 'kaajee-x.x.x.xxx.jar' is used

 as a placeholder and when referenced here in this Integration

 Agreement represents the current version. When actually using

 this file, replace 'x.x.x.xxx' with the current version of the

 KAAJEE JAR file.

 The kaajee-x.x.x.xxx.jar file must be distributed in your application's

 Enterprise Archive (.ear) file with an application-level classloader.

 When you are ready to deploy/distribute your application,

 perform the following steps:

 a. (required) Package the kaajee-x.x.x.xxx.jar file

 in your application's ear file (e.g., in a "../APP-INF/lib" folder

 descendent from the root level of your application's ear file).

 b. (required) Ensure that kaajee-x.x.x.xxx.jar is not located

 in a deeper level of the classloader hierarchy

 than that of an application, anywhere on the application server.

 Otherwise, the singletons will be instantiated with settings

 inappropriate for your application, and the KAAJEE security system

 will function inappropriately for your application.

 COMPONENT: gov.va.med.authentication.kernel.KaajeeSessionAttributeListener

 VARIABLES:

 This class is included in the kaajee-x.x.x.xxx.jar file and

 is not a separate component. It is listed here only to describe

 how it is referenced in the consuming application's web.xml file.

 Configure KAAJEE Listeners (web.xml file)

 KAAJEE has two similar listeners, both of which perform logout actions

 for a user. Both of these listeners are available in case one listener

 does not work with a specific container/platform (e.g., WebLogic, Oracle

 9iAS, etc.):

 Listener Description

 ======== ===========

 KaajeeSessionAttributeListener The KaajeeSessionAttributeListener

 listens for specific (individual)

 session attributes that are

 targeted for removal, which

 signals a user session ending,

 and performs user logout actions.

 (see also component gov.va.med.authentication.kernel.KaajeeHttpSessionListener)

 Configure these listeners in your application's web.xml file as follows:

 <listener>

 <listener-class>

 gov.va.med.authentication.kernel.KaajeeSessionAttributeListener

 </listener-class>

 </listener>

 (see also component gov.va.med.authentication.kernel.KaajeeHttpSessionListener)

 COMPONENT: HealtheVetVistaSmallBlue.jpg

 VARIABLES:

 HealtheVet-VistA small blue logo image file.

 For read-only access.

 This jpeg file is referenced by the KAAJEE login page to provide an image.

 The consuming application needs to place this file in their deployable artifact in the following

 directory/folder under the web context root:

 Directory File Name

 ========= =========

 ..login\images\ HealtheVetVistaSmallBlue.jpg

 COMPONENT: HealtheVetVistaSmallWhite.jpg

 VARIABLES:

 HealtheVet-VistA small white logo image file.

 For read-only access.

 This jpeg file is referenced by the KAAJEE login page to provide an image.

 The consuming application needs to place this file in their deployable artifact in the following

 directory/folder under the web context root:

 Directory File Name

 ========= =========

 ..login\images\ HealtheVetVistaSmallWhite.jpg

 COMPONENT: gov.va.med.authentication.kernel.KaajeeHttpSessionListener

 VARIABLES:

 This class is included in the kaajee-x.x.x.xxx.jar file and

 is not a separate component. It is listed here only to describe

 how it is referenced in the consuming application's web.xml file.

 Configure KAAJEE Listeners (web.xml file)

 KAAJEE has two similar listeners, both of which perform logout actions

 for a user. Both of these listeners are available in case one listener

 does not work with a specific container/platform (e.g., WebLogic, Oracle

 9iAS, etc.):

 Listener Description

 ======== ===========

 KaajeeHttpSessionListener The KaajeeHttpSessionListener

 listens for session destruction.

 It is looking for the whole

 session being destroyed

 and performs user logout actions.

 (see also component gov.va.med.authentication.kernel.KaajeeSessionAttributeListener)

 Configure these listeners in your application's web.xml file as follows:

 (see also component gov.va.med.authentication.kernel.KaajeeSessionAttributeListener)

 <listener>

 <listener-class>

 gov.va.med.authentication.kernel.KaajeeHttpSessionListener

 </listener-class>

 </listener>

 COMPONENT: gov.va.med.authentication.kernel.LoginUserInfoVO

 VARIABLES:

 This class is included in the kaajee-x.x.x.xxx.jar file and

 is not a separate component. It is listed here only to describe

 how it may be referenced as a JavaBean by the consuming application.

 The session key, properties and getter methods listed below are for read-only access.

 Session key used to obtain userInfo JavaBean:

 SESSION_KEY

 The key under which this value is placed in the session object

 during login, and from which this object

 can be retrieved by the enclosing web application post-login.

 This SESSION_KEY is a public static final method that returns a string.

 Applications may use the userInfo JavaBean to obtain user demographic information.

 This can be achieved by using the JSP action <jsp:getProperty...>

 This JavaBean contains the following properties:

 UserDuz

 UserName01

 UserNameDisplay

 UserLastName

 UserFirstName

 UserMiddleName

 UserPrefix

 UserSuffix

 UserDegree

 LoginStationNumber

 UserParentAdministrativeFacilityStationNumber

 UserParentComputerSystemStationNumber

 Alternatively, applications may access the getter methods directly.

 Methods with a return type of java.util.TreeMap:

 getPermittedNewPersonFileDivisions() Returns a list of the user's permitted divisions returned as a TreeMap.

 The key value in the TreeMap is the Station Number, which is a String. The object value stored under each key

 is a VistaDivisionVO object.

 (see also component gov.va.med.authentication.kernel.VistaDivisionVO)

 This list represents all of the divisions on the VistA M Server that the user could have logged into.

 Applications can display a list of other divisions that the user could switch to within the application,

 allowing the user to select a different division. It is then the application's responsibility to use the proper

 division for its own internal business rules, and also to pass the proper Division Station Number with each

 VistALink RPC call it makes to M.

 getLoginDivisionVistaProviderDivisions() returns a list of divisions (based on information in the SDS

 Institution table) whose Vista Provider is the same as the Vista Provider computer system of the login

 division. This list is returned as a TreeMap. The key value in the TreeMap is the Station Number, which is a

 String. The object value stored under each key is a VistaDivisionVO object.

 (see also component gov.va.med.authentication.kernel.VistaDivisionVO)

 This method is provided to applications to support division switching for all divisions supported at the same

 computing facility as the login division, regardless of whether explicit access has been granted to the user

 for any particular division. Applications can display a list of other divisions that the user could switch to

 within the application, allowing the user to select a different division. It is then the application's

 responsibility to use the proper division for its own internal business rules. The application developer

 should be aware that this method may not be appropriate when using VistALink RPC calls as the login user may

 not be permitted access to a specific division.

 Methods with a return type of java.lang.String:

 getLoginStationNumber() Returns the Station Number of the Division the user selected at login. This can be used

 as a key to retrieve additional information (e.g., name about the login division from the TreeMap of permitted

 divisions returned by the getPermittedDivisions method).

 getUserDegree() Returns the user's Degree value from the NAME COMPONENTS file (#20).

 getUserDuz() Return the user's DUZ from the NEW PERSON file (#200).

 getUserFirstName() Returns the users' First Name value from the NAME COMPONENTS file (#20)

 getUserLastName() Returns the user's Last Name value from the NAME COMPONENTS file (#20).

 getUserMiddleName() Returns the user's Middle Name value from the NAME COMPONENTS file (#20).

 getUserName01() Returns the user's name as it's stored in the NAME field (# .01) in the NEW PERSON file (#200).

 For example: KRNUSER,ONE E

 getUserNameDisplay() Returns the Display Name of the user, as put together by the Name Standardization APIs on

 M. For example: One E. Krnuser

 getUserParentAdministrativeFacilityStationNumber() Returns the parent facility of the Division used for login,

 as resolved on the login computer system based on that system's INSTITUTION file (#4) from the SDS V. 3.0 (or

 higher) tables.

 getUserParentComputerSystemStationNumber() Returns the computer system's default Institution/Computer System

 Institution, as identified in the system's KERNEL SYSTEM PARAMETERS file (#8989.3)

 getUserPrefix() Returns the user's Prefix value from the NAME COMPONENTS file (#20).

 getUserSuffix() Returns the user's Suffix value from the NAME COMPONENTS file (#20).

 toString() Returns a string representation of the values in the object.

 COMPONENT: gov.va.med.authentication.kernel.InitKaajeeServlet

 VARIABLES:

 This class is included in the kaajee-x.x.x.xxx.jar file and

 is not a separate component. It is listed here only to describe

 how it is referenced in the consuming application's web.xml file.

 Configure KAAJEE Startup Servlet (web.xml file)

 This Startup Servlet is needed by KAAJEE to read configuration parameters.

 For further information regarding these configuration parameters,

 refer to the current KAAJEE documentation.

 Configure this startup servlet in your application's web.xml file.

 The following XML tags shown below are an example of how to configure this startup servlet in the

 application's web.xml file:

 <servlet>

 <servlet-name>KaajeeInit</servlet-name>

 <servlet-class>gov.va.med.authentication.kernel.InitKaajeeServlet</servlet -class>

 <init-param>

 <param-name>kaajee-config-file-location</param-name>

 <param-value>/WEB-INF/kaajeeConfig.xml</param-value>

 </init-param>

 <load-on-startup>3</load-on-startup>

 </servlet>

 In the above example, the <param-value> contains the folder/path location and KAAJEE configuration filename

 relative to the applications's webroot context.

 Also, the <load-on-startup> value contains an integer value of the order in which you wish this servlet to

 start among other configured startup servlets.

 COMPONENT: gov.va.med.authentication.kernel.LoginController

 VARIABLES:

 This class is included in the kaajee-x.x.x.xxx.jar file and

 is not a separate component. It is listed here only to describe

 how it is referenced in the consuming application's web.xml file.

 This servlet is the main controller servlet that processes the login request. It must be configured in the

 application's web.xml file. For further details refer to the current KAAJEE documentation.

 COMPONENT: gov.va.med.authentication.kernel.VistaDivisionVO

 VARIABLES:

 This class is included in the kaajee-x.x.x.xxx.jar file and

 is not a separate component. It is listed here only to describe

 how it is referenced and associated with other component(s).

 VistaDivisionVO Object

 The VistaDivisionVO object is used to store an individual division, when division TreeMaps (i.e., tree

 structure, keyed on Division Station Number strings) are returned by the LoginUserInfoVO methods.

 Listed below are the Class Definition, Constructor Summary and Method Summary:

 public class VistaDivisionVO

 extends java.lang.Object

 implements java.io.Serializable

 Represents a VistA Division, including Station Name and Station Number.

 Constructor Summary

 VistaDivisionVO()

 Instantiates a VistaDivision with all fields set to a null string.

 The methods listed below are for read-only access:

 Method Summary

 boolean getIsDefault()

 Returns whether or not this is set to the default

 Login Division.

 java.lang.String getName()

 Returns the Station Name of the Division,

 presumably from the VistA M Server

 INSTITUTION file (#4) entry (depending

 on the source of the information

 the instance contains)

 java.lang.String getNumber()

 Returns the Station Number of the Division,

 presumably from the VistA M Server

 INSTITUTION file (#4) entry (depending

 on the source of the information

 the instance contains)

 java.lang.String toString()

 Returns a string representation of the Division

 information

 (See also component gov.va.med.authentication.kernel.LoginUserInfoVO

 regarding division TreeMaps returned)

 In order to retrieve this VistaDivisionVO object from these division TreeMaps, the following collection,

 iterator and methods may be used:

 java.util.Set

 Set java.util.TreeMap.keySet()

 java.util.Iterator

 Iterator java.util.Set.iterator()

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 4894

 NAME: FATKAAT TEST ENTRY

 USAGE: Supported ENTERED: AUG 25,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Integration agreement to list the components in FATKAAT that will be exposed for integration.

 ROUTINE:

 COMPONENT: fatkaat_X.X.X.X.jar

 VARIABLES:

 COMPONENT: fatkaatServer_X.X.X.X.jar

 VARIABLES: scope:

 servlet context in a web application that will be secured by FATKAAT exposes:

 1. itself as a java classpath library in the servlet context for a web application.

 2.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 5567

 NAME: XPDPROT

 USAGE: Supported ENTERED: SEP 1,2010

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 A set of calls and extrinsic functions that can be used to manage protocols in the PROTOCOL file during a KIDS install.

 ROUTINE: XPDPROT

 COMPONENT: ADD

 VARIABLES: PARENT Type: Input

 (Required) The name of the protocol you want to add the CHILD protocol to.

 CHILD Type: Input

 (Required) The name of the protocol you are adding to the PARENT protocol.

 MNEMONIC Type: Input

 (Optional) The value you want added to the MNEMONIC field in the ITEM multiple for the CHILD

 in the PARENT protocol.

 SEQUENCE Type: Input

 (Optional) The value you want added to the SEQUENCE field in the ITEM multiple for the CHILD

 in the PARENT protocol.

 ADD(PARENT,CHILD,MNEMONIC,SEQUENCE) is an extrinsic function to add the CHILD protocol to the PARENT protocol

 ITEM multiple.

 Returns 1 for success, 0 for failure.

 COMPONENT: DELETE

 VARIABLES: PARENT Type: Input

 (Required) The name of the protocol you want to delete the CHILD protocol from.

 CHILD Type: Input

 (Required) The name of the protocol you want to delete from the PARENT protocol.

 DELETE(PARENT,CHILD) is an extrinsic function to delete the CHILD protocol from the ITEM multiple of the PARENT

 protocol.

 Returns 1 for success, 0 for failure.

 COMPONENT: RENAME

 VARIABLES: OLD Type: Input

 (Required) The current name of the protocol.

 NEW Type: Input

 (Required) The new name of the protocol.

 RENAME(OLD,NEW) is used to rename a protocol.

 COMPONENT: LKPROT

 VARIABLES: PROTOCOL Type: Input

 (Required) The name of the protocol you want to lookup.

 LKPROT(PROTOCOL) is an extrinsic function that returns the internal entry number of the PROTOCOL.

 COMPONENT: OUT

 VARIABLES: PROTOCOL Type: Input

 (Required) The name of the protocol you want to assign the Out of Order TEXT.

 TEXT Type: Input

 (Required) The text of message to place in the OUT OF ORDER MESSAGE field for the PROTOCOL.

 If set to null, the field will be deleted.

 OUT(PROTOCOL,TEXT) is used to create or delete an Out of Order message for a protocol.

 COMPONENT: TYPE

 VARIABLES: PROTOCOL I Type: Input

 (Required) The internal entry number (IEN) of the protocol.

 TYPE(PROTOCOL) is an extrinsic function that returns value for the PROTOCOL's TYPE field (#4) in the PROTOCOL

 file (#101).

 COMPONENT: FIND

 VARIABLES: RESULT Type: Input

 (Required) The array to return the results, passed by reference.

 RESULT(0)=number of parents found or -1^error message

 RESULT(ien)=protocol name

 PROTOCOL Type: Input

 (Required) The name of the protocol you want find the parents of.

 FIND(RESULT,PROTOCOL) is used to find all parents for the PROTOCOL and return the list in the RESULT array.

 RESULT(0)=number of parents found or -1^error message

 RESULT(ien)=protocol name

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10038

 NAME: HOLIDAY FILE

 USAGE: Supported ENTERED: OCT 28,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 40.5 ROOT: HOLIDAY(

 DESCRIPTION: TYPE: File

 ^HOLIDAY(...

 All fiel Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10044

 NAME: XUS

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XUS

 COMPONENT: H

 VARIABLES: Programmer Halt

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10045

 NAME: XUSHSHP

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XUSHSHP

 COMPONENT: DE

 VARIABLES: Decipher any data string

 COMPONENT: EN

 VARIABLES: Encrypt any data string

 COMPONENT: HASH

 VARIABLES: Hash Electronic Signature

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10046

 NAME: XUWORKDY

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XUWORKDY

 COMPONENT: XUWORKDY

 VARIABLES: Workday calculation

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10047

 NAME: USER FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 3 ROOT: DIC(3,

 DESCRIPTION: TYPE: File

 ^DIC(3,...

 All Fiel Read w/Fileman

 All fields are presently supported for READ access. DO NOT use for new development,

 this file is soon to be retired.

 The file may be referenced during conversion utilities to the New Person file.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10048

 NAME: PACKAGE FILE

 USAGE: Supported ENTERED: OCT 24,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 9.4 ROOT: DIC(9.4,

 DESCRIPTION: TYPE: File

 ^DIC(9.4,...

 All Fiel Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10050

 NAME: XUSESIG

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XUSESIG

 COMPONENT: SIG

 VARIABLES: Verify Electronic Signature

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10051

 NAME: XUVERIFY

 USAGE: Supported ENTERED: JUL 29,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Utilities to check access and verify codes.

 ROUTINE: XUVERIFY

 COMPONENT: XUVERIFY

 VARIABLES: % Type: Both

 On input % - may equal "A","V" OR both "AV"

 On return

 if %=-1 an "^" was entered

 if %=0 an "?" was entered

 if %=1 the Code typed was correct

 if %=2 the Code was typed incorrectly

 Type:

 %DUZ Type: Input

 %DUZ - must equal the users DUZ

 Verify Access & Verify codes Calling this routine from the top gives an interactive request for the users

 Access and/or Verify codes.

 The variables % and %DUZ must be set before running this program % - may equal "A","V" OR both "AV"

 %DUZ - must equal the users DUZ

 After the program is run % will return -1,0,1,2

 if %=-1 an "^" was entered if %=0 an "?" was entered

 if %=1 the Code typed was correct

 if %=2 the Code was typed incorrectly

 COMPONENT: $$CHKAV

 VARIABLES: AVCODE Type: Input

 This value is the access and verify codes entered by the user, delimited by a semi-colon.

 $$CHKAV Type: Output

 The IEN to file 200 is returned if successful, otherwise zero.

 This entry point accepts a string containing the access and verify codes entered by the user, delimited by a

 semi-colon; the pointer to the user in the New Person file #200 is returned if successfully validated,

 otherwise a zero is returned. Usage S USER=$$CHKAV^XUVERIFY(ACCESS_";"_VERIFY)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10052

 NAME: XUSCLEAN

 USAGE: Supported ENTERED: FEB 8,2011

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XUSCLEAN

 COMPONENT: KILL

 VARIABLES: Clear all but Kernel Variables (in Sign-on/Security chapter)

 COMPONENT: XUTL

 VARIABLES: Will delete $JOB ($J) subscripted temporary globals as follows:

 ^TMP($J) and ^TMP(subscript,$J)

 ^UTILITY($J), and ^UTILITY(subscript,$J) (subscripts ROU, GLO, LRLTR will NOT be deleted)

 ^XUTL($J) and ^XUTL(subscript,$J) (subscripts XQO, XGATR, XGKB will NOT be deleted)

 Will also delete ^XUTL("ZISPARAM",$I) and clean up FileMan variables (calls CLEAN^DILF).

 COMPONENT: TOUCH

 VARIABLES: If a task appears to have been running longer than 7 days, Kernel assumes that it really isn't running anymore

 and kills off its temp global and user stack.

 If your task legitimately runs more than 7 days, your task should call TOUCH^XUSCLEAN once a day to notify

 Kernel. This API sets ^XUTL("XQ",$J,"KEEPALIVE")=$H.

 If Kernel sees this node, and $H is less than 7 days ago, Kernel will leave your task alone, unless it

 determines that your task is really dead. If $H is more than 7 days ago, Kernel will assume your task is dead.

 There are no inputs or outputs.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10053

 NAME: XUSERNEW

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XUSERNEW

 COMPONENT: $$ADD

 VARIABLES: Add New Person File Entry (in Sign-on/Security chapter)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10056

 NAME: STATE FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 5 ROOT: DIC(5,

 DESCRIPTION: TYPE: File

 ^DIC(5,...

 The entire file is supported for 'READ' access only.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10060

 NAME: NEW PERSON FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 200 ROOT: VA(200,

 DESCRIPTION: TYPE: File

 ^All Fields

 All fields supported for Read w/FileMan only for "new" code. (Existing direct global reads will be phased out based on

 management decisions.) Top level .01 fields may not point to this file.

 ^Fields from other Packages

 These fields are fully accessible to the creator package.

 ^KEY multiple 200.051

 50.1 KEYS LAYGO

 For keys in the namespace of the custodial package only.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10063

 NAME: %ZTLOAD

 USAGE: Supported ENTERED: APR 20,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine provides several API's into a task.

 ROUTINE: %ZTLOAD

 COMPONENT: %ZTLOAD

 VARIABLES: Create & Schedule a task

 COMPONENT: REQ

 VARIABLES: Requeue a Task (in Task Manager chapter)

 COMPONENT: KILL

 VARIABLES: Delete a Task (in Task Manager chapter)

 COMPONENT: ISQED

 VARIABLES: Task Queue Status (in Task Manager chapter)

 COMPONENT: DQ

 VARIABLES: Unschedule a Task (in Task Manager chapter)

 COMPONENT: $$S(msg)

 VARIABLES: msg Type: Input

 (optional) Allows you to leave a message for the creator of the TaskMan task.

 $$S Type: Output

 Returns:

 * 1-Creator of the task that has asked the task to stop.

 * 0-For all other cases.

 Check for Task Stop Request (in Task Manager chapter)

 COMPONENT: STAT

 VARIABLES: ZTSK Type: Both

 (required) The task number to look up. It must be defined on the current volume set. ZTSK(0)

 Returns:

 * 1-Task is defined.

 * 0-Task is not defined.

 ZTSK(1): Numeric status code from 0 to 5 indicating the status of the task.

 ZTSK(2): Status text describing the status of the task. Its value corresponds with the status

 code in ZTSK(1). The possible values and their meanings are as follows:

 * ZTSK(1) = 0 and ZTSK(2) = "Undefined" means the task does not exist on this volume set.

 * ZTSK(1) = 1 and ZTSK(2) = "Active: Pending" means the task is scheduled, waiting for an

 I/O device, waiting for a volume set link, or waiting for a partition in memory.

 * ZTSK(1) = 2 and ZTSK(2) = "Active: Running" means the task has started running.

 * ZTSK(1) = 3 and ZTSK(2) = "Inactive: Finished" means the task quit normally after

 running.

 * ZTSK(1) = 4 and ZTSK(2) = "Inactive: Available" means the task was created without

 being scheduled or was edited without being rescheduled.

 * ZTSK(1) = 5 and ZTSK(2) = "Inactive: Interrupted" means the task was interrupted before

 it would have quit normally. Causes can include bad data, user intervention, hard error, and

 many other possibilities.

 Task Status (in Task Manager chapter)

 COMPONENT: $$TM

 VARIABLES: X Type: Output

 If TaskMan is running on the current volume set, 1 is returned; otherwise 0 is returned.

 Check if TaskMan is Running. Usage: S X=$$TM^%ZTLOAD

 COMPONENT: $$PSET(ztsk)

 VARIABLES: ZTSK Type: Input

 The task number.

 Sets a task as persistent. A task that is marked as persistent will be restarted if the Taskmaster fines that

 the lock on ^%ZTSCH("TASK",tasknumber) has been removed. This adds the requirement that the task only use

 incremental locks, that the entry in ^%ZTSK(task... be left in place as this will be used to restart the task,

 and that the task can be restarted from the data that is in the ^%ZTSK(task,... global.

 Returns 1 if the flag was set, othewise returns 0.

 COMPONENT: PCLEAR(ztsk)

 VARIABLES: ztsk Type: Input

 (required) The TaskMan task number.

 Clears the persistent flag for a task

 COMPONENT: $$JOB(ztsk)

 VARIABLES: ztsk Type: Input

 Task Number

 $$JOB Type: Output

 Returns the job number for the specified running TaskMan task. If the specified task is not

 running, it returns null.

 This extrinsic function returns the job number for a running TaskMan task.

 Format: $$JOB^%ZTLOAD(ztsk)

 COMPONENT: DESC

 VARIABLES: descriptio Type: Input

 (required) The TaskMan task description.

 list Type: Output

 Returns a list of task(s) with the specified description.

 This API finds tasks with a specific description.

 COMPONENT: $$ASKSTOP(ztsk)

 VARIABLES: output Type: Output

 Returns:

 * 0-"Busy". If it returns "Busy" it could mean that the task is locked, someone else is

 changing it, or TaskMan is starting to run it.

 * 1-"Task missing" or Task "Finished running". If it returns "Task missing" it could mean

 that it was an incorrect input task number, but it is most likely that the task ran and was

 removed after running.

 If it returns "Finished running" it means that the task was finished running before the

 API request could go through, so the API could not stop an already finished task.

 * 2-"Asked to stop" or "Unscheduled". If it returns "Asked to Stop" the task has started

 running and the stop flag has been set, so if the application checks ($$S^%ZTLOAD) it should

 stop.

 If it returns "Unscheduled" it was successful and the task is not scheduled any more.

 This extrinsic function asks TaskMan to stop running a specified task. Also, it checks for the ZTNAME variable,

 and if defined, it uses it instead of DUZ to value the STOP FLAG field (#59.1). ZTNAME is supported by

 applications calling this API to indicate the process that asked the task to stop.

 COMPONENT: OPTION(option,list)

 VARIABLES: option Type: Input

 (required) The name of the specific option.

 list Type: Output

 Returns a list of TaskMan task(s) for the specified option.

 This API finds TaskMan tasks for a specific option.

 COMPONENT: RTN(routine,list)

 VARIABLES: routine Type: Input

 (required) The name of the specific routine called.

 list Type: Output

 Returns a list of TaskMan task(s) that call the specified routine.

 This API finds TaskMan tasks that call a specific routine.

 COMPONENT: ZTSAVE(strvar,kill)

 VARIABLES: strvar Type: Input

 (required) Sting of variable names to be stored in the ZTSAVE array.

 kill Type: Input

 (optional) Any positive value will first KILL the ZTSAVE array.

 ZTSAVE Type: Output

 Stores the string of input variables in the ZTSAVE array.

 This API stores a string of variables in the ZTSAVE array.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10074

 NAME: XQH

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQH

 COMPONENT: EN

 VARIABLES: Display Help Frames (in Menu Manager chapter)

 COMPONENT: EN1

 VARIABLES: Display Help Frames (in Menu Manager chapter)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10075

 NAME: OPTION FILE

 USAGE: Supported ENTERED: MAR 1,2011

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 19 ROOT: DIC(19,

 DESCRIPTION: TYPE: File

 ^DIC(19,

 .01 NAME 0;1 Read w/Fileman

 1 MENU TEXT 0;2 Read w/Fileman

 3.5 DESCRIPTION WP-DIC(1 Read w/Fileman

 2 OUT OF ORDER MESSAGE 0;3 Read w/Fileman

 ^DIC(19,D0,"RPC",

 .01 RPC 0;1 Both R/W w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10076

 NAME: XUSEC GLOBAL

 USAGE: Supported ENTERED: DEC 8,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 200 ROOT: XUSEC(

 DESCRIPTION: TYPE: File

 ^XUSEC(KEY,DUZ)

 XUSEC(KEY,DUZ) is supported for "Read Access" by all. Write access is limited to keys in assigned namespace only.

 Access is not allowed to ^XUSEC(0,...

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10077

 NAME: XQ92

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQ92

 COMPONENT: NEXT

 VARIABLES: Restricted Times Check (in menu Manager chapter)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10078

 NAME: XQCHK

 USAGE: Supported ENTERED: FEB 3,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQCHK

 COMPONENT: OP

 VARIABLES: Current Option Check (in Menu Manager chapter)

 COMPONENT: $$ACCESS

 VARIABLES: DUZ Type: Input

 The users DUZ.

 option Type: Input

 This can be the option name or option IEN.

 This extrinsic function is used to find out if a user has access to a particular option.

 W $$ACCESS(DUZ,Option IEN) returns:

 -1:no such user in the New Person File

 -2: User terminated or has no access code

 -3: no such option in the Option File

 0: no access found in any menu tree the user owns

 All other cases return a 4-piece string stating

 access ^ menu tree IEN ^ a set of codes ^ key

 O^tree^codes^key: No access because of locks (see XQCODES below)

 where 'tree' is the menu where access WOULD be allowed

 and 'key' is the key preventing access

 1^OpIEN^^: Access allowed through Primary Menu

 2^OpIEN^codes^: Access found in the Common Options

 3^OpIEN^codes^: Access found in top level of secondary option

 4^OpIEN^codes^: Access through a the secondary menu tree OpIEN.

 XQCODES can contain:

 N=No Primary Menu in the User File (warning only)

 L=Locked and the user does not have the key (forces 0 in first piece)

 R=Reverse lock and user has the key (forces 0 in first piece)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10079

 NAME: XQDATE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQDATE

 COMPONENT: XQDATE

 VARIABLES: Current Date/Time (in Menu Manager chapter)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10080

 NAME: XQH4

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQH4

 COMPONENT: ACTION

 VARIABLES: Print Help Frames (in Menu Manager chapter)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10081

 NAME: XQALERT

 USAGE: Supported ENTERED: DEC 8,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQALERT

 COMPONENT: DELETE

 VARIABLES: Clear Obsolete Alerts (in Tools chapter)

 COMPONENT: DELETEA

 VARIABLES: Clear Obsolete Alerts (in Tools chapter)

 COMPONENT: SETUP

 VARIABLES: The new SETUP1 entry point should be used instead of this entry point since it returns an indicator of success

 or failure on setting up the specified alert. In new work this entry point should NOT be used, Create Alerts

 (in Tools chapter)

 COMPONENT: PATIENT

 VARIABLES:

 COMPONENT: GETACT

 VARIABLES: Return need variables for specific alert.

 COMPONENT: USER

 VARIABLES: Returns current alerts for the user in an array.

 COMPONENT: USERDEL

 VARIABLES: Delete undesired alerts for a user.

 COMPONENT: SETUP1

 VARIABLES: This entry point should be used instead of SETUP. This entry point is called as a function and Returns a

 string beginning with 1 if successful, 0 if not successful. If successful the second piece is the IEN in the

 Alert Tracking File and the third piece is the value of XQAID. If not successful XQALERR is defined and

 contains reason for failure.

 COMPONENT: ACTION

 VARIABLES: This entry point can be used to have the action for a specific alert for the user executed. The alert ID for

 the desired alert is passed as an argument.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10086

 NAME: %ZIS

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: %ZIS

 COMPONENT: %ZIS

 VARIABLES: Standard device call

 COMPONENT: HOME

 VARIABLES: Return 'HOME' device characteristics

 COMPONENT: HLP1

 VARIABLES: Display Brief Help

 COMPONENT: HLP2

 VARIABLES: Display Help Frames

 COMPONENT: $$REWIND

 VARIABLES: Rewind Sequential tape devices

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10088

 NAME: %ZISS

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: %ZISS

 COMPONENT: KILL

 VARIABLES: Kill Screen Parameters

 COMPONENT: ENS

 VARIABLES: Collect Screen Parameters

 COMPONENT: ENDR

 VARIABLES: Collect Screen Parameters

 COMPONENT: GKILL

 VARIABLES: Kill Graphic Parameters

 COMPONENT: GSET

 VARIABLES: Collect Graphic Parameters

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10089

 NAME: %ZISC

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: %ZISC

 COMPONENT: %ZISC

 VARIABLES: IO('C') Type: Input

 Set to null. Close the current device even if it is the primary device. Optional.

 Close the device Prefered close logic over X ^%ZIS("C").

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10090

 NAME: INSTITUTION FILE

 USAGE: Supported ENTERED: OCT 24,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 4 ROOT: DIC(4,

 DESCRIPTION: TYPE: File

 ^DIC(4,...

 ENTIRE F Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10093

 NAME: SERVICE/SECTION FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 49 ROOT: DIC(49,

 DESCRIPTION: TYPE: File

 ^DIC(49,...

 All fiel Read w/Fileman

 Write access if authorized through local IRM.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10096

 NAME: Z OPERATING SYSTEM FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT: %ZOSF(

 DESCRIPTION: TYPE: File

 All nodes exported by Kernel are useable.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10097

 NAME: %ZOSV

 USAGE: Supported ENTERED: JUN 29,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine is OS specific, and provides a interface to OS functions.

 ROUTINE: %ZOSV

 COMPONENT: GETENV

 VARIABLES: Display Environment Information (in Tools chapter)

 COMPONENT: T0

 VARIABLES: Start RT Measure (in Tools chapter)

 COMPONENT: T1

 VARIABLES: Stop RT Measure (in Tools chapter)

 COMPONENT: LOGRSRC

 VARIABLES:

 COMPONENT: $$LGR

 VARIABLES: Get last global reference

 COMPONENT: $$EC

 VARIABLES: Get error code.

 COMPONENT: SETNM(name)

 VARIABLES: name Type: Input

 This is a 1--15 char name to be given to the process at the VMS level.

 This entry point is just a parameter passing version of SETENV^%ZOSV. It only has meaning on DSM for VMS

 system, otherwise it just quits.

 COMPONENT: SETENV

 VARIABLES: X Type: Input

 This is a 1-15 char name to be given to the process at the VMS level.

 It only has meaning on DSM for VMS system, otherwise it just quits. It sets the VMS process name.

 COMPONENT: $$ACTJ

 VARIABLES: Returns the number of active jobs in the scope of this process. The same as ^%ZOSF("ACTJ").

 COMPONENT: $$AVJ

 VARIABLES: Returns a best effort on the number of available jobs. The number of new jobs that could be started. The same

 as ^%ZOSF("AVJ").

 COMPONENT: $$VERSION([flag])

 VARIABLES: flag Type: Input

 [optional] If you pass a value of 1, the Mumps system name is returned instead of the version

 number. Note that the name is as defined by the Mumps vendor and doesn't necessarily

 correspond with the OS name stored in ^%ZOSF("OS").

 return Type: Output

 The Mumps system version number or name depending on optional first parameter.

 Use $$VERSION^%ZOSV([flag]) to return the Mumps system version number or name.

 In days of old, the Mumps implementation was both the Mumps language and the operating system. That is why in

 old documentation it is referred to as the OS.

 COMPONENT: $$OS

 VARIABLES: This function returns the underlying operating system such as VMS, UNIX or NT. It is only fully developed for

 Cache/OpenM system. See ICR 3522 for more details.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10101

 NAME: XQOR

 USAGE: Supported ENTERED: MAR 7,1994

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQOR

 COMPONENT: EN

 VARIABLES: X Type: Input

 Identifies the initial protocol that EN^XQOR should process. X should be in variable pointer

 format. For example, X="1234;ORD(101," would cause the processing to start with the protocol

 that has an internal entry number of 1234.

 An alternative to using variable pointer format is to set X equal to the name or number of

 the protocol and DIC equal to the number or global reference of the file you are working in

 (generally the Protocol file (101)).

 This is the main routine for navigating protocols. The routine processes the initial protocol and the

 subordinate protocols. This processing of subordinate protocols happens according to the type of protocol and

 the navigation variables that get set along the way.

 COMPONENT: EN1

 VARIABLES: X Type: Input

 See description for EN^XQOR.

 This entry point is identical to EN^XQOR, except that the entry and exit actions of the initial protocol are

 not executed. This entry point provides backwards compatibility with the way Kernel 6 processed protocols that

 were defined in the Option file.

 COMPONENT: MSG(PROTOCOL,.MSGTEXT)

 VARIABLES: PROTOCOL Type: Input

 The name of the protocol the HL7 message will be associated with.

 MSGTEXT Type: Input

 The array containing the HL7 message.

 This entry point is used to enable HL7 messaging through the XQOR unwinder.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10102

 NAME: XQORM1

 USAGE: Supported ENTERED: MAR 7,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQORM1

 COMPONENT: DISP

 VARIABLES: X Type: Input

 Must be "?".

 If you have replaced the standard help by setting XQORM("??"), the menu selections may be displayed from you

 help code by calling DISP^XQORM1 with X="?"

 DISP^XQORM1 should only be called from within the code used by XQORM("??").

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10103

 NAME: XLFDT

 USAGE: Supported ENTERED: NOV 27,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Several date/time API's.

 ROUTINE: XLFDT

 COMPONENT: $$HTFM(x,y)

 VARIABLES: To change a date from $H format to VA FileMan format.

 arguments: x $H date (in quotes)

 y 1 (optional) to return the date portion only (no seconds)

 COMPONENT: $$FMTH(x,y)

 VARIABLES: To change a date from VA FileMan format to $H format.

 arguments: x FileMan date

 y 1 (optional) to return the date portion only (no seconds)

 COMPONENT: $$HTE(x,y)

 VARIABLES: To change a date in $H format to an external format

 arguments: x $H date (in quotes)

 y see FMTE(x,y) for alternate values

 COMPONENT: $$FMTE(x,y)

 VARIABLES: To change a date in VA FileMan format to an external format.

 COMPONENT: $$DOW(x,y)

 VARIABLES: To change a date in VA FileMan format to the corresponding day of the week.

 COMPONENT: $$HDIFF(x1,x2,x3)

 VARIABLES: To calculate the difference between two dates in $H format.

 COMPONENT: $$FMDIFF(x1,x2,x3)

 VARIABLES: To calculate the difference between two dates in VA FileMan format. $H date in quotes. x1-x2=x3. x3 also

 serves as an arguement

 1, return difference in days

 2, return difference in seconds

 3, return difference in DD HH:MM:SS format

 COMPONENT: $$HADD(x,d,h,m,s)

 VARIABLES: To add days, hours, minutes, and seconds to a date in $H format (to x)

 COMPONENT: $$FMADD(x,d,h,m,s)

 VARIABLES: To add days, hours, minutes, and seconds to a dte in VA FileMan format (to x).

 COMPONENT: $$DT

 VARIABLES: Returns current date in FileMan format.

 COMPONENT: $$NOW

 VARIABLES: Returns current date/time in FileMan format.

 COMPONENT: $$FMTHL7(fm_date/time)

 VARIABLES: To change a date from VA FileMan format to HL7 format including the time offset.

 W $$FMTHL7^XLFDT(3001127.1525) => 200011271525-0800

 COMPONENT: $$HL7TFM(HL7 date/time[,Local/Uct])

 VARIABLES: To change a date from HL7 format to VA FileMan format. W $$HL7TFM^XLFDT("200011271525-0700") => 3001127.1525

 The optional second parameter controls if any time offset is applied to the time. If a time offset is included

 then time offset can be applied to give UCT time or the local time offset from the Mailman Time Zone file can

 be used to give Local time.

 To get UCT time W $$HL7TFM^XLFDT("200011271525-0700","U") => 3001127.2225

 To get Local time in PST. W $$HL7TFM^XLFDT("200011271525-0700","L") => 3001127.1425

 COMPONENT: $$SCH(schedule,lasttime,futureflag)

 VARIABLES: schedule Type: Input

 This is a string that describes the schedule. From the Kernel Library Doc.

 nS add n seconds to base_date

 nH add n hours to base_date

 nD add n days to base_date

 nM add n months to base_date

 $H;$H;$H List of $H dates

 nM(list) complex month increment ie: 1M(15,L)

 dd[@time] day of month ie: 12

 nDay[@time] day of week in month ie: 1M

 first monday

 Day

 L last day of month

 LDay ie: LW last wednesday of month

 Day[@time]...

 Day

 D = weekday

 E = weekend

 Day = M monday

 T tuesday

 W wednesday

 R thursday

 F friday

 S saturday

 U sunday

 lasttime Type: Input

 This is the last date/time (or base time) for the schedule. The next date/time is figured

 from this point in time. It can be in FileMan format e.g. 3011018.08 or in $H format e.g.

 58730,28800.

 futureflag Type: Input

 This flag if set to 1 wil check that the returned date/time is greated than the current

 date/time.

 This API decodes a schedule to give the next time in the schedule. See the Kernel Library documentation for

 more detail on the schedule string. The return value is a Fileman format date/time.

 COMPONENT: $$SEC(FM or $H value)

 VARIABLES: This entry point will convert either a FM or $H value to the number of seconds since the start for $H. W

 $$SEC^XLFDT(3021118.1347) =>> 5108536020

 COMPONENT: $$%H(seconds)

 VARIABLES: This entry point converts the output of $$SEC^XLFDT back to a $H value.

 W $$%H^XLFDT(5108536020) =>> 59126,49620

 COMPONENT: $$TZ()

 VARIABLES: This entry point returns the Time Zone offset from UCT.

 For Pacific standard time: W $$TZ^XLFDT =>> -0800

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10104

 NAME: XLFSTR

 USAGE: Supported ENTERED: JUL 30,2001

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XLFSTR

 COMPONENT: $$UP(x)

 VARIABLES: To convert the string in x to all uppercase letters.

 COMPONENT: $$LOW(x)

 VARIABLES: To convert the string in x to all lowercase letters.

 COMPONENT: $$STRIP(x,y)

 VARIABLES: To strip all instances of character y in string x.

 COMPONENT: $$REPEAT(x,y)

 VARIABLES: To repeat the value of x for y number of times.

 COMPONENT: $$INVERT(x)

 VARIABLES: To invert the order of characters in a string.

 COMPONENT: $$REPLACE(in,spec)

 VARIABLES: Uses a Multi character $TRanslate to replace specified strings.

 COMPONENT: $$LJ(s,i,p)

 VARIABLES: Left Justify

 COMPONENT: $$RJ(s,i,p)

 VARIABLES: Right Justify

 COMPONENT: $$CJ(s,i,p)

 VARIABLES: Center Justify

 COMPONENT: $$TRIM(s,f,c)

 VARIABLES: s Type: Input

 This is the string to be worked on.

 f Type: Input

 This is a optional flag variable and can have a value of "L" to trim charaters from the

 left/begining of the string. A value of "R" will trim charaters from the right/end of the

 string. Or it can have "LR" to trim both ends. If this value is not sent it defaults to

 "LR".

 c Type: Input

 This optional input defaults to a space, It can be set to trim another charater from the

 input string.

 $$TRIM^XLFSTR(s[,"[L][R]"][,char]). This call will trim spaces or other char from the left, right or both

 sides of a input string. Examples: W "["_$$TRIM^XLFSTR(" A B C ")_"]" => [A B C] W "["_$$TRIM^XLFSTR("//A B

 C//",,"/")_"]" => [A B C] W "["_$$TRIM^XLFSTR("//A B C//","L","/")_"]" => [A B C//] W "["_$$TRIM^XLFSTR("//A B

 C//","r","/")_"]" => [//A B C]

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10105

 NAME: XLFMTH

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XLFMTH

 COMPONENT: $$ABS(%X)

 VARIABLES: Returns the absolute value of the number in %X.

 COMPONENT: $$MIN(%1,%2)

 VARIABLES: Returns the minimum value comparing the number in %1 with the number in %2.

 COMPONENT: $$MAX(%1,%2)

 VARIABLES: Returns the maximum value comparing the number in %1 with the number in %2.

 COMPONENT: $$LN(%X)

 VARIABLES: Natural Log

 COMPONENT: $$EXP(%X)

 VARIABLES: To return e to the %X power.

 COMPONENT: $$PWR(%X,%Y)

 VARIABLES: To raise %X to the %Y power.

 COMPONENT: $$LOG(%X)

 VARIABLES: Log base 10

 COMPONENT: $$TAN(%X)

 VARIABLES: Tangent in radians

 COMPONENT: $$SIN(%X)

 VARIABLES: Sine in radians

 COMPONENT: $$COS(%X)

 VARIABLES: Cosine in radians

 COMPONENT: $$DTR(%X)

 VARIABLES: Degrees to radians

 COMPONENT: $$RTD(%X)

 VARIABLES: Radians to degrees

 COMPONENT: $$PI()

 VARIABLES: Returns Pi

 COMPONENT: $$E()

 VARIABLES: Returns e

 COMPONENT: $$SQRT(%X)

 VARIABLES: Square root

 COMPONENT: $$SD(%s1,%s2,%n)

 VARIABLES: Standard Deviation

 COMPONENT: $$TANDEG(X,PR)

 VARIABLES: Tangent in degrees

 COMPONENT: $$SINDEG(X,PR)

 VARIABLES: Sine in degrees

 COMPONENT: $$COSDEG(X,PR)

 VARIABLES: Cosine in degrees

 COMPONENT: $$DMSDEC(X,PR)

 VARIABLES: Degrees:min:sec to decimal

 COMPONENT: $$DECDMS(X,PR)

 VARIABLES: Decimal to degrees:min:sec

 COMPONENT: $$CSCDEG(X,PR)

 VARIABLES: cosecant in degrees

 COMPONENT: $$CSC(X,PR)

 VARIABLES: Cosecant in radians

 COMPONENT: $$SECDEG(X,PR)

 VARIABLES: Secant in degrees

 COMPONENT: $$SEC(x,pr)

 VARIABLES: Secant in radians

 COMPONENT: $$COTDEG(X,PR)

 VARIABLES: Cotangent in degrees

 COMPONENT: $$COT(X,PR)

 VARIABLES: Cotangent in radians

 COMPONENT: $$ASINDEG(X,PR)

 VARIABLES: Arc-tangent in degrees

 COMPONENT: $$ASIN(X,PR)

 VARIABLES: Arc-sine in radians

 COMPONENT: $$ACOSDEG(X,PR)

 VARIABLES: Arc-cosine in degrees

 COMPONENT: $$ACOS(X,PR)

 VARIABLES: Arc-cosine in radians

 COMPONENT: $$ATANDEG(X,PR)

 VARIABLES: Arc-tangent in degrees

 COMPONENT: $$ATAN(X,PR)

 VARIABLES: Arc-tangent in radians

 COMPONENT: $$ACOTDEG(X,PR)

 VARIABLES: Arc-cotangent in degrees

 COMPONENT: $$ACOT(X,PR)

 VARIABLES: Arc-cotangent in radians

 COMPONENT: $$ASECDEG(X,PR)

 VARIABLES: Arc-secant in degrees

 COMPONENT: $$ASEC(X,PR)

 VARIABLES: Arc-secant in radians

 COMPONENT: $$ACSCDEG(X,PR)

 VARIABLES: Arc-cosecant in degrees

 COMPONENT: $$ACSC(X,PR)

 VARIABLES: Arc-cosecant in radians

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10114

 NAME: DEVICE FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 3.5 ROOT: %ZIS(1,

 DESCRIPTION: TYPE: File

 ^%ZIS(1,D0,0)

 .01 NAME 0;1 Read w/Fileman

 Field .01 - Name, is supported for read only. Applications may point to the Device

 file. The name must be passed to %ZIS through ION, and the name may be found by:

 S X="`ien",DIC=3.5,DIC(0)="" D ^DIC S ION=$P(Y,U,2) Likewise, EN^DIQ1 may also be

 used to retrieve the text for ION. In a future version or patch, %ZIS will be

 enhanced to accept the accent grav _ ien.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10140

 NAME: XQORM

 USAGE: Supported ENTERED: MAR 7,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XQORM

 COMPONENT: EN

 VARIABLES: XQORM Type: Input

 A variable pointer to the menu that should be displayed, e.g. XQORM="1234;ORD(101,"

 XQORM(0) Type: Input

 A string of flags that control the display and prompting of the menu. numeric Maximum

 number of selections allowed. A Prompt for a selection from the menu D Display

 the menu.

 Y() Type: Output

 This array contains the items that the user selected from the menu.

 This entry point handles the display of and selection from a menu. Note that this routine processes a single

 menu only. This is the call EN^XQOR uses to obtain menu selections. The caller is responsible to handle any

 selections from the menu that are returned in the Y array. If you want navigation to the selected items

 handled for you, use the EN^XQOR entry point. The menus handled by this routine are the multiple selection,

 multiple column menus that are typical in OE/RR.

 COMPONENT: XREF

 VARIABLES: XQORM Type: Input

 Variable pointer to the protocol which should be recompiled.

 Menus are compiled into the XUTL global. This should happen automatically. If you need to force a menu to

 recompile, XREF^XQORM can be used to do that.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: KERNEL
 ICR#: 10156

 NAME: OPTION FILE

 USAGE: Supported ENTERED: MAY 31,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 19 ROOT: DIC(19,

 DESCRIPTION: TYPE: File

 Exporting, deleting, updating Options by Namespace via KIDS is permitted. Linking menu options from other packages requires

 IAs between the packages whose options are being "linked".

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 1958

 NAME: DBIA1958

SUBSCRIBING PACKAGE: IMAGING

 ORDER ENTRY/RESULTS REPORTING

 USAGE: Supported ENTERED: MAR 19,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API will get Lab results for a given patient based on various input parameters.

 ROUTINE: LR70SUM

 COMPONENT: EN(Y,DFN,SDATE,EDATE,COUNT,GIOM,SUBHEAD)

 VARIABLES: Y Type: Output

 Tells the calling routine where the data is stored.

 DFN Type: Input

 Internal number of the patient as stored in ^DPT(DFN

 SDATE Type: Input

 Start date to search for results (optional)

 EDATE Type: Input

 EDATE=End date to search for results (optional)

 COUNT Type: Input

 COUNT=Count of results to send (optional)

 GIOM Type: Input

 GIOM=Right margin - default 80 (optional)

 SUBHEAD Type: Input

 SUBHEAD=Array of subheaders from file 64.5, misc, micro & AP to show results. Null param =

 get all results

 This is a 'silent' call. No prompts are given. The results are formatted and stored in the global:

 ^TMP("LRC",$J) "CH" type results are stored in the pre-defined cumulative format. Headers for each format are

 stored in: ^TMP("LRH",$J,NAME)=line # An index of where tests can be found in a report are found in:

 ^TMP("LRT",$J,print name)=header^line # of 1st occurrence Test entries without a header means that the test

 is defined in the report, but there are no results.

 COMPONENT: GET64(Y)

 VARIABLES: Y Type: Output

 This is the name of the array that the report headers are returned in.

 This entry point will get a list, in Y(name) of all the minor headers from the Lab Reports file. It also

 includes in the Y array the names of other report headers not included in the Lab Reports file such as

 S Y("MISCELLANEOUS TESTS")=""

 S Y("MICROBIOLOGY")=""

 S Y("BLOOD BANK")=""

 S Y("CYTOPATHOLOGY")=""

 S Y("SURGICAL PATHOLOGY")=""

 S Y("EM")=""

 This call is intended to be used with EN^LR7OSUM when it is necessary to pre-select a specific area within Lab

 for retreiving results.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 2766

 NAME: Formatted Lab Results

 USAGE: Supported ENTERED: MAR 5,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These calls get formatted Lab Results output into a global array. These formats are based on definitions in the Lab Reports

 file (64.5) for CH subscripted tests. For AP, Micro and Blood Bank, the format is a hard coded traditional format.

 ROUTINE: LR7OSUM

 COMPONENT: EN

 VARIABLES: DFN Type: Input

 Patient ID

 SDATE Type: Input

 Start date to search for results (optional).

 EDATE Type: Input

 End date to search for results (optional).

 COUNT Type: Input

 Number of results to send (optional).

 GIOM Type: Input

 Right margin. Default is 80 (optional).

 SUBHEAD Type: Input

 Array of subheaders to include in report (optional). These are subheaders from file 64.5 for

 CH subscripted tests. For other lab areas, they are:

 SUBHEAD("MICROBIOLOGY")

 SUBHEAD("BLOOD BANK")

 SUBHEAD("MISCELLANEOUS TESTS")

 SUBHEAD("CYTOPATHOLOGY")

 SUBHEAD("SURGICAL PATHOLOGY")

 SUBHEAD("EM")

 SUBHEAD("AUTOPSY") No entry in this parameter gets everything.

 Y Type: Output

 This tells where the formatted output is (^TMP("LRC",$J)).

 This gets a 'silent', formatted report of lab results.

 COMPONENT: AP

 VARIABLES: DFN Type: Input

 Patient ID

 This entry point gets all Anatomic Pathology results in a formatted array.

 COMPONENT: GET64

 VARIABLES: Y Type: Output

 Array containing the subheaders from file 64.5.

 This gets an array of minor headers from the Lab Reports file (64.5).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 4989

 NAME: LR7OSAP4- GET AP RESULTS

 USAGE: Supported ENTERED: MAY 10,2007

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Routine LR7OSAP4 to get Anatomic Path results from either TIU or lab files.

 ;

 EN(LRX,LRDFN,LRSS,LRI) ;Get Anatomic Path results from either TIU or Lab files

 ; LRX is the global where the output is placed. Calling package is resp onsible for cleaning this up

 ; LRDFN = Lab Patient ID

 ; LRSS = Lab Subscript

 ; LRI = Inverse Date/Time from ^LR(LRDFN,LRSS,LRIDT)

 ROUTINE: LR7OSAP4

 COMPONENT: EN

 VARIABLES: LRX Type: Both

 LRX is the global where the output is placed.

 LRDFN Type: Input

 Lab Patient ID (File 63 IEN)

 LRSS Type: Input

 Lab Subscript- ie. SP for Surgical Pathology

 EM for Electron Microscopy

 CY for Cytology

 LRI Type: Input

 Inverse Date/Time from ^LR(LRDFN,LRSS,LRIDT)

 LR7OSAP4

 ;

 EN(LRX,LRDFN,LRSS,LRI) ;Get Anatomic Path results from either TIU or Lab files

 ; LRX is the global where the output is placed. Calling package is resp onsible for cleaning this up

 ; LRDFN = Lab Patient ID

 ; LRSS = Lab Subscript

 ; LRI = Inverse Date/Time from ^LR(LRDFN,LRSS,LRIDT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 5161

 NAME: Laboratory Reference Range Uniform Formatting

 USAGE: Supported ENTERED: MAR 25,2008

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 In order to insure the uniform formatting of the display of laboratory results reference ranges a new API has been created.

 This new API is EN^LRLRRVF.

 It is to be used as part of a set statement. For example:

 S LRDV=$$EN^LRLRRVF(RLV,RHV)

 It has two input values. RLV - Reference Low Value, RHV - Reference High value

 Both input values are required, but either or both can be set to null.

 It will return the laboratory result refference ranges formatting using the following guidelines:

 1. If neither low or high reference value is defined, nothing prints. 2. If the low only is defined and it is equal to 0 it

 prints: Ref: >=0 3. If the low only is defined and the first character is "<" or ">"

 it prints: Ref: low_value 4. If the low only is defined and it is numeric it prints: Ref: >=10 5. If the low only is

 defined and it is alphanumeric it prints:

 Ref: RVLow 6. If the high only is defined and it is equal to 0 it prints: Ref: 0 7. If the high only is defined and the

 first character is "<" or ">"

 it prints: Ref: high_value 8. If the high only is defined and it is numeric it prints: Ref: <=20 9. If the high only is

 defined and it is alphanumeric it prints:

 Ref: RVHIGH 10. If both low and high are defined it prints: RVLOW - RVHIGH or 10 - 20.

 This is a example display. The example results and the ranges are in the same order as the guidelines.

 ---- MISCELLANEOUS TESTS ----

 DATE TIME SPECIMEN TEST VALUE Ref ranges

 --

 10/25/2007 15:49 BLOOD CML-F: 10 10/25/2007 16:06 BLOOD CML-F: 10

 Ref: >=0 10/25/2007 16:06 BLOOD CML-F: 10 Ref: >10 10/25/2007 16:10 BLOOD CML-F:

 9 L Ref: >=10 10/25/2007 16:24 BLOOD CML-F: 10 Ref: RVLOW 10/25/2007 16:29 BLOOD

 CML-F: 10 H Ref: 0 10/25/2007 16:29 BLOOD CML-F: 10 H Ref: <20 10/25/2007

 16:32 BLOOD CML-F: 22 H Ref: <=20 10/25/2007 17:35 BLOOD CML-F: 10

 Ref: RVHIGH 10/25/2007 17:38 BLOOD CML-F: 15 10 - 20

 numeric ranges 10/25/2007 17:45 BLOOD CML-F: 17 RVLOW - RVHIGH

 alphanumeric ranges

 ROUTINE: LRLRVRF

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10054

 NAME: LABORATORY TEST FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 60 ROOT: LAB(60,

 DESCRIPTION: TYPE: File

 ^LAB(60,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10055

 NAME: TOPOGRAPHY FIELD FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 61 ROOT: LAB(61,

 DESCRIPTION: TYPE: File

 ^LAB(61,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10130

 NAME: MORPHOLOGY FIELD FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 61.1 ROOT: LAB(61.1,

 DESCRIPTION: TYPE: File

 ^LAB(61.1,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10131

 NAME: ETIOLOGY FIELD FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 61.2 ROOT: LAB(61.2,

 DESCRIPTION: TYPE: File

 ^LAB(61.2,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10132

 NAME: FUNCTION FIELD FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 61.3 ROOT: LAB(61.3,

 DESCRIPTION: TYPE: File

 ^LAB(61.3,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10133

 NAME: DISEASE FIELD FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 61.4 ROOT: LAB(61.4,

 DESCRIPTION: TYPE: File

 ^LAB(61.4,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10134

 NAME: PROCEDURE FIELD FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 61.5 ROOT: LAB(61.5,

 DESCRIPTION: TYPE: File

 ^LAB(61.5,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LAB SERVICE
 ICR#: 10135

 NAME: OCCUPATION FIELD FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 61.6 ROOT: LAB(61.6,

 DESCRIPTION: TYPE: File

 ^LAB(61.6,D0,0)

 .01 NAME 0;1 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 457

 NAME: CLINICAL LEXICON EXPRESSIONS

 USAGE: Supported ENTERED: APR 26,1994

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: 757.01 ROOT: GMP(757.01,

 DESCRIPTION: TYPE: File

 The Clinical Lexicon Utility will maintain static internal entry numbers (IENs) for the Expression file (#757.01). As a

 result, this file may be pointed to to retrieve the Display Text (.01) for both current Expressions and formerly used

 (deleted) Expressions.

 ^GMP(757.01,D0,0)

 .01 DISPLAY TEXT 0;1 Direct Global Read & w

 The Display Text contained in the Clinical Lexicon is the text which will be used

 in all display/print routines.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 1571

 NAME: LEXICON UTILITY EXPRESSIONS

 USAGE: Supported ENTERED: AUG 7,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 757.01 ROOT: LEX(757.01,

 DESCRIPTION: TYPE: File

 The Lexicon Utility (version 2.0 and greater) will maintain static internal entry numbers (IENs) for the Expression file

 (#757.01). As a result, this file may be pointed to to retrieve the Display Text (.01) for both current Expressions and

 deactivated Expressions (Deactivation Flag 757.01;9 1;5 set to 1). This agreement is a follow-on to DBIA 457 (version 1.0)

 and is re-issued to include the package name, namespace and global root changes occurring in version 2.0. This is not an

 amendment to 457.

 Version 1.0 Version 2.0

 Package name Clinical Lexicon Utility Lexicon Utility Namespace GMPT

 LEX Expression File Global Root ^GMP(757.01, ^LEX(757.01,

 ^LEX(757.01,D0,0)

 .01 Display Text 0;1 Direct Global Read & w

 This Display Text contained in the Lexicon Utility is the text which will be used

 in all display/print routines.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 1573

 NAME: LEXU

 USAGE: Supported ENTERED: AUG 7,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 LEXU is a utility routine for the Lexicon Utility which contains functions useful in retrieving classification code(s) for a

 term. This agreement is a follow-on to DBIA 10148 (version 1.0) and is re-issued to include the package name, namespace,

 routine name and global root changes occurring in version 2.0. This is not an amendment to 10148.

 ROUTINE: LEXU

 COMPONENT: $$ICDONE(IEN,DATE)

 VARIABLES: IEN Type: Input

 Internal Entry Number in the Expression file ^LEX(757.01).

 DATE Type: Input

 This is a date in Fileman format used to check if a code is active or inactive on a specified

 date. If not supplied, it will default to TODAY.

 Returns either a single active ICD-9 code linked to the Lexicon expression or Null if no ICD-9 code is found.

 COMPONENT: $$ICD(IEN,DATE)

 VARIABLES: IEN Type: Input

 Internal Entry Number in the Expression file ^LEX(757.01).

 DATE Type: Input

 This is a date in Fileman format used to check if a code is active or inactive on a specified

 date. If not supplied, it will default to TODAY.

 Returns either a string of active ICD-9 codes linked to an expression (separated by semicolon, i.e.,

 ICD;ICD;ICD) or Null if no ICD-9 codes are found.

 COMPONENT: $$CPTONE(IEN,DATE)

 VARIABLES: IEN Type: Input

 Internal Entry Number in the Expression file ^LEX(757.01).

 DATE Type: Input

 This is a date in Fileman format used to check if a code is active or inactive on a specified

 date. If not supplied, it will default to TODAY.

 Returns either a single active CPT-4 code linked to the Lexicon expression or Null if no CPT-4 code is found.

 COMPONENT: $$DSMONE(IEN)

 VARIABLES: IEN Type: Input

 Internal Entry Number in the Expression file ^LEX(757.01).

 Returns either a single DSM-IV code linked to the Lexicon expression or Null if no DSM-IV code is found.

 COMPONENT: $$CPCONE(IEN,DATE)

 VARIABLES: IEN Type: Input

 Internal Entry Number in the Expressions file ^LEX(757.01).

 DATE Type: Input

 This is a date in Fileman format used to check if a code is active or inactive on a specified

 date. If not supplied, it will default to TODAY.

 Returns either a single active HCPCS code linked to the Lexicon expression or Null if no HCPCS codes exist.

 HCPCS stands for Healthcare Financing Administration (HCFA) Common Procedure Coding System.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 1597

 NAME: LEXICON EXPRESSION INFORMATION

 USAGE: Supported ENTERED: AUG 18,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 LEXA is used by the Lexicon Utility to perform a silent look-up and return an array of the expression found.

 ROUTINE: LEXA

 COMPONENT: INFO(IEN,DATE)

 VARIABLES: IEN Type: Input

 Internal Entry Number in the Expression file #757.01.

 LEX Type: Output

 The local array LEX("SEL") contains the major concept, synonyms, lexical variants, associated

 codes (i.e., ICD, CPT, DSM, etc.), the expression definition (if one exists), the semantic

 class, the semantic type, and all VA classification sources. See the Lexicon Utility's

 Technical Manual for a detailed description of this array.

 DATE Type: Input

 This is a date in Fileman format used to check if a code is active or inactive on a specified

 date. If not supplied, it will default to TODAY. Active codes will be retrieved and

 displayed.

 This entry point allows applications to retrieve information about an expression without conducting a search.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 1609

 NAME: LEXICON SETUP SEARCH PARAMETERS

 USAGE: Supported ENTERED: AUG 19,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The Lexicon Utility uses LEXSET to setup search parameters based on applications definitions, subset definitions and user

 defaults stored in the Subsets Definition file (#757.2). These search parameters are stored in the global array

 ^TMP("LEXSCH",$J).

 ROUTINE: LEXSET

 COMPONENT: CONFIG(LEXNS,LEXSS,DATE)

 VARIABLES: LEXNS Type: Input

 LEXNS is an application identifier (formerly namespace) which tells the setup routines which

 application definition in file 757.2 to use to retrieve application defaults (i.e., global,

 display, filter, etc.) Acceptable values for LEXNS are found in file 757.2 in the "AN"

 index:

 ^LEXT(757.2,"AN",LEXNS)

 LEXSS Type: Input

 LEXSS is a subset identifier which tells the setup routines which subset definition in file

 757.2 to use to retrieve subset and user defaults (i.e., global, display, filter, etc.).

 Acceptable values for LEXSS may be found in file 7 57.2 in either the "AA" or the "AB"

 indexes:

 ^LEXT(757.2,"AA",LEXSS)

 ^LEXT(757.2,"AB",LEXSS)

 TMP(LEXSCH Type: Output

 ^TMP("LEXSCH",$J) is a global array used by the Lexicon Utility to control how a search of

 the Lexicon is to be conducted. It contains the following segments:

 APP Application (from LEXNS)

 DIS Display format

 FIL Filter

 FLN File Number

 GBL Global (Fileman DIC)

 IDX Index used during the search

 LEN Length of list to display

 LOC Hospital Location

 OVR Overwrite User Defaults flag

 SCT Shortcuts

 SVC Service

 UNR Unresolved Narrative flag

 USR User (DUZ)

 VDT Version Date Check (for classification codes)

 VOC Vocabulary

 A detailed description of this global array may be found in the Lexicon Utility's Technical

 Manual.

 DATE Type: Input

 This is a date in Fileman format used to check classification code codes to determine if they

 are active or inactive on the specified date. If not supplied, it will default to TODAY.

 This entry point may be used by other applicaitons to setup parameters for conducting a search of the Lexicon

 Utility.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 1614

 NAME: LEXICON EXPRESSIONS FROM CODES

 USAGE: Supported ENTERED: AUG 20,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The Lexicon Utility uses the LEXCODE routine to extract expressions (terms) in the form of Fileman's output variable "Y" based

 on a classification code.

 ROUTINE: LEXCODE

 COMPONENT: EN(LEXSO,DATE)

 VARIABLES: LEXSO Type: Input

 LEXSO is a classification code from one of several sources (i.e., ICD, CPT, DSM). A complete

 list of these sources can be found in the Lexicon Utility's Technical Manual.

 LEXS(SAB,# Type: Output

 LEXS(SAB,#)=IEN^TERM is a local array containing references to expressions linked to the

 classification code. SAB refers to the three-character source abbreviation of the

 classification system (i.e., ICD-9-CM = ICD). A description of this array and a list of the

 source abbreviations can be found in the Lexicon Utility's Technical Manual.

 DATE Type: Input

 This is a date in Fileman format used to check if a code is active or inactive on a specified

 date. If not supplied, it will default to TODAY.

 This entry point builds a local array containing expressions linked to an active classification code.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 2950

 NAME: DBIA2950

SUBSCRIBING PACKAGE: ORDER ENTRY/RESULTS REPORTING

 USAGE: Supported ENTERED: APR 16,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This entry point is silent and intended to support Graphical User Interface (GUI) development. The lookup returns an array of

 information on the expressions found. The lookup includes reordering the selection list with the most frequently used at the

 top, and places any exact match at the top of the list.

 ROUTINE: LEXA

 COMPONENT: LOOK(LEXX,LEXAP,LEXLL,LEXSUB,DATE)

 VARIABLES: LEXX Type: Input

 Equivalent to Fileman's variable X and contains the text to search for.

 LEXAP Type: Input

 This is the aplication identification and may be in the form of a name, namespace, or a

 pointer (Internal Entry Number - IEN) from an application definition in the Subset Definition

 file (#757.2).

 The default value for this parameter, if it is not supplied, is the one (1), pointing to the

 Lexicon application definition.

 Included in this application definition are a number of applications defaults which assist in

 searching the Lexicon. Application defaults included the global root, index, filter, display

 format, vocabulary, shortcuts, user default flag, overwrite user default flag, and the

 unresolved narrative flag. These are described in the Special Variable section of the Lexicon

 Utility V. 2.0 Technical Manual.

 At this time, there are six (6) application definitions.

 Name Namspace IEN

 ---- -------- ---

 Lexicon LEX 1

 Problem List GMPL 4

 ICD Diagnosis ICD 12

 CPT Procedures CPT 13

 Mental Health DSM 14

 ICD, CPT, and DSM Terminology VAC 15

 To conduct a search of the Lexicon using the application defaults for the Problem List, you

 may pass this parameter as:

 Name "PROBLEM LIST" - This form is not case

 sensitive, and can be found either the

 "B" or "C" index of file 757.2.

 Namespace "GMPL" - Namespace - This form is not

 case sensitive, and can be found in the

 "AN" index of file 757.2.

 Pointer 4 - This form is numeric, and is an

 Internal Entry Number (IEN) of file 757.2.

 LEXLL Type: Input

 This is a numeric value which controls the returning list length in the local array

 LEX("LIST"). The default value for this parameter when not supplied is five (5).

 LEXSUB Type: Input

 This parameter represent the vocabulary subset to use during the search. These subsets are

 defined in the Subset Definition file (#757.2). This parameter may be in one of three forms.

 To use the "Nursing" subset you may pass the parameter as:

 Name "NURSING" - This form is not case

 sensitive and may be found in either the

 "B" or "C" index of file 757.2.

 Mnemonic "NUR" - This form is not case sensitive

 and the mnemonic may be found in either the

 "AA" or "AB" index of file 757.2.

 Pointer 2 - This form is numeric, and is an

 Internal Entry Number (IEN) of file 757.2.

 TMP Type: Output

 ^TMP("LEXFND",$J,<freq>,<ien>)

 This global array contains all of the entries found during the search. The <freq> is a

 negative number based on the frequency of use for a given term. <ien> is the internal entry

 number in the Lexicon Expression file (757.01).

 ^TMP("LEXHIT",$J,<seq>)

 This global array contains the entries reviewed by the user. The Lexicon Utility reorders the

 list based on frequency of use and assigns a sequence number representing where on the list

 this entry is located.

 LEX Type: Output

 LEX("LIST")

 This local array contains only those entries on the list which are currently being reviewed

 by the user. The third parameter to the look-up defines the length of this list.

 DATE Type: Input

 This is a date in Fileman format used to check if a code is active or inactive on a specified

 date. If not supplied, it will default to TODAY. Only active codes can be displayed and

 returned during a lookup.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 4083

 NAME: LEXICON CODE STATUS

 USAGE: Supported ENTERED: APR 14,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: LEXSRC2

 COMPONENT: $$STATCHK(CODE,DATE,.LEX,SAB)

 VARIABLES: CODE Type: Input

 This is a code taken from a classification system contained in the Lexicon (i.e., ICD, CPT,

 etc.)

 DATE Type: Input

 This is the date used to determine if a code was either active or inactive on a specific

 date. If not supplied, TODAY will be used as the date.

 .LEX Type: Input

 (Optional) This is a local array, passed by reference. When passed it will return

 information about the code.

 SAB Type: Input

 (Optional) This is the source of the code. It is either a pointer to the CODING SYSTEMS file

 757.03 or the source abbreviation expressed as the first 3 characters of the source in file

 757.03.

 $$STATCHK Type: Output

 This is a two piece "^" delimiteds tring in the following formats:

 RETURNS INDICATES

 ----------------- ---------------------------------

 1 ^ IEN ^ Date The code is active on the date returned and

 stored in ^LEX(757.02,IEN,0)

 0 ^ IEN ^ Date The code is inactive on the date returned and

 stored in ^LEX(757.02,IEN,0)

 0 ^ -1 Code is not found in the Lexicon

 LEX Type: Output

 (Optional) This is a local array passed by reference. If passed it will contain information

 about the code in the following formatted subscripts:

 LEX(0) = <ien 757.02> ^ <code>

 2-piece String containing the IEN of the code and the code

 LEX(1) = <ien 757.01> ^ <expression>

 2-piece String containing the IEN of the code's expression

 and the expression

 LEX(2) = <ien 757.03> ^ <abbr> ^ <nomen> ^ <name>

 4-peice String containing the IEN of the code's classification

 system, the source abbreviation, Nomenclature and the name of

 the classification system

 This entry point is used to check the activation status of a code in the Lexicon Utility.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 4912

 NAME: LEXICON CONCEPT DATA FOR CODE

 USAGE: Supported ENTERED: OCT 5,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API will return an array of data for a given code, code source, optional date, and optional return array name. The data

 returned will include:

 code

 hierarchy or subset (if available)

 version (if available)

 legacy code (if available)

 code status

 fully specified name (if available)

 preferred term

 any applicable synonyms

 If any of the data in the passed parameters data is incorrect or unrecognizable, the API will return an error message

 indicating the nature of the error. If no date is specified, then the date will default to the current system date. This API

 was developed specifically for the SNOMED CT code system in support of the LDSI project, but is applicable to any code system.

 ROUTINE: LEXTRAN

 COMPONENT: $$CODE(CODE,SOURCE,DATE,ARRAY)

 VARIABLES: CODE Type: Input

 This is a code of a classification system that is stored in the Lexicon. Classification

 systems include SNOMED CT, ICD, CPT, HCPCS, etc.

 SOURCE Type: Input

 This is the mnemonic for a code system (mandatory). The allowable code system mnemonics are

 those that exist in the "B" index of the coding systems file (757.03) This is code system

 source abbreviation Lexicon.

 DATE Type: Input

 This is the effective date; the default if no date is specified is the current system date

 (optional).

 ARRAY Type: Both

 This is the name of the output array. The default, if no array name is specified, is 'LEX'

 (optional) The format of the output is as follows:

 Output

 if call finds an active code for the source

 "1^LEXCODE"

 LEX - an array containing information about the code

 LEX(0) - a five piece string:

 1. code

 2. hierarchy

 3. version

 4. legacy code

 5. code status

 LEX("F") fully specified name

 LEX("P") preferred term

 LEX("S",n) synonyms (n is the nth synonym)

 if call cannot find specified code on file

 "-2^"_LEXSCNM_" code "_LEXCODE_" not on file"

 where LEXSCNM is the source name

 LEXCODE is the code

 if call finds an inactive code for the source

 "-4^"_LEXSCNM_" code "_LEXCODE_" not active for "_LEXVDT

 LEX - an array containing information about the code

 LEX(0) - a five piece string:

 1. code

 2. hierarchy

 3. version

 4. legacy code

 5. code status

 otherwise

 "-1^error text"

 example of LEX array:

 LEX(0)="67922002^Substance^20050701^T-C2500^1"

 LEX("F")="Serum (Substance)"

 LEX("P")="Serum"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 4913

 NAME: LEXICON CONCEPT DATA FOR TEXT

 USAGE: Supported ENTERED: OCT 5,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API will return an array of data for a given text, optional code source, optional date, optional subset, and optional

 return array name. The API will display a pick list based on the parameters passed and allow a user to select an item from

 the list. The API will then return the array for the item selected. The data returned will include:

 code

 hierarchy or subset (if available)

 version (if available)

 legacy code (if available)

 code status

 fully specified name (if available)

 preferred term

 any applicable synonyms

 If any of the data in the passed parameters data is incorrect or unrecognizable, the API will return an error message

 indicating the nature of the error. If no date is specified, then the date will default to the current system date. This API

 was developed specifically for the SNOMED CT code system in support of the LDSI project, but is applicable to any code system.

 ROUTINE: LEXTRAN

 COMPONENT: $$TEXT(TEXT,DATE,SUBSET,SOURCE,ARRAY)

 VARIABLES: TEXT Type: Input

 This is the search text string (mandatory).

 DATE Type: Input

 This is the effective date (optional); the default, if no date is specified, is the current

 system date.

 SUBSET Type: Input

 This is any code system subset mnemonic (optional). The allowable subset mnemonics are those

 that exist in the "AA" index of the subset definitions file (757.2).

 SOURCE Type: Input

 This is the mnemonic for a code system (mandatory). The allowable code system mnemonics are

 those that exist in the "B" index of the coding systems file (757. 03).

 ARRAY Type: Both

 This is the name of the output array. The default if no array name is specified is 'LEX'

 (optional) The format of the output is as follows:

 Output

 if call is finds an active code for the source

 "1^LEXCODE"

 LEX - an array containing information about the code

 LEX(0) - a five piece string:

 1. code

 2. hierarchy

 3. version

 4. legacy code

 5. code status

 LEX("F") fully specified name

 LEX("P") preferred term

 LEX("S",n) synonyms (n is the nth synonym)

 if call cannot find specified code on file

 "-2^"_LEXSCNM_" code "_LEXCODE_" not on file"

 "-2^"_LEXSCNM_" code "_LEXCODE_" not on file"

 where LEXSCNM is the source name

 LEXCODE is the code

 if call finds an inactive code for the source

 "-4^"_LEXSCNM_" code "_LEXCODE_" not active for "_LEXVDT

 LEX - an array containing information about the code

 LEX(0) - a five piece string:

 1. code

 2. hierarchy

 3. version

 4. legacy code

 5. code status

 otherwise

 "-1^error text"

 example of LEX array:

 LEX(0)="67922002^Substance^20050701^T-C2500^1"

 LEX("F")="Serum (Substance)"

 LEX("P")="Serum"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 4914

 NAME: LEXICON VALIDATE CODE FOR SOURCE

 USAGE: Supported ENTERED: OCT 5,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API will return an array for a given text and code system indicating whether the text is valid for the specified code

 system. The data array returned will include the following:

 An indicator of whether the text is valid for the code system

 The code in the code system to which the text,if valid for code system,

 belongs. If any of the passed parameters are incorrect or unrecognizable, the API will return an error message

 indicating the nature of the error.

 ROUTINE: LEXTRAN

 COMPONENT: $$TXT4CS(TEXT,SOURCE)

 VARIABLES: TEXT Type: Input

 This is the search text string (mandatory).

 SOURCE Type: Input

 This is the mnemonic for a code system (mandatory). The allowable code system mnemonics are

 those that exist in the "B" index of the coding systems file (757. 03).

 Type: Output

 This API returns the following output:

 1^code

 or

 -1^error message

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 5006

 NAME: Lexicon Obtain Synonyms for Code

 USAGE: Supported ENTERED: JUN 28,2007

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API will return an array for a given code and coding system. The array will contain all synonyms for the concept

 including the preferred term and the fully specified name. If any of the passed parameters are incorrect or unrecognizable,

 the API will return an error message indicating the nature of the error.

 ROUTINE: LEXTRAN1

 COMPONENT: $$GETSYN

 VARIABLES:

 COMPONENT: $$GETSYN(LEXSRC,LEXCODE,LEXVDT,LEXRAY,LEXIENS)

 VARIABLES: LEXSRC Type: Input

 This is the mnemonic for a code system (mandatory). The allowable code system mnemonics are

 those that exist in the "B" index of the coding systems file (757.03) This is code system

 source abbreviation Lexicon.

 LEXCODE Type: Input

 This is a code of a classification system that is stored in the Lexicon. Classification

 systems include SNOMED CT, ICD, CPT, HCPCS, etc.

 LEXVDT Type: Input

 This is the effective date; the default if no date is specified is the current system date

 (optional).

 LEXRAY Type: Both

 This is the name of the output array. The default, if no array name is specified, is 'LEX'

 (optional)

 The format of the output is as follows:

 If valid code and source are passed

 "1^no of synonyms"

 LEX("P") = preferred term or major concept name^IEN

 LEX("F") = fully specified name^IEN (if one exists)

 LEX("S",n) = the nth synonym found^IEN (if they exist)

 The presence of IEN in the return array is determined by the

 LEXIENS parameter. If the call does not find the code for the specified source it will

 return

 "-2^"_LEXSCNM_" code "_LEXCODE_" not on file"

 where LEXCSNM is the source name

 LEXCODE is the code If an invalid source is passed the call will return

 "-1^source not recognized"

 LEXIENS Type: Input

 If this parameter is set to 1 the expression IEN will be included in the return array.

 Default is 0 - exclude IENS from return array.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 5007

 NAME: Lexicon Obtain Fully Specified Name

 USAGE: Supported ENTERED: JUN 28,2007

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API returns the fully specified name for a given coding system and code. If any of the passed parameters are incorrect

 or unrecognizable, the API will return an error message indicating the nature of the error.

 ROUTINE: LEXTRAN1

 COMPONENT: GETFSN(LEXSRC,LEXCODE,LEXVDT)

 VARIABLES: LEXSRC Type: Input

 This is the mnemonic for a coding system (mandatory). The allowable code system mnemonics are

 those that exist in the "B" index of the coding systems file (757.03) This is code system

 source abbreviation Lexicon.

 LEXCODE Type: Input

 This is a code that belongs to a coding system that is stored in the Lexicon. Coding systems

 include SNOMED CT, ICD, CPT, HCPCS, etc.

 LEXVDT Type: Input

 This is the effective date; the default if no date is specified is the current system date

 (optional).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 5008

 NAME: Lexicon Obtain Preferred Term

 USAGE: Supported ENTERED: JUN 28,2007

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API returns the preferred term for a given coding system and code. If any of the passed parameters are incorrect or

 unrecognizable, the API will return an error message indicating the nature of the error.

 ROUTINE: LEXTRAN1

 COMPONENT: $$GETPREF

 VARIABLES: LEXSRC Type: Input

 This is the mnemonic for a code system (mandatory). The allowable code system mnemonics are

 those that exist in the "B" index of the coding systems file (757.03). This is the Lexicon

 code system source abbreviation.

 LEXCODE Type: Input

 This is a code belonging to a coding system that is stored in the Lexicon. Coding systems

 include SNOMED CT, ICD-9-CM, CPT, HCPCS, etc.

 LEXVDT Type: Input

 This is the effective date; the default if no date is specified is the current system date

 (optional).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 5009

 NAME: Lexicon Obtain Designation Code

 USAGE: Supported ENTERED: JUN 28,2007

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API returns the designation code for a given coding system and text. If any of the passed parameters are incorrect or

 unrecognizable, the API will return an error message indicating the nature of the error.

 ROUTINE: LEXTRAN1

 COMPONENT: $$GETDES(LEXSRC)

 VARIABLES: LEXSRC Type: Input

 This is the mnemonic for a code system (mandatory). The allowable code system mnemonics are

 those that exist in the "B" index of the coding systems file (757.03). This is the Lexicon

 code system source abbreviation.

 LEXTEXT Type: Input

 This is the displayable text of the expression for which the designation code is being sought

 (mandatory).

 LEXVDT Type: Input

 This is the effective date; the default if no date if no date is specified is the current

 system date (optional).

 COMPONENT: $$GETDES(LEXSRC,LEXCODE,LEXVDT)

 VARIABLES:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 5010

 NAME: Lexicon Obtain Mapped Codes

 USAGE: Supported ENTERED: JUN 28,2007

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API returns an array containing the mappings for a specified code for a specified mapping identifier. If any of the

 passed parameters are incorrect or unrecognizable, the API will return an error message indicating the nature of the error.

 ROUTINE: LEXTRAN1

 COMPONENT: GETASSN(LEXCODE,LEXMAP,LEXVDT,LEXRAY)

 VARIABLES: LEXCODE Type: Input

 This is a code belonging to a coding system that is stored in the Lexicon. Coding systems

 include SNOMED CT, ICD, CPT, HCPCS, etc.

 LEXMAP Type: Input

 This is the mapping identifier (mandatory). This allows the system to determine which map is

 to be used for translation. The map must be defined in the mapping definition file (757.32).

 LEXVDT Type: Input

 This is a code belonging to a coding system that is stored in the Lexicon. Coding systems

 include SNOMED CT, ICD, CPT, HCPCS, etc.

 LEXRAY Type: Both

 This is the name of the output array. The default, if no array name is specified, is 'LEX'

 (optional) The output array wil have the following format:

 LEX(n,CODE)=""

 where n is the nth mapped code

 code is the code which is mapped to

 e.g.

 LEXVFL>S V=$$GETASSN(15250008,"SCT2ICD") ZW LEX

 LEX=2

 LEX(1,"371.30")=""

 LEX(2,"371.40")=""

 which shows that SNOEMD CT code 15250008 is mapped to two ICD-9-CM codes.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 5011

 NAME: Lexicon Obtain Version Identifier

 USAGE: Supported ENTERED: JUN 28,2007

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API returns the SDO version identifier for a given coding system, code, and date. If any of the passed parameters are

 incorrect or unrecognizable, the API will return an error message indicating the nature of the error.

 ROUTINE: LEXTRAN

 COMPONENT: $$VERSION(LEXSRC,LEXCODE,LEXVDT)

 VARIABLES: LEXSRC Type: Input

 This is the mnemonic for a coding system (mandatory). The allowable coding system mnemonics

 are those that exist in the "B" index of the coding systems file (757.03). This is the

 Lexicon coding system source abbreviation.

 LEXCODE Type: Input

 This is a code belonging to a coding system that is stored in the Lexicon. Coding systems

 include SNOMED CT ICD-9-CM, CPT, HCPCS, etc.

 LEXVDT Type: Input

 This is the effective date; the default if no date is specified is the current system date

 (optional).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LEXICON UTILITY
 ICR#: 5386

 NAME: LEXU Lookup Screens

 USAGE: Supported ENTERED: MAR 13,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This agreement includes common entry points for filtering Lexicon searches. Similar to DIC("S") screens.

 ROUTINE: LEXU

 COMPONENT: $$SC(Y,STRING,DATE)

 VARIABLES: Y Type: Input

 This is an Internal Entry Number (IEN) of the Lexicon's EXPRESSION file 757.01.

 STRING Type: Input

 This is a three piece ";" delimited string used by the filter/screen logic. The first piece

 is called the "inclusion string" and list the Semantic Classes and Types to include in the

 search. The second piece is called the "exclusion string" and list the Semantic Types to

 exclude from a search. The third piece is called the "source string" and list classification

 sources to include in the search.

 Detailed Example: Problems and Diagnosis (including ICD, CPT and DSM) looks like this:

 I $$SC^LEXU(Y,"BEH/DIS;999/64/66/73/74/77/82/169/170/171;ICD/CPT/CPC/DS4",DATE)

 The full explanation:

 Piece 1: BEH/DIS Include expressions which relate to Behaviors and Diseases or Pathologic

 Processes.

 Piece 2: 999/64/66/73/74/77/82/169/170/171 Exclude expressions which relate to Unknown or

 Untyped, Governmental or Regulatory Activity, Machine Activity, Manufactured Object, Medical

 Device or Supplies, Conceptual Entity, Spatial Concept, Functional Concept, Intellectual

 Product and Language.

 Piece 3: ICD/CPT/CPC/DS4 Also include expressions which are linked to ICD-9-CM, CPT-4, HCPCS

 and coding systems.

 In the filter string, Semantic Classes are identified by a 3 character mnemonic which can be

 found in the "B" cross-reference of the SEMANTIC CLASS file 757.11 and the Semantic Type is

 identified by internal entry number of the SEMANTIC TYPE file 757.12. The coding systems are

 identified by a 3 character mnemonic which can be found in the "ASAB" cross-reference of the

 CODING SYSTEMS file 757.03.

 DATE Type: Input

 If applicable, this is the date service was provided to the patient and passed in Fileman

 format. Default is TODAY.

 This entry point filters Lexicon searches based on Semantic Class/Types and Classification Codes.

 DIC("S")/Screen Usage: I $$SC^LEXU(Y,STRING,DATE)

 COMPONENT: $$SO(Y,STRING,DATE)

 VARIABLES: Y Type: Input

 This is an Internal Entry Number (IEN) of the Lexicon's EXPRESSION file 757.01.

 STRING Type: Input

 This string is called the "source string" and is a list classification coding systems to

 include in the search. The classification coding systems are identified by a 3 character

 mnemonic which can be found in the "ASAB" cross-reference of the CODING SYSTEMS file 757.03.

 Example: ICD/CPT/CPC/DS4 Means: Search the Lexicon and include terms that are

 linked to ICD-9-CM, CPT-4, HCPCS and DSM-4

 coding systems.

 DATE Type: Input

 If applicable, this is the date service was provided to the patient and passed in Fileman

 format. Default is TODAY.

 This entry point filters Lexicon searches based on Classification Codes.

 DIC("S")/Screen Usage: I $$SO^LEXU(Y,STRING,DATE)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LIST MANAGER
 ICR#: 5451

 NAME: VALM HIDDEN ACTIONS protocol

 USAGE: Supported ENTERED: MAY 13,2009

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Supported actions entries in the VALM HIDDEN ACTIONS protocol.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LIST MANAGER
 ICR#: 10118

 NAME: VALM

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VALM

 COMPONENT: CHGCAP

 VARIABLES: * CHGCAP^VALM(FIELD, LABEL) This sub-routine will change a label on caption header for a field defined in

 CAPTION LINE COLUMNS multiple in the List Template file. INPUT: FIELD := column name LABEL := text for

 column header

 COMPONENT: SHOW

 VARIABLES: * SHOW^VALM This call MUST be executed in the HEADER field of a protocol menu entry in the PROTOCOL file

 if the protocol is used in the PROTOCOL field in the LIST TEMPLATE file.

 This code will properly display the list of actions to the user in the action area of the list screen.

 COMPONENT: EN

 VARIABLES: EN^VALM(<List Template Name>)

 Description: Main entry point to envoke an instance of a List Template.

 Parameter: <List Template Name>

 Name of a List Template as it appears in the LIST

 TEMPLATE file (#409.61)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: LIST MANAGER
 ICR#: 10120

 NAME: VALM4

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VALM4

 COMPONENT: RE

 VARIABLES: * RE^VALM4 This call will re-display the list header and list areas for the active list application.

 This call is often used to display the results of a change an action has caused before passing control back to

 the List Manager. (Normally, the developer set VALMBCK="R" and then returns control to the List Manager.)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1040

 NAME: LIST INDEX OF MESSAGE RESPONSES

 USAGE: Supported ENTERED: OCT 24,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API may be called in a roll and scroll mode to list the responses of a message.

 ROUTINE: XMAH

 COMPONENT: ENT8

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file (#3.9) of the message for which the response index should be

 displayed.

 Display an index of the responses to a message. The index is either in forward or reverse order, depending on

 personal preference. The index includes the response number, the date of the response, the sender of the

 response, and the number of lines in the response. (The index is exactly what one would see in MailMan upon

 responding with "??" to the prompt: "Backup to which response?")

 Usage: S XMZ=Message IEN

 D ENT8^XMAH

 Example:

 S XMZ=100328 D ENT8^XMAH

 There are 3 responses. Response 0 is the original message.

 Response.....From...........Lines

 3) 13 May 99 USER,TWO 6

 2) 27 Apr 99 USER,ONE 3

 1) 21 Apr 99 USER,TWO 3

 0) 07 Apr 99 USER,ONE 1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1131

 NAME: XMB('NETNAME')

 USAGE: Supported ENTERED: FEB 9,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT: XMB('NETNAME')

 DESCRIPTION: TYPE: File

 ^XMB("NETNAME") contains the human-readable form of the name of the local domain. It is a copy of the .01 field of the record

 in the DOMAIN file 4.2 pointed to by the .01 field of the only record in the MAILMAN SITE PARAMETERS file 4.3.

 You may reference this global in any routine.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1132

 NAME: TEST FORWARDING ADDRESS

 USAGE: Supported ENTERED: FEB 21,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API sends a test message from the Postmaster to the forwarding address of a user. If the MAILMAN SITE PARAMETER field

 7.01, FWD TEST MESSAGE TO POSTMASTER, is not set, the Postmaster is a recipient. The message will either be successful or a

 message will be returned to the Postmaster from the remote system identified in the forwarding address explaining that the

 message could not be delivered.

 This entry point is not normally used by application programmers.

 Usage: D ^XMUT7(Y), where Y is the DUZ of the user whose forwarding address is to be tested.

 ROUTINE: XMUT7

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1136

 NAME: ENCODE/DECODE CARETS AND CTRL CHARS

 USAGE: Supported ENTERED: FEB 21,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API contains the following functions:

 $$ENCODEUP^XMCU1(STRING) - convert all "^" to "~U~"

 $$DECODEUP^XMCU1(STRING) - convert all "~U~" to "^"

 $$STRAN^XMCU1(STRING) - convert all control characters to printables

 $$RTRAN^XMCU1(STRING) - undo the conversion by $$STRAN^XMCU1

 ROUTINE: XMCU1

 COMPONENT: $$ENCODEUP

 VARIABLES: STRING Type: Input

 Any string, usually with one or more "^" in it.

 Takes a string, converts any "^" to "~U~", and returns the result.

 This function is identical to $$ENCODEUP^XMXUTIL (DBIA 2734).

 This function is used when putting strings, which may contain "^", into fields in globals. Fields in globals

 are delimited by "^", so any "^" in a string would, in effect, create an unintended field. So, before we put

 such strings into fields, we convert any "^". MailMan uses this to convert any subjects with "^" before

 putting them in the .01 field in the MESSAGE file, 3.9.

 Usage: S X=$$ENCODEUP^XMCU1(string)

 COMPONENT: $$DECODEUP

 VARIABLES: STRING Type: Input

 A string with embedded "~U~".

 Takes a string, converts any "~U~" to "^", and returns the result.

 This function is identical to $$DECODEUP^XMXUTIL (DBIA 2734).

 Usage: S X=$$DECODEUP^XMCU1(STRING)

 COMPONENT: $$STRAN

 VARIABLES: STRING Type: Input

 A string with control characters in it.

 Takes a string, converts any control characters (and "~") to printable characters, and returns the result. The

 conversion may be undone by $$RTRAN^XMCU1.

 Usage: S X=$$STRAN^XMCU1(STRING)

 Note:

 "~" is replaced by "~>"

 $C(I) by $C(I+64) for I=0 to 31, for example

 $C(0) by "~@"

 $C(1) by "~A"

 $C(7) by "~G" (i.e. BELL)

 $C(13) by "~M" (i.e. CR = Carriage Return)

 $C(26) by "~Z"

 $C(31) by "~_"

 etc.

 COMPONENT: $$RTRAN

 VARIABLES: STRING Type: Input

 A string whose control characters have been converted by $$STRAN^XMCU1.

 Takes a string which had been converted by $$STRAN^XMCU1, undoes the conversion, and returns the result.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1142

 NAME: MESSAGE SUBJECT API

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API contains the following functions:

 $$SUBCHK^XMGAPI0 - validate a proposed message subject

 $$SUBGET^XMGAPI0 - retrieve the subject of a message

 ROUTINE: XMGAPI0

 COMPONENT: $$SUBGET

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file (3.9), of the message whose subject you wish to get.

 Given the message number, returns the subject of a message. Any ~U~ are automatically converted to up-arrow

 (^). If the message does not exist, returns null.

 Compare to ZSUBJ^XMXUTIL2 and SUBJ^XMXUTIL2 (DBIA 2736).

 Usage: S A=$$SUBGET^XMGAPI0(XMZ)

 Example:

 W $$SUBGET^XMGAPI0(51537)

 zzzzzz message subject zzzzz

 COMPONENT: $$SUBCHK

 VARIABLES: XMSUB Type: Input

 Proposed message subject.

 XMFLG Type: Input

 Should results of the check be written to the screen, too? Possible values are:

 0 - no

 1 - yes

 Checks a prospective message subject to see if it passes validity checks/input transform. If valid, it returns

 the subject. If not valid, it returns an error string explaining why it's not valid. Leading and trailing

 blanks are automatically removed. Up-arrows (^) are automatically converted to "~U~". Function can be set to

 be interactive (to display results of the check to the screen) or non-interactive. In interactive mode,

 control characters are removed, too.

 Compare to VSUBJ^XMXAPI (DBIA 2728).

 Usage: S A=$$SUBCHK^XMGAPI0(XMSUB,XMFLG)

 Parameters:

 XMSUB - string to be validated as a message subject

 XMFLG - interactive, and display results to the user, too? (0=no; 1=yes)

 Returns:

 If OK: ^ valid string

 If error: error number ^ string

 Possible results, in actual order:

 Subject is too long

 Non-interact: 3-Entered subject too long ^$E(<subject>,1,65)

 Interactive: "Entered subject too long "1^$E(<subject>,1,250)

 At this point, leading and trailing blanks are removed, and up-arrows (^) are converted to ~U~.

 Subject contains control characters

 Non-interact: 5-Subject cannot contain control characters.^<subject>

 Interactive: "Control characters removed (<subject> is Subject accepted)." (Control characters are removed

 and checking continues.)

 Subject is null

 Non-interact: <subject>

 Interactive: <subject>

 Subject is "?"

 Non-interact: 4-Enter a Message Subject, between 3 & 65 characters long or '^' to exit.^<subject>

 Interactive: "Enter a Message Subject, between 3 & 65 characters long or '^' to exit."

 1^<subject>

 Subject is too short

 Non-interact: 1-SUBJECT must be at least 3 characters long.^<subject>

 Interactive: "SUBJECT must be at least 3 characters long."

 1^<subject>

 Subject is reserved format

 Non-interact: 2-Subject names of this format (1""R""1.N) are RESERVED ^<subject>

 Interactive: "Subject names of this format (1""R""1.N) are RESERVED"

 1^<subject>

 Subject is OK

 Non-interact: ^<subject>

 Interactive: ^<subject>

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1143

 NAME: MESSAGE HEADER API

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API contains the following function:

 $$NET^XMRENT - Get message header information

 ROUTINE: XMRENT

 COMPONENT: $$NET

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file (3.9).

 This extrinsic function is used for getting message information.

 Given a message number, it returns an "^"-delimited string containing message header information. If there is

 no such message, it returns the null string.

 Compare to $$HDR^XMGAPI2 (DBIA 1144), and INMSG^XMXUTIL2 and other ^XMXUTIL2 APIs (DBIA 2736).

 Usage: S X=$$NET^XMRENT(XMZ)

 Returns:

 If the message is NOT defined, the null string.

 If the message is defined, a string with the following pieces, separated by "^":

 Piece Contents

 1 Origination date. If remote, as sent.

 If local, in format MAY 25, 1999@08:16:00

 2 Scramble hint, if any; otherwise null

 3 From (external)

 4 Message ID at originating site (XMZ@site, if local)

 5 Message sender, usually surrogate (external); otherwise null

 6 Subject

 7 Message ID of original message, if this is a reply

 (XMZ@site, if local); otherwise null

 8 Message type (piece 7 of message's zero node)

 Examples:

 W $$NET^XMRENT(51537)

 date@time^HINT^From^10576@MAILSYS^SurrogateDUZ^Subject^4321@site^Type

 1 2 3 4 5 6 7 8

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1144

 NAME: MESSAGE INFO API

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API contains the following function:

 $$HDR^XMGAPI2 - retrieve information about a message.

 ROUTINE: XMGAPI2

 COMPONENT: $$HDR

 VARIABLES: DUZ Type: Input

 User's DUZ. The IEN of the user in the NEW PERSON file (200).

 XMDUZ Type: Used

 The user's DUZ. Default is DUZ. This is the user, in relation to whom, some of the message

 information will be obtained.

 XMZ Type: Input

 IEN of the message in the MESSAGE file (3.9) about which information is to be obtained.

 FLAG Type: Used

 Determines what information is obtained about the message. Possible values are:

 0 - return basic information (default)

 1 - return basic information + response and BLOB count information

 91 - return flag 1 information + response IDs

 92 - return flag 1 information + BLOB IDs

 93 - return all of the above

 ARRAY Type: Output

 Array of information.

 If FLAG=0 or undefined:

 ("BROADCAST") = 1 if the message was broadcast; 0 otherwise

 ("BSKT") basket name (XMDUZ); null if not in basket

 ("BSKT IEN") basket IEN (XMDUZ); null if not in basket

 ("DATE") message date/time, in format MAY 25, 1999@08:16:00, if local, or as sent, if

 remote.

 ("DATE FM") message date/time (FileMan format); date only, if remote.

 ("LINES") number of lines in the original message

 ("NEW") = 1 if the message is new; 0 otherwise

 ("PXMZ") message number of original message; null if not a response

 ("SENDER") sender (from) (external format)

 ("SENDER DUZ") sender (from) DUZ; null if remote or fictitious

 ("SUBJ") subject (external format)

 ("SURROG") surrogate sender (external format)

 ("TYPE") message type (piece 7 of the message's zero node)

 ("XMZ") message IEN in message file

 If FLAG=1, returns value array as with flag 0, and additional value array as follows:

 ("RRED") responses read (XMDUZ); null if not applicable

 ("RRCV") responses received; null if not applicable

 ("BLOBCNT") (specific to Imaging pkg) number of non-textual body parts attached

 If FLAG=91, and if the message has responses, returns value array as with flag 1, and an

 array of response nodes and values as follows:

 ("RSP",i) (pointer to 3.9 file) array of responses, where i is the response number

 If FLAG=92, and if the message has BLOBs, returns value array as with flag 1, and an array of

 non-textual body parts as follows:

 ("BLOB",i) (specific to Imaging pkg) (pointer to 2005 file) array of BLOBS

 If FLAG=93, returns all of the above.

 This function retrieves message header information, as well as other information about a message. How much

 information is returned depends on the value of FLAG, one of the parameters.

 If successful, it sets up (in ARRAY, which must be passed by reference) an array of information about a

 message, and returns zero (0).

 If unsuccessful, returns one of the following:

 "1-Undefined message number"

 "1-No message number"

 "1-No such message"

 "2-User is not a sender of recipient."

 "4-Invalid user"

 Compare to $$NET^XMRENT (DBIA 1143), and INMSG^XMXUTIL2 and all other APIs in ^XMXUTIL2 (DBIA 2736).

 Usage: S X=$$HDR^XMGAPI2(XMZ,.ARRAY,FLAG)

 Examples:

 Example of specifying an non-existent message:

 S X=$$HDR^XMGAPI2(999,.VAR,"")

 I +X>0 W !,X

 "1-No such message"

 Note that VAR is UNCHANGED from state prior to call if function value is greater than zero.

 --

 USING A FLAG OF ZERO

 Example of a Message from a Local User:

 S DATA=$$HDR^XMGAPI2(123456,.VAR,0)

 Data will be returned as 0, if 123456 is a valid message. Array will be returned as:

 VAR("BROADCAST") = 0

 VAR("BSKT") = "IN"

 VAR("BSKT IEN") = 1

 VAR("DATE") = "SEPTEMBER 10, 1993@09:00:00"

 VAR("DATE FM") = 2930910.9

 VAR("LINES") = 22

 VAR("NEW") = 1

 VAR("PXMZ") = ""

 VAR("SENDER") = "USER,JOE"

 VAR("SENDER DUZ")= 77

 VAR("SUBJ") = "HELLO!"

 VAR("SURROG") = ""

 VAR("TYPE") = "P"

 VAR("XMZ") = 123456

 Example of Message from a Remote User:

 S DATA=$$HDR^XMGAPI2(123457,.VAR,0)

 Data and the array information for message 123457 will be returned as above for message 123456. The remote

 user will be returned as a string.

 VAR("SENDER") = "JEAN247@domainname.FR"

 VAR("SENDER DUZ")= ""

 Example of a Response from a Local User:

 DATA=$$HDR^XMGAPI2(123458,.VAR,0)

 Data and the array information for message 123458 will be returned as above for message 123456. The value of

 the pointer to the message will be returned as below:

 VAR("PXMZ") = 123456

 VAR("SUBJ") = "Re: HELLO!"

 VAR("XMZ") = 123458

 Example of a Response from a Remote User:

 S DATA=$$HDR^XMGAPI2(123459,.VAR,0)

 Data and the array information for message 123459 will be returned as above for message 123458. The remote

 user will be returned as a string.

 VAR("PXMZ") = 123456

 VAR("SENDER") = "JEAN247@domainname.FR"

 VAR("SENDER DUZ")= ""

 VAR("SUBJ") = "Re: HELLO!"

 VAR("XMZ") = 123459

 --

 USING A FLAG OF 1

 Example of Message from a Local User:

 S DATA=$$HDR^XMGAPI2(123456,.VAR,1)

 Data and the array information for message 123456 will be returned as above. In addition, the following will

 be returned in the VAR array:

 VAR("RRED") = 2 Responses Read

 VAR("RRCV") = 3 Responses Received

 VAR("BLOBCNT") = 0 Non-textual body parts attached.

 --

 USING A FLAG OF 91

 Example of a Message from a Local User:

 S DATA=$$HDR^XMGAPI2(123456,.VAR,91)

 Data and the array information for message 123456 will be returned as above. In addition, the following will

 be returned in the VAR array. Each node is a response number and each value is a pointer to File #3.9.

 VAR("RSP",1)=123458

 VAR("RSP",2)=123459

 VAR("RSP",3)=123501

 --

 USING A FLAG OF 92

 Example of a Message from a Local User:

 S DATA=$$HDR^XMGAPI2(123456,.VAR,92)

 Data and the array information for message 123456 will be returned as with Flag 1. In addition, the following

 will be returned the VAR array. (Each node is an image counter and each value is a pointer to the Object file

 (#2005), A Binary Large OBject - BLOB).

 VAR("BLOB",1)=100

 VAR("BLOB",2)=3345

 VAR("BLOB",3)=14445

 --

 USING A FLAG OF 93

 Example of a Message from a Local User:

 S DATA=$$HDR^XMGAPI2(123456,.VAR,93)

 Data and the array information for message 123456 will be returned as with Flag 91. In addition, the array of

 image counter and values will be returned as above.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1145

 NAME: REPLY TO / ANSWER A MESSAGE API

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The APIs (functions) in this DBIA send non-interactive replies and answers.

 $$ENT^XMA2R - Send a reply to a message. Add a response to the response chain of original message.

 $$ENTA^XMA2R - Send an answer to a message. Create a new message (rather than adding a response to the response chain of

 original message).

 ROUTINE: XMA2R

 COMPONENT: $$ENT

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE FILE (#3.9) of the message being replied to.

 XMSUBJ Type: Input

 Subject of the reply. Must be 3-65 characters.

 XMTEXT Type: Input

 Text of the reply. Must be an array, passed by reference, and in a format acceptable as

 input to FileMan word-processing fields.

 XMSTRIP Type: Input

 (optional) String containing characters to be stripped from the text of the reply (XMTEXT).

 Default is none.

 XMDUZ Type: Used

 (optional) The DUZ of the user sending the answer. May also be free text. Default is DUZ.

 XMNET Type: Used

 (optional) If the sender of the original message is at a remote site, should the reply be

 sent to the sender, too? Possible values:

 0=no (default)

 1=yes

 This parameter is ignored if the message is from a local user.

 Send a reply to a message. Add a response to the response chain of original message, so that all local

 recipients of the message get the reply. If the message is from a remote site, you can indicate (with XMNET),

 whether the reply should be send to the author of the message, too. This function is non-interactive.

 Compare to REPLYMSG^XMXAPI (DBIA 2729).

 Usage: S variable=$$ENT^XMA2R(XMZ,XMSUBJ,.XMTEXT,XMSTRIP,XMDUZ,XMNET)

 If successful, function returns:

 Message IEN in file 3.9 of the reply.

 If failure, function returns:

 The letter "E", followed by a number, followed by an error message.

 e.g. "E3 Subject too long or short !"

 Examples:

 W $$ENT^XMA2R(51537,"test of XMA2R",.T,"",DUZ)

 E2 No message text !

 S T(1)="test line 1"

 S X=$$ENT^XMA2R(51537,"test of XMA2R",.T,"",DUZ) W X

 51541

 COMPONENT: $$ENTA

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE FILE (#3.9) of the message being answered.

 XMSUBJ Type: Input

 Subject of the answer. Must be 3-65 characters.

 XMTEXT Type: Input

 Text of the answer. Must be an array, passed by reference, and in a format acceptable as

 input to FileMan word-processing fields.

 XMSTRIP Type: Used

 (optional) String containing characters to be stripped from the text of the answer (XMTEXT).

 Default is none.

 XMDUZ Type: Used

 (optional) The DUZ of the user sending the answer. It may also be free text. Default is

 DUZ.

 Send an answer to a message. Create a new message containing the response and send it only to the author of

 the original message. This function is non-interactive.

 Compare to ANSRMSG^XMXAPI (DBIA 2729).

 Usage: S variable=$$ENTA^XMA2R(XMZ,XMSUBJ,.XMTEXT,XMSTRIP,XMDUZ)

 If successful, function returns:

 Message IEN in file 3.9 of the answer.

 If failure, function returns:

 The letter "E", followed by a number, followed by an error message.

 e.g. "E1 No subject !"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1146

 NAME: MAIL GROUP API

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This mail group API contains the following entry points:

 $$DM^XMBGRP Delete local members from a mail group.

 $$MG^XMBGRP Create a new mail group or add local members to an existing mail group.

 ROUTINE: XMBGRP

 COMPONENT: $$MG

 VARIABLES: XMGROUP Type: Input

 Full Mail group name, exactly as it should appear in the .01 field of the MAIL GROUP file

 (3.8). Must be 3-30 characters.

 XMTYPE Type: Used

 (optional) Type of mail group. Used only for creating a mail group, otherwise it's ignored.

 Possible values are:

 0 - public (default)

 1 - private

 XMORG Type: Used

 (optional) DUZ of group organizer. Used only for creating a mail group, otherwise it's

 ignored. Default is DUZ of the user performing the API. If XMORG is less than 1, it is set

 to .5.

 XMSELF Type: Used

 (optional) Allow self enrollment? (0=no; 1=yes) Used only for creating a mail group,

 otherwise it's ignored. Default is 1 (yes).

 XMY Type: Used

 (optional for mail group creation; mandatory otherwise) Array of local members to add to the

 mail group.

 XMY(user duz)=""

 Note that only user DUZs are accepted. User names are not. Remote addresses, or anything

 else, are not.

 XMY is killed upon successful completion of this API.

 XMDESC Type: Used

 (optional) Array of text to put in the description field of the mail group. Used only for

 creating a mail group, otherwise it's ignored. The text array must be in a format acceptable

 to FileMan word-processing APIs.

 XMQUIET Type: Used

 (optional) Silent Flag. What should happen if there are any errors, or if (during mail group

 creation only) local members were successfully added to the mail group?

 0 - Display it to the user.

 1 - Sent it in a message to the Postmaster and the user (DUZ) performing the API. (Default)

 Create a mail group or add local members to an existing mail group.

 If the mail group does not exist, it will be created. Local members may be added. There is no way to add

 other kinds of members. XMTYPE, XMORG, XMSELF, and XMDESC are accepted.

 If the mail group exists, local members must be added to it. No other changes can be made. XMTYPE, XMORG,

 XMSELF, and XMDESC are ignored.

 There is no MailMan API to change any other mail group fields.

 Usage: S X=$$MG^XMBGRP(XMGROUP,XMTYPE,XMORG,XMSELF,.XMY,.XMDESC,XMQUIET)

 This function returns the mail group IEN if successful; 0 if not.

 Parameters:

 XMGROUP mail group IEN or name

 XMTYPE mail group type (public or private)

 XMORG organizer DUZ

 XMSELF self enrollment allowed?

 .XMY array of local members

 .XMDESC array of text for the mail group description

 XMQUIET silent flag

 COMPONENT: $$DM

 VARIABLES: XMGROUP Type: Input

 Mail group IEN in the MAIL GROUP file (3.8), or the full mail group name, exactly as it

 appears in the .01 field.

 XMY Type: Input

 Array of local members to delete from the mail group.

 XMY(user duz)=""

 Note that only user DUZs are accepted. User names are not.

 XMQUIET Type: Used

 (optional) Silent Flag. Possible values:

 0 - Any errors are displayed to the user.

 1 - Any errors are sent in a message to the Postmaster and the user (DUZ) performing the

 API. (Default)

 Delete local members from a mail group. There is no MailMan API to delete other kinds of members.

 Usage: S X=$$DM^XMBGRP(XMGROUP,.XMY,XMQUIET)

 This function returns 1 if successful; 0 if not.

 Parameters:

 XMGROUP mail group IEN or full name

 .XMY array of local members to be deleted

 XMQUIET silent flag (1=Silent, 0=Interactive)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1147

 NAME: LOOKUP / CREATE BASKET

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This function looks up a mail basket name and returns its IEN. If the basket doesn't exist, the basket will be created and

 the IEN of the newly created basket will be returned.

 ROUTINE: XMAD2

 COMPONENT: $$BSKT

 VARIABLES: XMKN Type: Input

 The name of the basket to be looked up or created. It must be the exact name. It must be

 2-30 characters.

 XMDUZ Type: Input

 The DUZ of the user whose basket is being looked up or created.

 This function looks up a mail basket name and returns its IEN.

 Given a basket name and a user's DUZ, lookup the basket. If it doesn't exist, create it and return its IEN.

 If it does exist, return its IEN. If there's an error, return an error message.

 CRE8BSKT^XMXAPIB (DBIA 2723) can also be used to create a basket.

 Usage: S variable=$$BSKT^XMAD2(XMKN,XMDUZ)

 Where: XMKN=Basket-name

 XMDUZ=DUZ (user IEN)

 Examples:

 W $$BSKT^XMAD2("ZZZZZ",9999)

 999 (The IEN is returned when there are no errors.)

 W $$BSKT^XMAD2(1,1) or W $$BSKT^XMAD2("A",1)

 An error message to the effect that Basket names contain 2 to 30 chars.

 W $$BSKT^XMAD2("zzzzzz",99999999)

 An error message to the effect that No such MailMan user as 99999999 is known.

 S B=$$BSKT^XMAD2(X,Y)

 I B<1 W !!,"MailMan found the following error: ",B

 MailMan found the following error:

 An error message to the effect that a certain error occurred.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1148

 NAME: MAILMAN: Interactive control of a port

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Device and Line Checking

 GO^XMCTLK

 This routine allows one to interactively use a device and displays keyboard entry and data coming down the line.

 Usage: D GO^XMCTLK

 Note: DHCP programming environment is assumed (initialized through the execution of D ^XUP or sign-on through ^XUS). All I/O

 from the keyboard and device chosen are echoed on screen. It is good for testing devices, Network outgoing points, etc. What

 is displayed on the screen may be captured into a mail message. Type an "A" to communicate with TalkMan.

 ROUTINE: XMCTLK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1150

 NAME: RESEQUENCE MESSAGES API

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API resequences the messages in your basket.

 ROUTINE: XMA03

 COMPONENT: $$REN

 VARIABLES: XMDUZ Type: Input

 DUZ of the user whose basket is to be resequenced.

 XMK Type: Input

 IEN of the basket to be resequenced in the user's mailbox.

 This function performs an integrity check on the user's basket and then resequences the messages in the basket.

 Only the user or a surrogate may use this API.

 If successful, returns the string: "Resequenced from 1 to n", where n is the number of messages in the basket.

 If unsuccessful, returns the null string.

 Compare to RSEQBSKT^XMXAPIB (DBIA 2723).

 Usage: S X=$$REN^XMA03(XMDUZ,XMK)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1151

 NAME: MAILMAN: Server API

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ^XMS1 contains the following application programmer functions:

 $$STATUS^XMS1(MSGIEN,RDUZ) which extracts the status from network messages only.

 $$SRVTIME(MSGIEN,RDUZ,Status) which sets status of recipients in a message.

 Appendix 1 -- Message Server Protocol

 Overview

 A server is an option which is invoked when a mail message that has been addressed to it has been delivered. As an option,

 many of the parameters associated with the servers are embedded in the definition of the option. Therefore, in order to

 understand servers completely, you should refer to the server documentation in Kernel 7.0 manuals. Options are listed in the

 Menu Management documentation.

 Servers may or may not receive data. The received data usually comes in the form of the text of the message being delivered

 to it, but the data may also be pointed to by the message, and exist in the system either because it was there in the

 beginning, or because it arrived independently.

 Servers may be addressed from a remote site. A server on ALTOONA.VA.GOV may receive a message addressed to it from

 WASHINGTON.VA.GOV. In fact, this is very common. There are security features as parameters of the option that has been

 designated as a server because of the fact. Please be aware of these security parameters. Messages addressed to servers will

 not be scheduled if security is not passed. Filegrams work through use of a server. Data is loaded into a mail message,

 addressed and when delivered, processed by the filegram server into the receiving database.

 Servers are always invoked through tasks that are set up when the message is delivered into the system locally or over the

 network. One of the options is to "Run Immediately". Then the task is scheduled to run "NOW".

 However, tasks may not need to be scheduled at all because the system manager has stated so in the entry for the server in the

 Option file or because of a problem. See the Menu Management documentation in the MailMan Technical Manual and Systems

 Management Guide for more information concerning this.

 Server Statuses

 Server recipients are recorded in the recipient chain of a message and appear similarly to other users. MailMan enters

 statuses on its own as stages in the server process are reached. First, the message is marked as "Awaiting Server". This

 indicates that the message has been received and the option is a valid one. At this point, a task has been created to

 actually invoke MenuMan to schedule or perform the service (option) required.

 The last status which MailMan sets is "Served", which means that MenuMan has been called successfully and MenuMan has either

 performed the task in the case of a server that runs immediately, or that some other action has been done.

 At this point, a task could be scheduled to invoke the server or simply a message could be sent to indicate that the task

 exists and needs to be scheduled, or some other action that was required was performed. MenuMan has its own statuses which

 will be used.

 $$SRVTIME^XMS1

 This extrinsic function sets status of recipients in a message.

 Usage: S X=$$SRVTIME^XMS1(A,B,C)

 Where: A = XMZ (message number)

 B = A string representing the recipient name

 C = Status is free-text (String less than nine (9)

 characters in length)

 If successful, X = 0

 ...or If unsuccessful, X will be a number followed by a human readable error

 Addressing a Server

 To address a server, precede the recipient name with "S." (e.g., S.XMECHO). This example sends a message to the Mail Man Echo

 Tester server. "S." must be followed by an option name from the Option file in the Target Domain. If not, a "Recipient not

 Found" error will occur.

 A "Recipient Ambiguous" error will occur, if there is more than one option whose name partially matches the name addressed.

 The District Registry server for admitting a new patient could be addressed as follows:

 S.DGDISTADMIT@SANFRANCISCO.VA.GOV

 The message is destined for the DGDISTADMIT option at San Francisco. Replies to this message would be from this same name.

 Writing a Server Program

 The server communicates with mail messages in specific ways. Code is used to interface the server to the message system. The

 code below returns the original message to the sender:

 ECHO ;

 K XMY

 S XMSUB=$E("Server echo of'"_XMBSUB_"`",1,65)

 S XMY(XMFROM)="",XMTXT="^XMB(3.9,"_XMZ_",2,"

 D ^XMD

 Q

 In this example, the variable XMFROM contains the sender address and is supplied to the server when invoked. Other variables

 also exist upon invocation of the server.

 The XMF.1 example server program is supplied with MailMan. XMF1 uses some of the other variables supplied to the server.

 Execute variable XMREC to read a line of the message. XMER and XMRG are returned.

 XMER This variable returns the execution status of XMREC. XMER<0, if there is no more message text to read. The value of

 XMER will be zero (0), if XMRG is being returned as non-null. XMRG, in that case, will have as its value the text of the next

 line of the message.

 XMRG The value of XMRG will be the next line of message text. XMRG will always be defined, though it will be null when

 XMER<0.

 XMPOS This variable contains the current position of the text returned in the variable XMGR. It is initialized if it is

 undefined, but should be killed by the server when it is finished "Reading" the message.

 Here's another example of code, this time from XMF1:

 S XMA=0

 A ;

 X XMREC ; Receive a line

 I $D(XMER) G Q;XMER<0 ; Check for end of message

 S XMA=XMA+1 ; Increment local line count

 S XMTEXT(XMA)=XMRG ; Set local array

 G A ; Go back for another line

 Double Serving Messages

 On occasion, the transmission/receive process is interrupted by a system back-up. It appears to result in the same message

 being served twice. The Audit Log for the Options file shows two messages with the same message number and subject, but with

 different Date/Times and Job Numbers.

 To avoid this, application servers should be written such that they check for and avoid processing of the same message being

 delivered to any particular server. MailMan transparently checks this and does not deliver twice to mail boxes. However,

 devices and servers do not have mail boxes to check against. Servers can have some understanding of special mail baskets in

 the Postmaster's mail box and can be written to check for duplicate deliveries (See reference XMAIC entry points in the

 Callable Routines section of the Technical Manual and System Manager's Guide).

 ROUTINE: XMS1

 COMPONENT: STATUS

 VARIABLES:

 $$STATUS^XMS1

 This extrinsic function extracts the status from network messages only.

 Usage: S X=$$STATUS^XMS1(A,B)

 Where: A = Message Number

 B = Recipient (pointer to File #200 or free-text Network Address)

 If successful, X=String

 ...or If unsuccessful X=""

 Examples:

 W $$STATUS^XMS1(51555,"NOSS,VER@VER.GOLD.VA.GOV")

 Awaiting transmission.

 COMPONENT: $$SRVTIME

 VARIABLES: $$SRVTIME^XMS1

 This extrinsic function sets status of recipients in a message.

 Usage: S X=$$SRVTIME^XMS1(A,B,C)

 Where: A = XMZ (message number)

 B = A string representing the recipient name

 C = Status is free-text (String less than nine (9)

 characters in length)

 If successful, X = 0

 ...or If unsuccessful, X will be a number followed by a human readable error

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1230

 NAME: PRINT A MESSAGE API

 USAGE: Supported ENTERED: MAY 17,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The entry points in this API print messages:

 - PR2^XMA0 print a message with a header

 - HDR^XMA0 print a message without a header

 - ENTPRT^XMA0 interactive print a message

 ROUTINE: XMA0

 COMPONENT: ENTPRT

 VARIABLES: DUZ Type: Input

 The IEN of the user in the NEW PERSON file.

 XMDUZ Type: Used

 (optional) The DUZ of the user. Default is DUZ.

 XMK Type: Input

 The IEN of the basket in the user's mailbox in which the message to be printed is located.

 XMZ Type: Input

 Message IEN in the Message file of the message to be printed.

 This interactive API lets the user print a message with a header. The message to print is pre-defined, but the

 user may choose the device to which to print, and which responses to print.

 COMPONENT: HDR

 VARIABLES: DUZ Type: Input

 The IEN of the user in the NEW PERSON file.

 XMDUZ Type: Used

 (optional) The DUZ of the user. Default is DUZ.

 XMK Type: Input

 The IEN of the basket in the user's mailbox in which the message to be printed is located.

 XMZ Type: Input

 Message IEN in the Message file of the message to be printed.

 IO Type: Input

 The device to which the message is to be printed.

 XMTYPE Type: Used

 (optional) Lets you determine from which response to start printing.

 If XMTYPE="^", then abort.

 If ";"-piece 6 is null or zero, or if '$D(XMTYPE), the message is printed in its entirety.

 If ";"-piece 6 is a number, the message will be printed from that response to the end.

 The other ";"-pieces are ignored.

 Headerless print a message.

 Compare to PRTMSG^XMXAPI (DBIA 2729).

 Usage:

 IO has been defined with a KERNEL device call.

 S XMK=basket IEN

 S XMZ=message IEN

 D HDR^XMA0 ; prints the message in its entirety

 - or -

 S $P(XMTYPE,";",6)=3

 D HDR^XMA0 ; prints the message from response 3 to the end.

 COMPONENT: PR2

 VARIABLES: DUZ Type: Input

 The IEN of the user in the NEW PERSON file.

 XMDUZ Type: Used

 (optional) The DUZ of the user. Default is DUZ.

 XMK Type: Input

 The IEN of the basket in the user's mailbox in which the message to be printed is located.

 XMZ Type: Input

 Message IEN in the Message file of the message to be printed.

 IO Type: Input

 The device to which the message is to be printed.

 XMTYPE Type: Used

 (optional) Lets you determine from which response to start printing.

 If XMTYPE="^", then abort.

 If ";"-piece 6 is null or zero, or if '$D(XMTYPE), the message is printed in its entirety.

 If ";"-piece 6 is a number, the message will be printed from that response to the end.

 The other ";"-pieces are ignored.

 Print a message with a header.

 Compare to PRTMSG^XMXAPI (DBIA 2729).

 Usage:

 IO has been defined with a KERNEL device call.

 S XMK=basket IEN

 S XMZ=message IEN

 D PR2^XMA0 ; prints the message in its entirety

 - or -

 S $P(XMTYPE,";",6)=3

 D PR2^XMA0 ; prints the message from response 3 to the end.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1232

 NAME: INTERACTIVE REPLY TO A MESSAGE API

 USAGE: Supported ENTERED: JUN 23,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API lets the user interactively reply to a message in his mailbox. There are two ways to invoke it: D ^XMAH1 or D

 ENTA^XMAH1.

 ROUTINE: XMAH1

 COMPONENT: ENTA

 VARIABLES: XMDUZ Type: Input

 DUZ of the user who is replying to the message.

 XMK Type: Input

 IEN of the basket in the user's mailbox where the message is located.

 XMZ Type: Input

 Message IEN in the Message file of the message to which the user is replying.

 XMDF Type: Used

 (optional) If $D(XMDF), then normal restrictions on message addressing are ignored:

 - Ignore 'domain closed'

 - Ignore 'keys required for domain'

 - Ignore 'message length restrictions to remote addressees'

 Interactive reply to a message in your mailbox. Inclusion of previous responses is not possible. All rules of

 replying to a message apply: If the user is a surrogate, read or send permission is required. If the message

 is in the WASTE basket, it will be moved to another basket. If the message is 'information only', you can't

 reply.

 Usage: S XMDUZ=user's DUZ, XMK=basket IEN, XMZ=message IEN

 D ENTA^XMAH1 or D ^XMAH1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1233

 NAME: INTERACTIVE ANSWER OR SEND A MESSAGE API

 USAGE: Supported ENTERED: MAY 24,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API lets the user answer a message or send a message.

 When you send an answer to a message, the original message is copied into the answer, the user edits the answer, the user's

 network signature is appended to the end of the answer, and the whole thing is automatically addressed to the sender of the

 original message.

 ROUTINE: XMA11A

 COMPONENT: WRITE

 VARIABLES: XMDUZ Type: Input

 DUZ of the user who is answering or sending a message.

 X Type: Used

 If $E(X)="A", then the user will answer a message. Otherwise, the user will send a message.

 XMZ Type: Used

 Message IEN in the Message file of the message being answered.

 Required if the user is answering a message.

 Not required (and ignored) if the user is sending a message.

 Interactive answer a message or send a message.

 Usage:

 To answer a message:

 S XMDUZ=User's DUZ

 S X="A"

 S XMZ=IEN of message being answered

 D WRITE^XMA11A

 To send a message:

 S XMDUZ=User's DUZ

 D WRITE^XMA11A

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1283

 NAME: MAILMAN - Access 'as if' a server

 USAGE: Supported ENTERED: JUN 28,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Invoking GET^XML with XMCHAN="SERVER" (or any other appropriate channel) sets up the variables available to servers (that

 channel) invoked during normal delivery.

 Note that before XMREC is executed, XMZ must be defined; XMER and XMRG are defined by executing XMREC. XMPOS can be changed

 by the user if appropriate.

 ==

 Execute variable XMREC to read a line of the message. XMER and XMRG are returned.

 XMER This variable returns the execution status of XMREC. XMER<0, if there is no more message text to read. The value of

 XMER will be zero (0), if XMRG is being returned. XMRG, in that case, will have as its value the text of the next line of the

 message. (Note: which may be null, i.e. a blank line; you cannot test it for being done!)

 XMRG The value of XMRG will be the next line of message text. XMRG will always be defined, though it will be null when

 XMER<0.

 XMPOS This variable contains the current position of the text returned in the variable XMGR. It is initialized if it is

 undefined and should be killed by the server when it is finished "Reading" the message.

 Prototype Message Body Reader

 S XMCHAN="SERVER" GET^XML

 N A,TEXT ; N MIRROR

 S A=0

 A ;

 X XMREC ; Receive a line

 I $D(XMER) G Q:XMER<0 ; Check for end of message

 S A=A+1 ; Increment local line count

 S TEXT(A)=XMRG ; Set local array

 ; S MIRROR(XMPOS)=XMRG ; MIRROR will have the same subscripts

 ; as the original message

 G A ; Go back for another line

 VARIABLES: XMZ Input The internal number of the message to

 be processed.

 XMPOS Input The number of the last line read (or

 null).

 XMPOS Output The number of the "next" line in the

 message; if no further lines, XMPOS=""

 XMER Output 0 unless no lines greater than XMPOS,

 then -1

 XMRG Output line XMPOS of message XMZ

 ROUTINE: XML

 COMPONENT: GET

 VARIABLES: Invoking GET^XML with XMCHAN="SERVER" sets up the variables available to servers invoked during normal

 delivery. In particular XMREC is defined and can be used the manner documented fully in DBIA 1151 (and

 partially above).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 1284

 NAME: INTERACTIVE READ/MANAGE MESSAGES OPTION

 USAGE: Supported ENTERED: JUL 5,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API lets the user read and manage the messages in his mailbox.

 ROUTINE: XMA

 COMPONENT: REC

 VARIABLES: DUZ Type: Input

 User's IEN in the NEW PERSON file.

 This entry lets the user read and manage the messages in his mailbox. It is the same as the XMREAD option

 under the XMUSER menu.

 Compare this to READ^XMXAPIU (DBIA 2774).

 It may be placed in a menu option as follows:

 Entry action: S XMMENU(0)=<name of the menu option>

 Routine: REC^XMA

 Exit action: K XMMENU D CHECKOUT^XM

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2723

 NAME: MAILBOX AND BASKET API

 USAGE: Supported ENTERED: JAN 25,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The APIs in this DBIA perform mailbox and basket actions.

 If any errors occur, the following variables will be defined:

 XMERR - The number of errors

 ^TMP("XMERR",$J,<error number>,"TEXT",<line number>)=<error text>

 Following is information on some common input parameters:

 XMDUZ - The user (DUZ or enough of the user's name, alias, initials, or nickname for a positive ID) for whom the API is

 being called. An FM lookup into the ^VA(200, NEW PERSON file will be performed.

 XMK - The basket (IEN or enough of its name for a positive ID) for which the API is being called.

 XMTROOT - (optional) The target root to receive the requested list. This quoted string must be a closed root. The node

 "XMLIST" will be added underneath it. This is an optional parameter. It defaults to ^TMP("XMLIST",$J).

 ROUTINE: XMXAPIB

 COMPONENT: CRE8MBOX

 VARIABLES: XMDUZ Type: Input

 The user for whom a mailbox should be created. User must already exist in ^VA(200,. See

 General Description for further information.

 XMDATE Type: Used

 (optional) Users who are being reinstated after not having worked here for a while may be

 restricted from seeing messages earlier than a certain date. If the user is a first-time

 user, then this parameter has no effect and shouldn't be used.

 Possible values:

 =0 or null (default) - The user may access any message on the system which was ever addressed

 to the user.

 =date - The user may not access any message addressed to the user on the system earlier than

 this date, unless it is already in the user's mailbox or if someone forwards it to the user.

 The date must be a FileMan date or any date format which FileMan recognizes.

 Create a mailbox for a user. That is, add the user to file ^XMB(3.7, MAILBOX. The user's IEN in this file is

 the same as the user's IEN in ^VA(200, NEW PERSON file, that is, the user's DUZ.

 Usage: D CRE8MBOX^XMXAPIB(XMDUZ,XMDATE)

 COMPONENT: FLTRMBOX

 VARIABLES: XMDUZ Type: Input

 See General Description.

 XMMSG Type: Output

 If filtering is completed successfully, contains the message, "Mailbox filtered".

 Filter all messages in a user's mailbox. Runs all messages in all baskets in the user's mailbox through any

 filters which may exist for the mailbox. Only the user or a surrogate may use this API.

 Usage: D FLTRMBOX^XMXAPIB(XMDUZ,.XMMSG)

 COMPONENT: QMBOX

 VARIABLES: XMDUZ Type: Input

 See General Description.

 XMMSG Type: Output

 String giving information on the user's new messages.

 If user has no new messages, string is 0 (zero).

 If user has new messages, string contains the following up-arrow delimited pieces of

 information:

 Piece 1: number of new messages in the mailbox

 Piece 2: does the user have priority mail (0=no; 1=yes)

 Piece 3: number of new messages in the IN basket

 Piece 4: date/time (FM format) that the last message was received

 Piece 5: have there been any new messages since the last time this API was called? (0=no;

 1=yes)

 Query a mailbox for new messages. Only the user or a surrogate may use this API.

 Usage: D QMBOX^XMXAPIB(XMDUZ,.XMMSG)

 COMPONENT: TERMMBOX

 VARIABLES: XMDUZ Type: Input

 The user whose mailbox is to be terminated. User must still exist in ^VA(200,. See General

 Description for further information.

 Remove all traces of a user from MailMan globals. Only a Postmaster surrogate or XMMGR key holder may use this

 API.

 Usage: D TERMMBOX^XMXAPIB(XMDUZ)

 COMPONENT: CRE8BSKT

 VARIABLES: XMDUZ Type: Input

 The user for whom a basket is to be created. See General Description for more information.

 XMKN Type: Input

 The name of the basket to be created. It must be free text, from 2 to 30 characters.

 XMK Type: Output

 The IEN of the basket which was created.

 Create a basket. Only the user or a surrogate may use this API. If the user is SHARED,MAIL, then the

 surrogate must be a Postmaster surrogate or XMMGR key holder.

 Usage: D CRE8BSKT^XMXAPIB(XMDUZ,XMKN,.XMK)

 COMPONENT: DELBSKT

 VARIABLES: XMDUZ Type: Input

 The user for whom a basket is to be deleted. See General Description for more information.

 XMK Type: Input

 Basket to be deleted. See General Description for more information.

 XMFLAGS Type: Used

 (optional) Used to control processing. May contain any of the following:

 D - Delete this basket even if there are messages in it.

 Delete a basket. The special baskets (IN and WASTE) may not be deleted. Only empty baskets may be deleted,

 unless XMFLAGS contains "D". Only the user or a surrogate may use this API. If the user is SHARED,MAIL, then

 the surrogate must be a Postmaster surrogate or XMMGR key holder.

 Usage: D DELBSKT^XMXAPIB(XMDUZ,XMK,XMFLAGS)

 COMPONENT: FLTRBSKT

 VARIABLES: XMDUZ Type: Input

 The user whose basket is to be filtered. See General Description for more information.

 XMK Type: Input

 The basket to be filtered. See General Description for more information.

 XMMSG Type: Output

 If filtering is completed successfully, contains the message, "Basket filtered".

 Filter messages in a basket. Runs all messages in a basket through any filters which may exist for the

 mailbox. Only the user or a surrogate may use this API. If the user is SHARED,MAIL, then the surrogate must

 be a Postmaster surrogate or XMMGR key holder.

 Usage: D CRE8MBOX^XMXAPIB(XMDUZ,XMK,.XMMSG)

 COMPONENT: LISTBSKT

 VARIABLES: XMDUZ Type: Input

 The user for whom a basket list is to be compiled. See General Description for more

 information.

 XMFLAGS Type: Used

 (optional) Used to control processing. May be any combination of the following:

 B - Backwards alpha order (default is alpha order)

 N - List only those baskets with new messages.

 XMAMT Type: Used

 (optional) How many baskets should be in the list?

 Possible values:

 <number> - This many. Upper case xref (under "BSKT") is NOT provided.

 * - All baskets (default). Upper case xref (under "BSKT") is provided.

 XMSTART Type: Both

 (optional) Provides a starting point from which to get the list. It is used to start the

 lister going. The calling routine does not need to set it. Default is to start with the

 lowest numbered basket IEN and to start, in each successive call, where the previous call

 left off. The lister will keep it updated from call to call.

 Note: This parameter is used if XMAMT is a number, and you intend to call this entry point

 repeatedly until there are no more baskets.

 XMPART Type: Used

 (optional) Get a list only of those baskets whose name starts with this string.

 XMTROOT Type: Used

 (optional) The target root to receive the message list. See General Description for more

 information.

 Get a list of baskets in a mailbox. Gets a list (similar in format to that produced by LIST^DIC) of a user's

 baskets, optionally restricting the list to only those baskets with new mail, and/or those baskets whose name

 starts with a certain string.

 Note: Regardless of the alphabetic order you request, lower-case names sort separately from upper-case names.

 Therefore, an all upper-case cross reference (under "BSKT") is provided if you do not limit the number of

 entries returned.

 Usage: D LISTBSKT^XMXAPIB(XMDUZ,XMFLAGS,XMAMT,.XMSTART,XMPART,XMTROOT)

 COMPONENT: LISTMSGS

 VARIABLES: XMDUZ Type: Input

 The user for whom a message list is to be compiled. See General Description for more

 information.

 XMK Type: Input

 The basket to look in.

 Possible values:

 IEN or name - look in this basket only

 * - look in all baskets

 ! - look in the Message file.

 XMFLDS Type: Used

 (optional) A string containing a list, separated by ';', of fields to retrieve. Default is

 none.

 Possible values include any combination of the following, separated by ';': (e.g.,

 "SUBJ;DATE")

 BSKT - basket (default: <basket IEN>^<basket name>)

 Optionally followed by ":" and

 I - for basket IEN only (no 2nd piece)

 X - adds basket name xref

 (If XMK="!", and the message is not in the user's mailbox, will

 be set to "0^* N/A *".)

 DATE - date sent (default:<internal date>^<dd mmm yy hh:mm>

 Optionally followed by ":" and

 I - for internal only (no 2nd piece)

 F - for FM date as the 2nd piece

 X - adds FM date xref

 FROM - message from (default: <internal from>^<external from>)

 Optionally followed by ":" and

 I - for internal only (no 2nd piece)

 X - adds external from xref

 LINE - number of lines in the message

 NEW - is the message new? (0=no; 1=yes; 2=yes, and priority, too)

 PRI - is the message priority? (0=no; 1=yes)

 READ - how much of the message has the user read?

 <null> - has not read the message at all

 0 - has read the message, but no responses

 <number> - has read through this response

 RESP - how many responses does the message have?

 0 - none

 <number> - this many

 SEQN - sequence number in basket

 SUBJ - message subject (always external)

 Optionally followed by ":" and

 X - adds message subject xref

 XMFLAGS Type: Used

 (optional) Flags control processing. May be any combination of the following:

 B - backwards order (default is traverse forward)

 U - Ignore the file screen on file 3.9 so that all messages can be

 examined. (valid only if XMK="!" and the user possesses the

 XM SUPER SEARCH key)

 If XMK="!", the following flags are ignored:

 C - use basket C-xref (default is message IEN)

 N - new messages only (C flag ignored)

 P - new priority messages only (C, N flags ignored)

 XMAMT Type: Used

 (optional) How many messages should be returned?

 Possible values:

 <number> - this many

 * - all (default)

 XMSTART Type: Both

 (optional) This may be used to start the lister going. The lister will keep it updated from

 call to call. This variable is usually used when XMAMT is set to a number, and multiple

 calls to this API may be required. This variable ensures that each successive call resumes

 where the previous call left off.

 (If XMK="!", FileMan handles XMSTART, and you should look at FM documentation for an

 explanation. Messing with XMSTART is not advised if XMK="!", unless you are sure you know

 what you're doing.)

 The following variables may updated, depending on how the API is called:

 XMSTART("XMK") - Start with this basket IEN (valid only if XMK="*").

 Continues from there, with each successive call, to the

 end.

 (Default is to start with basket .5, the WASTE basket.)

 XMSTART("XMZ") - Start AFTER this message IEN (valid only if

 XMFLAGS'["C").

 Continues from there, with each successive call, to the

 end.

 (Default is to start at the beginning (or end) of the

 basket.)

 XMSTART("XMKZ") - Start AFTER this message C-xref (valid only if

 XMFLAGS["C").

 Continues from there, with each successive call, to the

 end.

 (Default is to start at the beginning (or end) of the

 basket.)

 XMCRIT Type: Used

 Get a list a messages in a mailbox or in the Message file.

 Gets a list (similar in format to that produced by LIST^DIC) of messages in one basket or all baskets,

 optionally based on certain criteria. Also can get a list of messages in the Message file which were sent to

 or by the user and are not necessarily still in the user's mailbox. The IENs of the messages (in the message

 file 3.9) are returned. Only the user or a surrogate may use this API.

 Also enables 'Super Search' of all messages in the message file, regardless of who sent them. This search

 should only be used in coordination with the site's ISO, and is intended to be used to gather evidence in cases

 such as EEO harassment. Only holders of the XM SUPER SEARCH key may use this capability.

 Usage: D LISTMSGS^XMXAPIB(XMDUZ,XMK,XMFLDS,XMFLAGS,XMAMT,.XMSTART,.XMCRIT,XMTROOT)

 COMPONENT: NAMEBSKT

 VARIABLES: XMDUZ Type: Input

 The user whose basket is to be renamed. See General Description for more information.

 XMK Type: Input

 The basket to be renamed. See General Description for more information.

 XMKN Type: Input

 The new name of the basket. It is free text, from 2 to 30 characters.

 Change the name of a basket. The IN and WASTE baskets may not be renamed. Only the user or a surrogate with

 'write' privilege may use this API. If the user is SHARED,MAIL, then the surrogate must be a Postmaster

 surrogate or XMMGR key holder.

 Usage: D NAMEBSKT^XMXAPIB(XMDUZ,XMK,XMKN)

 COMPONENT: QBSKT

 VARIABLES: XMDUZ Type: Input

 The user whose basket is to be queried. See General Description for more information.

 XMK Type: Input

 The basket to be queried. See General Description for more information.

 XMMSG Type: Output

 String containing the following up-arrow-delimited pieces of information:

 Piece 1: basket IEN

 Piece 2: basket name

 Piece 3: number of messages in the basket

 Piece 4: number of new messages in the basket

 Get information about a basket. Only the user of a surrogate may use this API.

 Usage: D QBSKT^XMXAPIB(XMDUZ,XMK,.XMMSG)

 COMPONENT: RSEQBSKT

 VARIABLES: XMDUZ Type: Input

 The user whose basket messages are to be resequenced. See General Description for more

 information.

 XMK Type: Input

 The basket to be resequenced. See General Description for more information.

 XMMSG Type: Output

 If resequencing is completed successfully, string contains the message: "Resequenced from 1

 to <number of messages in basket>".

 Resequence messages in a basket. Before any resequencing is done, a basket integrity check is performed, and

 any errors detected are corrected. Only the user or a surrogate may use this API. If the user is SHARED,MAIL,

 then the surrogate must be a Postmaster surrogate or XMMGR key holder.

 Usage: D RESEQBSKT^XMXAPIB(XMDUZ,XMK,.XMMSG)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2728

 NAME: USER ENVIRONMENT API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Create the MailMan environment in which the user will operate while in MailMan.

 Set up the user's XMV array, which contains vital user information, user preferences, and, if the user is a surrogate, the

 user's level of authorization. The information in this array is used throughout MailMan.

 If any errors occur, the following variables will be defined:

 XMERR - the number of errors

 ^TMP("XMERR",$J,<error number>,"TEXT",<line number>)=<error text>

 ROUTINE: XMVVITAE

 COMPONENT: INIT

 VARIABLES: DUZ Type: Input

 Set by KERNEL when the user logs in to the system, it is a unique user ID, and the IEN for

 the user in the NEW PERSON file. It is also the IEN for the user in the MAILBOX file.

 XMDUZ Type: Both

 (optional) If the user (as identified by DUZ) is acting as a surrogate for another user,

 XMDUZ should be set by the calling routine to the DUZ of the other user.

 If XMDUZ is not set by the calling routine, it is assumed that the user is acting for

 himself, and XMDUZ will be set to DUZ (default) by this routine.

 XMDISPI Type: Output

 String containing two up-arrow-delimited pieces of information:

 Piece 1: Any combination of the following:

 A - Ask basket, if user sends message to self

 I - Show institution

 T - Show title

 Piece 2: One of the following IN basket message action defaults:

 I - Ignore the message

 D - Delete the message

 NOTE: MailMan does not use this variable, as it duplicates information provided in XMV.

 XMDUN Type: Output

 Provides same information as XMV("NAME").

 NOTE: MailMan does not use this variable, as it duplicates information provided in XMV.

 XMNOSEND Type: Output

 =1, if XMV("NOSEND")=1. Otherwise, not defined.

 NOTE: MailMan does not use this variable, as it duplicates information provided in XMV.

 XMPRIV Type: Output

 If the user is acting as a surrogate, then this string contains two pieces of

 up-arrow-delimited information, concerning the user's privileges:

 Piece 1: Does the user have read privilege?

 y - Yes

 n - No

 Piece 2: Does the user have send privilege?

 y - Yes

 n - No

 If the user is acting as a surrogate, then this variable is defined. Otherwise, it isn't.

 NOTE: MailMan does not use this variable, as it duplicates information provided in XMV.

 XMV Type: Output

 An array of values defining the user's MailMan environment, giving information about the

 user, the user's MailMan preferences, and, if the user's acting as a surrogate, what

 privileges the user has. The information in this array is used throughout MailMan.

 The following items will always be set:

 XMV("ASK BASKET") If user sends a message to himself, should MailMan ask, "which basket?"

 (0=yes; 1=no)

 XMV("DUZ NAME") The user's name. (DUZ)

 XMV("LAST USE") String, in external format, showing when was the last time the user entered

 MailMan, and if it was a surrogate, which one. If the user never entered MailMan, the string

 will be "Never". (XMDUZ)

 XMV("MSG DEF") The default action for a message in the IN basket (I=ignore; D=delete).

 (DUZ)

 XMV("NAME") The user's name. (XMDUZ)

 XMV("NETNAME") The user's network name. (XMDUZ)

 XMV("NEW MSGS") The number of new messages in the user's mailbox. (XMDUZ)

 XMV("NOSEND") May the user send messages in this session? (1=no; 0=yes) The user may not

 send messages in any but the first of multiple concurrent sessions. (XMDUZ)

 XMV("ORDER") Display the user's messages in which order? (-1=reverse; 1=forward) (DUZ)

 XMV("PREVU") In the Classic reader, should message previews be displayed? (0=no; 1=yes)

 (DUZ)

 XMV("RDR ASK") Ask the user which message reader to use? (N=no; Y=yes) (DUZ)

 XMV("RDR DEF") User's default message reader (C=classic; D=detailed full screen; S=summary

 full screen) (DUZ)

 XMV("SHOW DUZ") Show user's DUZ? (0=no; 1=yes) (site)

 XMV("SHOW INST") Show user's institution? (0=no; 1=yes) (site)

 XMV("SHOW TITL") Show user's title? (0=no; 1=yes) (DUZ)

 XMV("VERSION") What version of MailMan is at this site? "VA MailMan "_version # (site)

 The following items will be set only if conditions warrant:

 XMV("BANNER") The user's banner, if one exists; otherwise not defined. (XMDUZ)

 XMV("ERROR",1) "You do not have a DUZ" if '$D(DUZ).

 XMV("ERROR",2) "There is no person with DUZ "_XMDUZ_"." if bogus XMDUZ.

 XMV("ERROR",3) "There is no Access Code for DUZ "_XMDUZ_"."

 XMV("ERROR",4) "There is no Mailbox for DUZ "_XMDUZ_"."

 XMV("PRIV") If user is acting as a surrogate, contains the user's privilege(s). Any or

 all of the following:

 R - read

 W - write (send)

 XMV("SYSERR",i) If Domain incorrectly set up, contains text. (site)

 XMV("WARNING",1) "Priority Mail" if user has priority mail (XMDUZ)

 XMV("WARNING",2) "Message in Buffer" (XMDUZ)

 XMV("WARNING",3) "No Introduction" if user has no intro, but site requires one. (XMDUZ)

 XMV("WARNING",4) "Multiple Signon" if user is in MailMan in more than one session. (XMDUZ)

 XMV("WARNING",5) "POSTMASTER has "_I_" baskets." if more than 900 (Only if XMDUZ=.5)

 Set up the user's MailMan environment in array XMV, which contains vital user information, user preferences,

 and, if the user is a surrogate, the user's level of authorization.

 This entry point is meant to be called once, upon entry into MailMan. It should not be used at any other time.

 Many of the MailMan APIs assume that the information provided by this routine exists. They may abort if it

 doesn't.

 Usage: D INIT^XMVVITAE

 COMPONENT: OTHER

 VARIABLES: XMV Type: Output

 An array of values giving information about the user for whom the user is acting as a

 surrogate. Also specifies what surrogate privileges the user has. The information in this

 array is used throughout MailMan.

 The following items will always be set, as they pertain to the user for whom the user is

 acting as a surrogate. Please see entry INIT for a description of the variables.

 XMV("LAST USE")

 XMV("NAME")

 XMV("NETNAME")

 XMV("NEW MSGS")

 XMV("NOSEND")

 XMV("PRIV")

 The following items will be set only if conditions warrant:

 XMV("BANNER")

 XMV("ERROR",1)

 XMV("ERROR",2)

 XMV("ERROR",3)

 XMV("ERROR",4)

 XMV("WARNING",1)

 XMV("WARNING",2)

 XMV("WARNING",3)

 XMV("WARNING",4)

 XMV("WARNING",5)

 XMDUZ Type: Both

 OTHER^XMVVITAE is specifically designed for becoming a surrogate. Therefore, XMDUZ must be

 the DUZ of the user to become. It follows that XMDUZ should not equal DUZ. See the variable

 description for entry INIT for further information.

 DUZ Type: Input

 See the variable description for entry INIT.

 XMDUN Type: Output

 See the variable description for entry INIT.

 XMNOSEND Type: Output

 See the variable description for entry INIT.

 XMPRIV Type: Output

 See the variable description for entry INIT.

 Set up MailMan user environment when user becomes a surrogate. INIT^XMVVITAE should already have been called.

 If the XMV variable does not exist, control will be passed to INIT^XMVVITAE, instead.

 Usage: D OTHER^XMVVITAE

 COMPONENT: SELF

 VARIABLES: DUZ Type: Input

 See the variable description for entry INIT.

 XMDUZ Type: Output

 XMDUZ will be set equal to DUZ, as the first step in returning the user to his own identity.

 XMDUN Type: Output

 See the variable description for entry INIT.

 XMNOSEND Type: Output

 See the variable description for entry INIT.

 XMV Type: Output

 An array of values defining the user and the user's MailMan environment. The information in

 this array is used throughout MailMan.

 The following items will always be set. Please see entry INIT for a description of the

 variables.

 XMV("NAME")

 XMV("NETNAME")

 XMV("NEW MSGS")

 XMV("NOSEND")

 The following items will be set only if conditions warrant:

 XMV("BANNER")

 XMV("ERROR",1)

 XMV("ERROR",2)

 XMV("ERROR",3)

 XMV("ERROR",4)

 XMV("WARNING",1)

 XMV("WARNING",2)

 XMV("WARNING",3)

 XMV("WARNING",4)

 XMV("WARNING",5)

 Return to the user's own MailMan user environment after having finished acting as a surrogate.

 Usage: D SELF^XMVVITAE

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2729

 NAME: MESSAGE ACTION API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The APIs in this DBIA perform message actions. They are designed to be used individually or incorporated into a MailMan front

 end.

 For usage instructions, please refer to the Programmer Manual, available at the Infrastructure web site.

 When used as part of a MailMan front end, INIT^XMVVITAE should be called to create the MailMan environment in which the user

 will operate. Please see DBIA 2728 for information on the XMVVITAE APIs.

 When used individually, from a routine, the XMVVITAE APIs should not be called.

 After every API call, the calling routine should check for the existence of XMERR. If any errors occur, the following

 variables will be defined:

 XMERR - the number of errors

 ^TMP("XMERR",$J,<error number>,"TEXT",<line number>)=<error text>

 Parameter definitions:

 XMDUZ User's DUZ or enough of the name for a positive ID.

 XMINSTR (optional) Array of special instructions

 ("ADDR FLAGS") Special addressing instructions, any or all of the following:

 I Do not Initialize (kill) the ^TMP addressee global, because it already contains addressees for this message, as a

 result of a previous call to an API.

 R Do not Restrict message addressing:

 - Ignore 'domain closed'

 - Ignore 'keys required for domain'

 - Ignore 'may not forward to domain'

 - Ignore 'may not forward priority mail to groups'

 - Ignore 'message length restrictions to remote addressees'

 X Do not create the ^TMP addressee global, because addressees are only being checked for validity.

 ("FLAGS") Message is any or all of the following:

 P Priority

 I Information only (may not be replied to)

 X Closed message (may not be forwarded)

 C Confidential message (surrogate may not read)

 S Send to sender (make sender a recipient)

 R Confirm receipt (return receipt requested)

 ("FROM") String saying who the message is from (default is user, as identified by XMDUZ parameter). This string is

 placed in field 1 'from' in the message file. Must not be any real person, except for Postmaster. DUZ is not captured in

 field 1.1 'sender' of message file, thus making this option well-suited for messages from VISTA packages.

 ("FWD BY") String saying who forwarded the message (default is user, as identified by XMDUZ parameter). This string is

 placed in field 8 'forwarded by' in the recipient multiple of the message file. Must not be any real person, except for

 Postmaster. DUZ is not captured in field 8.01 'forwarded by (xmduz)' in the recipient multiple of message file, thus making

 this option well-suited for messages forwarded by VISTA packages.

 ("HDR") Print the messages with a header? (0=no; 1=yes) Default is yes.

 ("LATER") Date/time (any format understood by FM) on which to send this message. Default is now.

 ("NET REPLY") Should reply be sent over the network? (0=no; 1=yes) Default is no. Currently valid only if sender of

 original message is remote.

 ("NET SUBJ") Subject of reply to be sent over the network. Default is "Re: <subject of original message>". Ignored unless

 XMINSTR("NET REPLY")=1.

 ("RCPT BSKT") Basket to deliver to for all recipients. Default is IN basket. Recipients must have specified in

 their personal preferences that such targeted basket delivery is allowed. Otherwise, this option is ignored.

 ("RECIPS") Print recipients along with the message?

 0 No (default)

 1 Print summary recipients

 2 Print detailed recipients

 ("RESPS") Print which responses?

 * Original message and all responses (default)

 0 Original message only

 range list (e.g. 0-3,5,7-99) - Print this range of responses. Ignored if more than one message is printed. This

 parameter is not checked. It must be correct. Range list may also be open-ended (e.g. 1,2,5- means print responses 1 and 2

 and responses 5 to the end).

 ("SCR KEY") Scramble key (implies that message should be scrambled). Must be 3-20 characters long.

 ("SCR HINT") Hint for scramble key (mandatory if message is to be scrambled). Must be 1-40 characters long.

 ("SELF BSKT") Basket to deliver to if sender is recipient. Default is IN basket.

 ("SHARE BSKT") Basket to deliver to if SHARED,MAIL is recipient. Default is IN basket.

 ("SHARE DATE") Date/time (any format understood by FM) to delete this message from SHARED,MAIL if SHARED,MAIL is

 recipient.

 ("STRIP") String containing characters to strip from the message text (XMBODY). Must be 1-20 characters long.

 ("TO PROMPT") During interactive message addressing, contains the suggested initial addressee. Default is the user

 identified by XMDUZ.

 ("TYPE") Message type is one of the following special types:

 D Document

 S Spooled Document

 X DIFROM

 O ODIF

 B BLOB (reserved for future use)

 K KIDS

 ("VAPOR") Date/time (any format understood by FM) on which to delete (vaporize) this message from recipient baskets.

 Recipients may override this date. Also used to set vaporize date/time for messages already in one's own baskets.

 ("WHEN") Date/time (any format understood by FM) on which to print messages. Default is now.

 [.]XMTO Addressee or addressee array (if array, must be passed by reference). May be or contain any of the following:

 User's DUZ, or enough of user's name for a positive ID

 eg: 1301 or "lastname,firs" or ARRAY(1301)=""

 ARRAY("lastname,firs")=""

 G.group name (enough for positive ID)

 S.server name (enough for positive ID)

 D.device name (enough for positive ID)

 You may prefix each addressee (except devices and servers) by:

 I: for 'information only' recipient (may not reply)

 eg: "I:1301" or "I:lastname,firs"

 C: for 'copy' recipient (not expected to reply)

 eg: "C:1301" or "C:lastname,firs"

 L@datetime: for when (in future) to send to this recipient (datetime may be anything accepted by FM)

 eg: "L@25 DEC@0500:1301" or "L@1 JAN:lastname,firs"

 or "L@2981225.05:1301"

 (may combine IL@datetime: or CL@datetime:)

 To delete recipient, prefix with -

 eg: -1301 or "-lastname,firs"

 Append "@<sitename>" for any addressees at another site:

 eg: "I:G.group@site.med.va.gov" or "JOE,USER@site.med.va.gov"

 XMK and XMKZ for APIs which act on one message:

 XMK (optional, depending on XMKZ) Basket (IEN or name) containing the message.

 XMKZ Identifies the message. Must be one of the following:

 Message number (XMZ) in Message global (XMK must not be specified)

 Message number in the basket (XMK must be specified)

 XMK and XMKZA for APIs which act on groups of messages:

 XMK (optional, depending on XMKZA) Basket (IEN or name) containing the messages.

 XMKZA Identifies messages, using a list or list array, which may end in a comma. Must be one of the following:

 Message numbers (XMZ) in Message global (XMK must not be specified, AND ranges are not allowed):

 - List: "1234567" or "1234567,9763213"

 - List array: ARRAY(1234567)=""

 ARRAY(9763213)=""

 Message numbers in the basket (XMK must be specified, ranges are OK):

 - List: "1" or "1,3,5-7"

 - List array: ARRAY("1,3")=""

 ARRAY("5-7")=""

 ROUTINE: XMXAPI

 COMPONENT: ADDRNSND

 VARIABLES: XMDUZ Type: Input

 The user who is sending the message. See the General Description for more information.

 XMZ Type: Input

 Message IEN in the message file.

 XMTO Type: Input

 Addressee or array of addressees to whom to send the message. See the General Description

 for more information.

 XMINSTR Type: Used

 (optional) Array of special instructions for the message. Any or all of the following array

 items may be defined. See the General Description for more information on them.

 XMINSTR("ADDR FLAGS") Addressing instructions (I and/or R are appropriate, but X is not)

 XMINSTR("FLAGS") Special handling instructions

 XMINSTR("FROM") Make this the sender, instead of XMDUZ

 XMINSTR("LATER") Send later

 XMINSTR("RCPT BSKT") Delivery basket

 XMINSTR("SCR HINT") Scramble hint

 XMINSTR("SCR KEY") Scramble key

 XMINSTR("SELF BSKT") Sender delivery basket

 XMINSTR("SHARE BSKT") SHARED,MAIL delivery basket

 XMINSTR("SHARE DATE") SHARED,MAIL delete date

 XMINSTR("TYPE") Message type

 XMINSTR("VAPOR") Message delete date

 Address a message, add the sender and any special instructions, and send it.

 The message stub must have already been created, using, for instance, CRE8XMZ^XMXAPI (see elsewhere in this

 DBIA), and the text must already have been added to the message, using, for instance, TEXT^XMXEDIT (DBIA 2730).

 Usage: D ADDRNSND^XMXAPI(XMDUZ,XMZ,.XMTO,.XMINSTR) or

 D ADDRNSND^XMXAPI(XMDUZ,XMZ,XMTO,.XMINSTR)

 COMPONENT: ANSRMSG

 VARIABLES: XMDUZ Type: Input

 The user who is answering the message. See the General Description for more information.

 Answer a message.

 COMPONENT: CRE8XMZ

 VARIABLES: Create a message stub.

 COMPONENT: DELMSG

 VARIABLES: XMDUZ Type: Input

 The user whose messages are to be deleted. See the General Description for more information.

 Delete one or more messages from a user's mailbox.

 COMPONENT: FLTRMSG

 VARIABLES: XMDUZ Type: Input

 The user whose messages are to be filtered. See the General Description for more

 information.

 Filter one or more messages to a user's mailbox.

 COMPONENT: FWDMSG

 VARIABLES: XMDUZ Type: Input

 The user whose messages are to be forwarded. See the General Description for more

 information.

 Forward message(s).

 COMPONENT: LATERMSG

 VARIABLES: XMDUZ Type: Input

 The user whose messages are to be latered. See the General Description for more information.

 Later message(s).

 COMPONENT: MOVEMSG

 VARIABLES: XMDUZ Type: Input

 The user whose messages are to be moved (saved).

 Move (save) message(s) to a basket.

 COMPONENT: PRTMSG

 VARIABLES: XMDUZ Type: Input

 The user whose messages are to be printed. See the General Description for more information.

 Print message(s).

 COMPONENT: PUTSERV

 VARIABLES: Put one message into a server basket.

 COMPONENT: REPLYMSG

 VARIABLES: XMDUZ Type: Input

 The user who is replying to a message. See the General Description for more information.

 Reply to a message.

 COMPONENT: SENDBULL

 VARIABLES: XMDUZ Type: Input

 The user who is sending the bulletin. See the General Description for more information.

 Send a bulletin message.

 COMPONENT: SENDMSG

 VARIABLES: XMDUZ Type: Input

 The user who is sending the message. See the General Description for more information.

 Send a message.

 COMPONENT: TASKBULL

 VARIABLES: XMDUZ Type: Input

 The user who is tasking the bulletin. See the General Description for more information.

 Task the sending of a bulletin for later.

 COMPONENT: TERMMSG

 VARIABLES: XMDUZ Type: Input

 The user whose messages are being terminated. See the General Description for more

 information.

 Terminate message(s).

 COMPONENT: TOWHOM

 VARIABLES: Check one addressee while addressing a message.

 COMPONENT: VSUBJ

 VARIABLES: Check a subject to make sure it's valid.

 COMPONENT: ZAPSERV

 VARIABLES: Delete one message from a server basket.

 COMPONENT: NTOGLMSG

 VARIABLES: Toggle message(s) new or not new.

 COMPONENT: VAPORMSG

 VARIABLES: Set (schedule) Vaporize date/time for message(s) in one's basket(s) to be automatically deleted.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2730

 NAME: MESSAGE EDIT API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are intended for use by MailMan front ends. They edit different parts of a message. They may only be used by the

 message sender, and, with the exception of INFO^XMXEDIT, may only be used before the message has been sent to anyone besides

 the sender. The APIs do not contain any checks to ensure that it was appropriate to call them. That is the responsibility of

 the calling routine.

 For these APIs, it is expected that:

 INIT^XMVVITAE has been called to set up the user's XMV array, with vital user information, user preferences, and, if the

 user is a surrogate, determine level of authorization. See DBIA 2728 for information on INIT^XMVVITAE.

 The calling routine has determined that the user is authorized to see the message. If the message is in the user's mailbox,

 then that's enough. Otherwise, $$ACCESS^XMXSEC should be used to determine authorization. See DBIA 2731 for information on

 $$ACCESS^XMXSEC.

 OPTMSG^XMXSEC2 has been called and has given its permission to edit the message or to toggle information only. (Note:

 $$EDIT^XMXSEC2 will also let you know whether the user may edit the message.) See DBIA 2733 for information on OPTMSG^XMXSEC2A

 and $$EDIT^XMXSEC2.

 OPTEDIT^XMXSEC2 has been called and has given its permission to edit the particular thing we are editing here. See DBIA 2733

 for information on OPTEDIT^XMXSEC2.

 INMSG2^XMXUTIL2 has been called to set XMINSTR. These routines expect that XMINSTR has been correctly set. They will change

 XMINSTR according to the item being edited. See DBIA 2736 for information on INMSG2^XMXUTIL2.

 ROUTINE: XMXEDIT

 COMPONENT: CLOSED

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMINSTR Type: Both

 If the message is closed (XMINSTR("FLAGS")["X"), then make the message not closed:

 - Delete field 1.95 of the message in the Message file.

 - Remove the "X" from XMINSTR("FLAGS").

 If the message is not closed (XMINSTR("FLAGS")'["X"), then make the message closed:

 - Set field 1.95 of the message in the Message file.

 - Append an "X" to XMINSTR("FLAGS").

 XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "'Closed' flag removed" or "Message flagged 'Closed'".

 Toggle a message's 'closed' flag. The flag is toggled in field 1.95 of the message in the Message file, as

 well as in the parameter XMINSTR("FLAGS"). See the general description for important information.

 When a message is closed, it may not be forwarded by anyone, except the person who sent it.

 Note that messages addressed to SHARED,MAIL may not be closed. If a message is in the process of being

 addressed to SHARED, MAIL, and this API is called, XMERR and ^TMP("XMERR",$J) will be set. The calling routine

 should always check for $D(XMERR) after calling this API.

 Usage: D CLOSED^XMXEDIT(XMZ,.XMINSTR,.XMMSG)

 COMPONENT: CONFID

 VARIABLES: XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "'Confidential' flag removed" or "Message flagged 'Confidential'".

 XMINSTR Type: Both

 If the message is confidential (XMINSTR("FLAGS")["C"), then make the message not

 confidential:

 - Delete field 1.96 of the message in the Message file.

 - Remove the "C" from XMINSTR("FLAGS").

 If the message is not confidential (XMINSTR("FLAGS")'["C"), then make the message

 confidential:

 - Set field 1.96 of the message in the Message file.

 - Append a "C" to XMINSTR("FLAGS").

 XMZ Type: Input

 Message IEN in the MESSAGE file.

 Toggle a message's 'confidential' flag. The flag is toggled in field 1.96 in the Message file, as well as in

 the parameter XMINSTR("FLAGS"). See the general description for important information.

 When a message is confidential, it may not be read by a surrogate.

 Note that messages addressed to SHARED,MAIL may not be confidential. If a message is in the process of being

 addressed to SHARED, MAIL, and this API is called, XMERR and ^TMP("XMERR",$J) will be set. The calling routine

 should always check for $D(XMERR) after calling this API.

 Usage: D CONFID^XMXEDIT(XMZ,.XMINSTR,.XMMSG)

 COMPONENT: CONFIRM

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMINSTR Type: Both

 If the message is 'confirm receipt requested' (XMINSTR("FLAGS")["R"), then make the message

 not 'confirm receipt requested':

 - Delete field 1.3 of the message in the Message file.

 - Remove the "R" from XMINSTR("FLAGS").

 If the message is not 'confirm receipt requested' (XMINSTR("FLAGS")'["R"), then make the

 message 'confirm receipt requested':

 - Set field 1.3 of the message in the Message file.

 - Append an "R" to XMINSTR("FLAGS").

 XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "'Confirm Receipt Requested' flag removed"

 or "Message flagged 'Confirm Receipt Requested'".

 Toggle a message's 'confirm receipt requested' flag. The flag is toggled in field 1.3 of the message in the

 Message file, as well as in the parameter XMINSTR("FLAGS"). See the general description for important

 information.

 When a message is flagged 'confirm receipt requested', the first time each recipient reads the message, a

 message will be sent to the sender of the message informing the sender that the recipient has seen the message.

 Usage: D CONFIRM^XMXEDIT(XMZ,.XMINSTR,.XMMSG)

 COMPONENT: DELIVER

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 BASKET Type: Input

 Full name of the basket to which the message should be delivered. It must be a valid basket

 name. (Free text, 2-30 characters.) This API does not check to ensure that the basket name

 is valid. That is the responsibility of the calling routine.

 If BASKET="@", field 21 of the message in the Message file is deleted, and XMINSTR("RCPT

 BSKT") is killed.

 Otherwise, field 21 of the message in the Message file and XMINSTR("RCPT BSKT") are set to

 BASKET.

 XMINSTR Type: Output

 If BASKET="@", field 21 of the message in the Message file is deleted, and XMINSTR("RCPT

 BSKT") is killed.

 Otherwise, field 21 of the message in the Message file and XMINSTR("RCPT BSKT") are set to

 BASKET.

 XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "Delivery basket set" or "Delivery basket removed".

 Set or delete a message's 'delivery basket' in field 21 of the message in the Message file, as well as in the

 parameter XMINSTR("RCPT BSKT"). See the general description for important information.

 When a message specifies a delivery basket, it will be delivered to that basket for each recipient, as long as

 the recipient has allowed such targeted delivery (by so indicating under User Preferences). If the recipient

 does not allow such targeted delivery, then the message is delivered as usual.

 Usage: D DELIVER^XMXEDIT(XMZ,BASKET,.XMINSTR,.XMMSG)

 COMPONENT: INFO

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMINSTR Type: Both

 If the message is 'information only' (XMINSTR("FLAGS")["I"), then make the message not

 'information only':

 - Delete field 1.97 of the message in the Message file.

 - Remove the "I" from XMINSTR("FLAGS").

 If the message is not 'information only' (XMINSTR("FLAGS")'["I"), then make the message

 'information only':

 - Set field 1.97 of the message in the Message file.

 - Append an "I" to XMINSTR("FLAGS").

 XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "'Information only' flag removed"

 or "Message flagged 'Information only'".

 Toggle a message's 'Information only' flag. The flag is toggled in field 1.97 of the message in the Message

 file, as well as in the parameter XMINSTR("FLAGS"). See the general description for important information.

 When a message is flagged 'Information only', no one may reply to the message, except for the sender.

 Note that unlike the other APIs in this DBIA, this API may be used by the sender at any time to toggle the

 'Information only' flag, even after the message has been sent to other users.

 Usage: D INFO^XMXEDIT(XMZ,.XMINSTR,.XMMSG)

 COMPONENT: PRIORITY

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMINSTR Type: Both

 If the message is priority (XMINSTR("FLAGS")["P"), then make the message not priority:

 - Remove the priority indicator from field 1.7 of the message in the Message file. (The

 parameter XMINSTR("TYPE") is used here.)

 - Remove the "P" from XMINSTR("FLAGS").

 If the message is not priority (XMINSTR("FLAGS")'["P"), then make the message priority:

 - Add the priority indicator to field 1.7 of the message in the Message file. (The

 parameter XMINSTR("TYPE") is used here.)

 - Append a "P" to XMINSTR("FLAGS").

 XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "'Priority' flag removed" or "Message flagged 'Priority'".

 Toggle a message's 'priority' flag. The flag is toggled in field 1.7 of the message in the Message file, as

 well as in the parameter XMINSTR("FLAGS"). See the general description for important information.

 When a message is priority, it is delivered normally, but each recipient is alerted to it at logon or when it

 is delivered, and, when reading new messages, priority messages are displayed first. In a message list,

 priority messages are marked by an "!".

 Usage: D PRIORITY^XMXEDIT(XMZ,.XMINSTR,.XMMSG)

 COMPONENT: SUBJ

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMSUBJ Type: Input

 New subject of the message. The subject must be valid. It must be 3-65 characters. It may

 also be null. It is the responsibility of the calling routine to ensure that the subject is

 valid. You may use the API VSUBJ^XMXAPI (DBIA 2729) to validate a subject.

 XMIM Type: Output

 XMIM("SUBJ") is set to the new message subject.

 Change the message subject. If the subject is null, the subject is set to "* No Subject *". If the subject is

 "* No Subject *", and the message is sent to a remote site, the subject in the "SUBJECT:" header record will be

 null.

 The subject is set in field .01 of the message in the Message file, as well as in the parameter XMIM("SUBJ").

 See the general description for important information.

 Usage: D SUBJ^XMXEDIT(XMZ,XMSUBJ,.XMIM)

 COMPONENT: TEXT

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMBODY Type: Input

 The closed root of the array that contains the word processing data to be filed. The array

 itself must be in a format acceptable to FileMan's WP^DIE API. It is the responsibility of

 the calling routine to ensure that the root is correctly passed in and that the array itself

 is correctly formatted. This API does not check it.

 Replace the text in field 3 of the message in the Message file.

 Usage: D TEXT^XMXEDIT(XMZ,XMBODY)

 COMPONENT: VAPOR

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMVAPOR Type: Input

 Vaporize date/time. Must be in internal FileMan format. This API does not check to ensure

 that the date/time is valid. That is the responsibility of the calling routine.

 If XMVAPOR="@", field 1.6 of the message in the Message file is deleted, and XMINSTR("VAPOR")

 is killed.

 Otherwise, field 1.6 of the message in the Message file and XMINSTR("VAPOR") are set to

 XMVAPOR.

 XMINSTR Type: Output

 If XMVAPOR="@", field 1.6 of the message in the Message file is deleted, and XMINSTR("VAPOR")

 is killed.

 Otherwise, field 1.6 of the message in the Message file and XMINSTR("VAPOR") are set to

 XMVAPOR.

 XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "Vaporize Date set" or "Vaporize Date removed".

 Set or delete a message's 'vaporize date' in field 1.6 of the message in the Message file, as well as in the

 parameter XMINSTR("VAPOR"). See the general description for important information.

 When a message specifies a vaporize date, that date will be set in the Mailbox file for each recipient in field

 5 of the message record in the message multiple of the basket to which the message is delivered as the message

 is delivered to each recipient. This holds true even when the message is forwarded. The vaporize date (from

 field 5 of the basket message multiple in the Mailbox file) is displayed to the recipient every time the

 recipient reads the message. Each recipient is free to delete or change the vaporize date (field 5...) of the

 message in his or her mailbox. Messages with vaporize dates in the user's mailbox are deleted from the user's

 mailbox when the vaporize date arrives.

 Usage: D VAPOR^XMXEDIT(XMZ,XMVAPOR,.XMINSTR,.XMMSG)

 Note that this API does not edit the message vaporize date in a user's basket. Use KVAPOR^XMXUTIL (DBIA 2734)

 to do that.

 COMPONENT: NETSIG

 VARIABLES: XMDUZ Type: Input

 The user whose network signature is to be added to the message. This is, of course, the user

 who created the message. The DUZ suffices, or enough of the name for a positive ID.

 XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMINSTR Type: Used

 If the message is not scrambled, then this variable is ignored.

 If the message is scrambled (locked with a key), then XMINSTR("SCR KEY") must contain the

 scramble key. If the key is not correct or is not supplied, then XMERR AND ^TMP("XMERR",$J)

 will be set. The calling routine should always check for $D(XMERR) after calling this API.

 XMMSG Type: Output

 Upon successful completion of this API, this variable contains an appropriate message,

 suitable for display to the user.

 "Network Signature added."

 Add the user's network signature to a message. See the general description for important information.

 This is not a toggle. MailMan has no way of checking to see if the user's network signature has already been

 added. Everytime this API is called, the network signature is added to the message, so if this API is called 3

 times on the same message, the network signature will be added 3 times.

 Usage: D NETSIG^XMXEDIT(XMDUZ,XMZ,.XMINSTR,.XMMSG)

 COMPONENT: SCRAMBLE

 VARIABLES: XMZ Type: Input

 Message IEN in the MESSAGE file.

 XMINSTR Type: Both

 If the message is scrambled, the XMINSTR("SCR KEY") must contain the correct scramble key,

 otherwise XMERR and ^TMP("XMERR",$J) will be set. The calling routine should always check for

 $D(XMERR) after calling this API. XMINSTR("SCR HINT") is ignored as input. XMINSTR("SCR

 KEY") and XMINSTR("SCR HINT") are both killed upon successful completion of this API, and

 fields 1.8 and 1.85 of the message are deleted.

 If the message is not scrambled, XMINSTR("SCR KEY") must contain the key with which the

 message should be scrambled. It must be 3-20 characters, and case is ignored. XMINSTR("SCR

 HINT") is shown to the user when s/he receives the message, and is intended to be a hint to

 the user as to what the key might be. If supplied, it may be no more than 40 characters.

 The hint is optional. Field 1.8 of the message is set with the hint, and field 1.85 is set

 with the key.

 XMMSG Type: Output

 An appropriate message, suitable for display to the user.

 Either "Message text Scrambled" or "Message text UnScrambled".

 Scramble or unscramble a message's text. This API works as a toggle. If the text is scrambled, it will

 unscramble it. If it's not scrambled, it will scramble it. See the general description for important

 information.

 Usage: D SCRAMBLE^XMXEDIT(XMZ,.XMINSTR,.XMMSG)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2731

 NAME: SECURITY, PERMISSIONS, & RESTRICTIONS API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs perform security and permission functions.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXSEC

 COMPONENT: $$ACCESS

 VARIABLES: Returns a value indicating whether the user may access a message or not.

 COMPONENT: $$ANSWER

 VARIABLES: Returns a value indicating whether the user may answer a message or not.

 COMPONENT: $$BCAST

 VARIABLES: Returns a value indicating whether a message was broadcast or not.

 COMPONENT: $$CLOSED

 VARIABLES: Returns a value indicating whether a message is "closed" or not.

 COMPONENT: $$CONFID

 VARIABLES: Returns a value indicating whether a message is "confidential" or not.

 COMPONENT: $$CONFIRM

 VARIABLES: Returns a value indicating whether a message is "confirm receipt requested" or not.

 COMPONENT: $$COPY

 VARIABLES: Returns a value indicating whether the user may copy a message or not.

 COMPONENT: $$DELETE

 VARIABLES: Returns a value indicating whether the user may delete (or terminate) a message or not.

 COMPONENT: $$FORWARD

 VARIABLES: Returns a value indicating whether the user may forward a message or not.

 COMPONENT: $$INFO

 VARIABLES: Returns a value indicating whether a message is "information only" or not.

 COMPONENT: $$LATER

 VARIABLES: Returns a value indicating whether the user may "later" a message or not.

 COMPONENT: $$MOVE

 VARIABLES: Returns a value indicating whether the user may save or filter a message or not.

 COMPONENT: $$ORIGIN8R

 VARIABLES: Returns a value indicating whether the user sent the message or not.

 COMPONENT: $$POSTPRIV

 VARIABLES: Returns a value indicating whether the user has Postmaster privileges or not, including whether or not the user

 may perform group message actions in SHARED,MAIL.

 COMPONENT: $$PRIORITY

 VARIABLES: Returns a value indicating whether a message is "priority" or not.

 COMPONENT: $$READ

 VARIABLES: Returns a value indicating whether the user may read a message or not.

 COMPONENT: $$REPLY

 VARIABLES: Returns a value indicating whether the user may reply to a message or not.

 COMPONENT: $$RPRIV

 VARIABLES: Returns a value indicating whether the surrogate has READ privileges or not.

 COMPONENT: $$RWPRIV

 VARIABLES: Returns a value indicating whether the surrogate has READ or SEND privileges or not.

 COMPONENT: $$SEND

 VARIABLES: Returns a value indicating whether the user may send a message or not.

 COMPONENT: $$SURRACC

 VARIABLES: Returns a value indicating whether the surrogate may access a message or not.

 COMPONENT: $$SURRCONF

 VARIABLES: Returns a value indicating whether a message is "confidential" or not, and if it is, whether the surrogate may

 access it.

 COMPONENT: $$WPRIV

 VARIABLES: Returns a value indicating whether the surrogate has SEND privileges or not.

 COMPONENT: $$ZCLOSED

 VARIABLES: Returns a value indicating whether a message is "closed" or not.

 COMPONENT: $$ZCONFID

 VARIABLES: Returns a value indicating whether a message is "confidential" or not.

 COMPONENT: $$ZCONFIRM

 VARIABLES: Returns a value indicating whether a message is "confirm receipt requested" or not.

 COMPONENT: $$ZINFO

 VARIABLES: Returns a value indicating whether a message is "information only" or not.

 COMPONENT: $$ZORIGIN8

 VARIABLES: Returns a value indicating whether the user sent the message or not.

 COMPONENT: $$ZPOSTPRV

 VARIABLES: Returns a value indicating whether the user has Postmaster privileges or not, including whether or not the user

 may perform group message actions in SHARED,MAIL.

 COMPONENT: $$ZPRI

 VARIABLES: Returns a value indicating whether a message is "priority" or not.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2732

 NAME: SECURITY, PERMISSIONS, & RESTRICTIONS API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs perform security and permission functions.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXSEC1

 COMPONENT: $$COPYAMT

 VARIABLES: This function may be used when copying a message. It checks the total number of lines and responses to be

 copied. Returns a value indicating whether or not the amount is within site limitations.

 COMPONENT: $$COPYLIMS

 VARIABLES: This function may be used when copying a message. Returns the site's copy limits.

 COMPONENT: $$COPYRECP

 VARIABLES: This function may be used when copying a message. It returns a value indicating whether or not the copy may be

 sent to all the recipients of the original message.

 COMPONENT: $$PAKMAN

 VARIABLES: Returns a value indicating whether a message is a PackMan message or not.

 COMPONENT: CHKLINES

 VARIABLES: Checks whether a message is too long to be sent to a remote site.

 COMPONENT: CHKMSG

 VARIABLES: Checks whether or not the message is located where the calling routine says it is, and whether or not the user

 may access it.

 COMPONENT: GETRESTR

 VARIABLES: Returns assorted restrictions, if any, on sending or forwarding the message.

 COMPONENT: OPTGRP

 VARIABLES: Determines what the user may do at the basket or message group level.

 COMPONENT: $$SSPRIV

 VARIABLES: Returns a value (1 or 0) indicating whether the user is authorized to conduct a Super Search or not. If not,

 also sets XMERR and ^TMP("XMERR",$J).

 COMPONENT: $$ZSSPRIV

 VARIABLES: Returns a value (1 or 0) indicating whether the user is authorized to conduct a Super Search or not. If not,

 does NOT set XMERR and ^TMP("XMERR",$J).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2733

 NAME: SECURITY, PERMISSIONS, & RESTRICTIONS API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs perform security and permission functions.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXSEC2

 COMPONENT: $$EDIT

 VARIABLES: Returns a value indicating whether the user may edit a message or not.

 COMPONENT: OPTEDIT

 VARIABLES: If OPTMSG^XMXSEC2 (or $$EDIT^XMXSEC2) determines that the user may edit the message, then OPTEDIT determines

 what, exactly, the user may edit.

 COMPONENT: $$OPTMSG

 VARIABLES: Determines what the user may do with the message.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2734

 NAME: MESSAGE & MAILBOX UTILITIES API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are general message and mailbox utilities.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXUTIL

 COMPONENT: $$BMSGCT

 VARIABLES: Returns the number of messages in a user's basket.

 COMPONENT: $$BNMSGCT

 VARIABLES: Returns the number of new messages in a user's basket.

 COMPONENT: $$BSKTNAME

 VARIABLES: Returns the name of a user's basket.

 COMPONENT: $$NAME

 VARIABLES: Returns the name of the user (and, optionally, title and institution).

 COMPONENT: $$NETNAME

 VARIABLES: Returns the network name of the user, including @site name.

 COMPONENT: $$NEWS

 VARIABLES: Returns information about the new messages in a user's mailbox.

 COMPONENT: $$TMSGCT

 VARIABLES: Returns the total number of messages in a user's mailbox.

 COMPONENT: $$TNMSGCT

 VARIABLES: Returns the total number of new messages in a user's mailbox.

 COMPONENT: $$KVAPOR

 VARIABLES: Sets/Removes a message vaporize date on a message in a user's basket.

 COMPONENT: LASTACC

 VARIABLES: Records that the user has read the message.

 COMPONENT: MAKENEW

 VARIABLES: Makes a message new and updates the new message counts.

 COMPONENT: NONEW

 VARIABLES: Makes a message not new and updates the new message counts.

 COMPONENT: PAGE

 VARIABLES: Displays to the user: "Enter RETURN to continue or ^ to exit:" and waits until the user presses a key.

 COMPONENT: WAIT

 VARIABLES: Displays to the user: "Press RETURN to continue:" and waits until the user presses a key.

 COMPONENT: $$BPMSGCT

 VARIABLES: Returns the number of new priority messages in a user's basket.

 COMPONENT: $$TPMSGCT

 VARIABLES: Returns the total number of new priority messages in a user's mailbox.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2735

 NAME: DATE & STRING UTILITIES API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs perform date and string manipulation.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXUTIL1

 COMPONENT: $$CONVERT

 VARIABLES: Given an Internet date/time string, returns the VA FileMan date/time.

 COMPONENT: $$CTRL

 VARIABLES: Strip control characters from a string.

 COMPONENT: $$DECODEUP

 VARIABLES: Change all ~U~ to ^ in a string.

 COMPONENT: $$ENCODEUP

 VARIABLES: Change all ^ to ~U~ in a string.

 COMPONENT: $$GMTDIFF

 VARIABLES: Given the time zone, returns the difference (+-hhmm) from GMT.

 COMPONENT: $$INDT

 VARIABLES: Given the VA FileMan date/time, returns the Internet date/time string.

 COMPONENT: $$MAXBLANK

 VARIABLES: Reduce all three or more consecutive blanks in a string to two.

 COMPONENT: $$MELD

 VARIABLES: Combine a string and a number to form a new string of a given length.

 COMPONENT: $$MMDT

 VARIABLES: Given the VA FileMan date/time, returns MailMan date/time string.

 COMPONENT: $$SCRUB

 VARIABLES: Strip control characters and leading/trailing blanks from a string.

 COMPONENT: $$STRIP

 VARIABLES: Strip leading/trailing blanks from a string.

 COMPONENT: $$TIMEDIFF

 VARIABLES: Given the decimal time difference between time zones, returns +-hhmm.

 COMPONENT: $$TSTAMP

 VARIABLES: Return a timestamp.

 COMPONENT: ZONEDIFF

 VARIABLES: Given a time zone (or time difference from GMT), returns the number of hours and minutes difference between

 that and the local time zone.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2736

 NAME: MESSAGE INFORMATION API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs return all kinds of information about a message.

 - Information that can be displayed.

 - Information that can be used to determine what may (and may not) be done with the message.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXUTIL2

 COMPONENT: $$BSKT

 VARIABLES: Returns which basket a message is in for a user.

 COMPONENT: $$DATE

 VARIABLES: Returns the message sent date.

 COMPONENT: $$FROM

 VARIABLES: Returns the message From information.

 COMPONENT: $$KSEQN

 VARIABLES: Returns the sequence number fo a message in this user's basket.

 COMPONENT: $$LINE

 VARIABLES: Returns the number of lines in the text of a message.

 COMPONENT: $$NEW

 VARIABLES: Returns a value indicating whether or not a message is new for this user in this basket.

 COMPONENT: $$PRI

 VARIABLES: Returns a value indicating whether the message is priority or not.

 COMPONENT: $$QRESP

 VARIABLES: Determines whether a message is a response or not, and, optionally, if it is, which response to which message.

 COMPONENT: $$RESP

 VARIABLES: Returns the number of responses to a message.

 COMPONENT: $$SUBJ

 VARIABLES: Returns the message subject.

 COMPONENT: $$ZDATE

 VARIABLES: Returns the message sent date.

 COMPONENT: $$ZFROM

 VARIABLES: Returns the message From.

 COMPONENT: $$ZNODE

 VARIABLES: Returns the message zero node.

 COMPONENT: $$ZPRI

 VARIABLES: Returns a value indicating whether the message is priority or not.

 COMPONENT: $$ZREAD

 VARIABLES: Returns the number of responses to a message this user has read.

 COMPONENT: $$ZSUBJ

 VARIABLES: Returns the message subject.

 COMPONENT: INMSG

 VARIABLES: Sets arrays with message information.

 COMPONENT: INMSG1

 VARIABLES: Sets arrays with message information, part 1.

 COMPONENT: INMSG2

 VARIABLES: Sets arrays with message information, part 2.

 COMPONENT: INRESP

 VARIABLES: Sets an array with response information.

 COMPONENT: INRESPS

 VARIABLES: Sets arrays indicating how many responses a message has, and how many of them the user has read.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2737

 NAME: MESSAGE INFORMATION API

 USAGE: Supported ENTERED: JAN 27,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs provide information about how a message was addressed and who has read it.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXUTIL3

 COMPONENT: Q

 VARIABLES: Get a list of the addressees of this message. Optionally, find addressees which match a string.

 COMPONENT: QD

 VARIABLES: Get a list of the recipients of this message. Optionally, find recipients that match a string.

 COMPONENT: QL

 VARIABLES: Get a list of the "latered" addressees of this message. Optionally, find the "latered" addressees that match a

 string.

 COMPONENT: QN

 VARIABLES: Get the network header records from a message that originated at a remote site.

 COMPONENT: QX

 VARIABLES: Get a list of local recipients who have:

 - read the message and all responses

 - not read the message and all responses

 - terminated the message

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 2774

 NAME: INTERACTIVE API

 USAGE: Supported ENTERED: MAR 9,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs are interactive.

 Please see the Programmer Manual on the Infrastructure web site for further information about the APIs and how to use them.

 ROUTINE: XMXAPIU

 COMPONENT: READ

 VARIABLES: Interactive Read/Manage messages in your mailbox.

 COMPONENT: READNEW

 VARIABLES: Interactive read new messages in your mailbox.

 COMPONENT: SEND

 VARIABLES: Interactive send a message.

 COMPONENT: TOWHOM

 VARIABLES: Interactive address a message.

 COMPONENT: SUBJ

 VARIABLES: XMSUBJ Type: Both

 If XMSUBJ is set by the calling program, then it is displayed as the default response to the

 prompt. The response of the user is returned in XMSUBJ.

 Ask the user what the subject of a message should be. It includes all necessary checking to ensure that the

 subject conforms to the restrictions in the DD.

 Usage: D SUBJ^XMXAPIU(.XMSUBJ)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 3006

 NAME: MAIL GROUP API

 USAGE: Supported ENTERED: NOV 30,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The APIs in this DBIA perform mail group functions and actions.

 If any errors occur, the following variables will be defined:

 XMERR - The number of errors

 ^TMP("XMERR",$J,<error number>,"TEXT",<line number>)=<error text>

 Following is information on some common input parameters:

 XMGROUP - Mail group IEN or name (exact, case-sensitive)

 ROUTINE: XMXAPIG

 COMPONENT: $$GOTLOCAL

 VARIABLES: XMGROUP Type: Input

 See General Description.

 XMDAYS Type: Used

 (optional) Active members of the group must have used MailMan within the past number of days

 specified by XMDAYS. If XMDAYS is 0 or null or is not supplied, it is ignored.

 XMMBRS Type: Used

 Optional requirement that the group must contain at least this many active local members.

 Default is 1.

 Find out whether or not a mail group has any active local members. Function returns 1 if it does; 0 if it

 doesn't.

 This can be important information. Just because a mail group may have local members, doesn't mean that any

 messages will be delivered to them. They must be active (have an access code and a mail box.)

 If the mail group does not exist or if there are no active local members, the function will return 0, XMERR

 will be defined, and there will be an appropriate error message in ^TMP("XMERR",$J), as noted above, in the

 General Description.

 Usage: I '$$GOTLOCAL^XMXAPIG(XMGROUP[,XMDAYS][,XMMBRS) D error

 Example: I '$$GOTLOCAL^XMXAPIG("GROUP") D error

 If the mail group named GROUP has no active local members, do an error routine to notify someone. Otherwise,

 go ahead and send the message.

 Optionally, you may specify an additional constraint, that at least one member must have used MailMan in the

 last few days.

 Example: I '$$GOTLOCAL^XMXAPIG("GROUP",9) D error

 If the mail group named GROUP doesn't have at least one active local member who has used MailMan in the last 9

 days, do an error routine to notify someone. Otherwise, go ahead and send the message.

 Optionally, you may specify an additional constraint, that there must be not just 1, but at least XMMBRS active

 local members.

 Example: I '$$GOTLOCAL^XMXAPIG("GROUP","",3) D error

 There must be at least 3 active local members in the group.

 COMPONENT: ADDMBRS

 VARIABLES: XMDUZ Type: Input

 The user who is adding the members to the group(s). The user must be authorized to edit the

 mail groups.

 Group coordinators or organizers may edit their own groups.

 The following users may edit public groups or unrestricted private groups:

 - Clinical Application Coordinators

 - Anyone possessing the XMMGR key

 - Anyone possessing the XM GROUP EDIT MASTER key

 XMGROUP Type: Input

 The group(s) to be edited. May either be passed by value (for a single group) or by

 reference (for one or more groups). May be the ien(s) of the group(s) in the MAIL GROUP file

 3.8, or their name(s) (full and exact).

 XMGROUP="GROUP A"

 - or -

 XMGROUP("GROUP A")="" XMGROUP("GROUP B")=""

 XMMBR Type: Input

 The new member(s). May be passed by value (for one member) or by reference (for one or more

 members).

 The same rules apply for specifying XMMBRs as apply when you're addressing a message.

 XMINSTR Type: Used

 Optional special instructions to forward past messages to the local members.

 XMINSTR("FLAGS") - May contain any combination of the following:

 "F" - Forward messages to users, if the users aren't already on the

 messages.

 XMINSTR("FDATE") - Add users to messages originating on or after

 this date. Must be any exact date recognized by FileMan.

 Default is from the beginning of time. Used in

 conjunction with FLAGS.

 XMINSTR("TDATE") - Add users to messages originating on or before

 this date. Must be any exact date recognized by FileMan.

 Default is the present. Used in conjunction with FLAGS.

 XMTSK Type: Output

 The number of the task which will find and forward past mail group messages to local users.

 Returned only if XMINSTR("FLAGS") is passed in.

 Add members to mail group(s).

 Local users, devices, server options, mail groups, and remote users may be added to mail groups using this API.

 (Distribution lists, fax recipients, and fax groups are not handled by this API.)

 Optionally, find and forward existing mail group messages to the local users.

 Usage: D ADDMBRS^XMXAPIG(XMDUZ,[.]XMGROUP,[.]XMMBR,.XMINSTR,.XMTSK)

 COMPONENT: JOIN

 VARIABLES: XMDUZ Type: Input

 The user who wants to join the group.

 XMGROUP Type: Input

 The group the user wants to join. See the General Description for more information.

 XMINSTR Type: Used

 Special instructions. See the description of the XMINSTR variable for entry ADDMBRS for more

 information.

 Additionally, if XMINSTR("FLAGS")=["F", may specify:

 XMINSTR("SELF BSKT") - the basket (name or ien) to which to deliver

 the messages

 XMTSK Type: Output

 Task number. See the description of XMTSK for entry ADDMBRS for more information.

 A user chooses to join one group, and optionally have past mail group messages forwarded.

 Usage: D JOIN^XMXAPIG(XMDUZ,XMGROUP,.XMINSTR,.XMTSK)

 COMPONENT: DROP

 VARIABLES: XMDUZ Type: Input

 The user who wants to drop from the mail group.

 XMGROUP Type: Input

 The group from which the user wants to drop. See the General Description for more

 information.

 User chooses to drop from one mail group.

 Usage: D DROP^XMXAPIG(XMDUZ,XMGROUP)

 COMPONENT: $$MEMBER

 VARIABLES: XMDUZ Type: Input

 The user in question.

 XMGROUP Type: Input

 The group to check. See the General Description for more information.

 XMCHKSUB Type: Used

 If the user isn't found in the group, should we check the member groups? 1=yes; 0=no.

 Default is no.

 Find out whether a user is a member of a mail group. Function returns 1 if yes; 0 if no.

 If the user isn't a direct member, optionally check to see if the user is a member of any of the group's member

 groups.

 Usage: I $$MEMBER^XMXAPIG(XMDUZ,XMGROUP[,XMCHKSUB]) D ...

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 3890

 NAME: BULLETIN LOOKUP AND EDIT

 USAGE: Supported ENTERED: FEB 11,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 3.6 ROOT: XMB(3.6,

 DESCRIPTION: TYPE: File

 MailMan does not have any APIs which enable a package to edit its own bulletins. Therefore, for the purpose of editing an

 existing bulletin, owned by a package, permission is granted to:

 1. Look up a bulletin using FileMan's ^DIC, such as $$FIND1^DIC.

 2. Add/edit data in the bulletin using FileMan's ^DIE, such as UPDATE^DIE or FILE^DIE.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10064

 NAME: PROGRAMMER API

 USAGE: Supported ENTERED: JAN 31,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ^XM contains these programmer entry points:

 ^XM is the normal routine programmers invoke to use MailMan directly. No menu item leads to ^XM. KILL^XUSCLEAN is invoked so

 only basic Kernel parameters survive call.

 EN^XM is the entry action for the top-level interactive MailMan option. It invokes INIT^XMVVITAE to set up the user's MailMan

 environment. It invokes HEADER^XM to greet the user and inform the user of new messages. It is normally used only in

 top-level options; other types of uses should invoke the individual entry points directly.

 CHECKIN^XM is the entry action for subordinate interactive MailMan options.

 CHECKOUT^XM is the exit action for all interactive MailMan options.

 HEADER^XM greets the user and informs of new messages.

 KILL^XM kills MailMan variables.

 $$NU^XM Returns the number of new messages a user has and may display the message: "You have # new messages."

 N1^XM and NEW^XM create a mailbox for a user.

 ROUTINE: XM

 COMPONENT: EN

 VARIABLES: EN^XM is the entry action for the top-level interactive MailMan option. It invokes INIT^XMVVITAE to set up the

 user's MailMan environment. It invokes HEADER^XM to greet the user and inform the user of new messages. It is

 normally used only in top-level options; other types of uses should invoke the individual entry points

 directly.

 Options at other than the top level should not use EN^XM as an entry action. Instead, they should use

 CHECKIN^XM.

 An example of how EN^XM is used in a top-level option's ENTRY ACTION follows:

 NAME: XMUSER MENU TEXT: MailMan Menu

 TYPE: menu CREATOR: BEUSCHEL,GARY

 HELP FRAME: XMHELP PACKAGE: MAILMAN

 E ACTION PRESENT: YES X ACTION PRESENT: YES

 DESCRIPTION: This is the main MailMan option menu for normal user interaction. It allows the user to Send

 and Receive messages, as well as manage baskets.

 ITEM: XMNEW SYNONYM: NML

 DISPLAY ORDER: 1

 ITEM: XMREAD SYNONYM: RML

 DISPLAY ORDER: 2

 ITEM: XMSEND SYNONYM: SML

 DISPLAY ORDER: 3

 ITEM: XMSEARCH DISPLAY ORDER: 4

 ITEM: XMASSUME DISPLAY ORDER: 5

 ITEM: XM PERSONAL MENU DISPLAY ORDER: 6

 ITEM: XMOTHER DISPLAY ORDER: 7

 ITEM: XMHELP DISPLAY ORDER: 8

 EXIT ACTION: K XMMENU D CHECKOUT^XM

 ENTRY ACTION: S XMMENU(0)="XMUSER" D EN^XM

 Notice that XMMENU(0) is set in the entry action. It doesn't have to be set to "XMUSER". It can be any

 string. It is suggested that is be the option name. Setting this variable causes MailMan to check to see if

 the user already has another MailMan session in progress. If so, the user will be notified that s/he won't be

 able to send mail in any but the primary session. The reason for this is that when a user is creating a

 message, the message ID (XMZ) is stored in the user's mailbox record. If the user's session aborts for some

 reason, when the user logs on again, MailMan informs the user of the unsent message and asks if s/he wishes to

 continue with it. There is only one field to store the message ID, and that is why only one session may send

 messages.

 COMPONENT: KILL

 VARIABLES: Kill all Mailman variables.

 Usage: D KILL^XM

 COMPONENT: $$NU

 VARIABLES: DUZ Type: Input

 The user's DUZ.

 XMDUZ Type: Used

 (optional) The user whose mailbox is to be checked. Default is DUZ.

 FORCE Type: Input

 Should the message, "You have <x> new messages." be displayed?

 Possible values:

 0 - Display the message only if the user has received new messages since the last time the

 message was displayed.

 1 - Display the message.

 Returns the number of new messages a user has, and may display the message: "You have # new messages."

 Compare to:

 QMBOX^XMXAPIB, QBSKT^XMXAPIB (DBIA 2723)

 $$BNMSGCT^XMXUTIL, $$TNMSGCT^XMXUTIL, $$NEWS^XMXUTIL (DBIA 2734)

 Usage: S X=$$NU^XM(FORCE)

 COMPONENT: N1

 VARIABLES: XMDUZ Type: Input

 The DUZ of the user for whom the mailbox should be created.

 XMZ Type: Used

 (optional) Users who are being reinstated after not having worked here for a while may be

 restricted from seeing messages earlier than a certain date. If the user is a first-time

 user, then this variable has no effect and shouldn't be used.

 Possible values:

 If '$D(XMZ), then the user may access any message on the system which was ever addressed to

 the user.

 If $D(XMZ), then the user will not be able to access any message addressed to the user on the

 system earlier than today's date, unless it is already in the user's mailbox or if someone

 forwards it to the user.

 Create a mailbox for a user.

 Compare to:

 NEW^XM

 CRE8MBOX^XMXAPIB (DBIA 2723)

 Usage: S XMDUZ=<user's DUZ> D N1^XM

 COMPONENT: NEW

 VARIABLES: Y Type: Input

 The DUZ of the user for whom the mailbox is to be created.

 XMZ Type: Used

 See the description for XMZ in entry N1.

 Create a mailbox for a user.

 Compare to:

 N1^XM

 CRE8MBOX^XMXAPIB (DBIA 2723)

 Usage: S Y=<user's DUZ> D NEW^XM

 COMPONENT: HEADER

 VARIABLES: Meant to be part of the ENTRY action of the primary MailMan option, whether called by itself, or as part of

 another call, such as EN^XM.

 Display user information and greeting upon entry into MailMan.

 COMPONENT: CHECKIN

 VARIABLES: Meant to be part of any subordinate MailMan option's ENTRY action.

 Example:

 NAME: XMSEND MENU TEXT: Send a Message

 TYPE: run routine CREATOR: BEUSCHEL,GARY

 HELP FRAME: XM-U-M-SEND PACKAGE: MAILMAN

 E ACTION PRESENT: YES X ACTION PRESENT: YES

 DESCRIPTION: Enables the user to send MailMan messages. Messages may be sent to other users or groups of

 users. The sender of the message may request a confirmation message, to be sent to him as each recipient reads

 the message.

 EXIT ACTION: D CHECKOUT^XM ENTRY ACTION: D CHECKIN^XM

 ROUTINE: SEND^XMJMS TIMESTAMP: 53272,53151

 UPPERCASE MENU TEXT: SEND A MESSAGE

 COMPONENT: CHECKOUT

 VARIABLES: Meant to be part of every MailMan option's EXIT action.

 Example:

 NAME: XMSEND MENU TEXT: Send a Message

 TYPE: run routine CREATOR: BEUSCHEL,GARY

 HELP FRAME: XM-U-M-SEND PACKAGE: MAILMAN

 E ACTION PRESENT: YES X ACTION PRESENT: YES

 DESCRIPTION: Enables the user to send MailMan messages. Messages may be sent to other users or groups of

 users. The sender of the message may request a confirmation message, to be sent to him as each recipient reads

 the message.

 EXIT ACTION: D CHECKOUT^XM ENTRY ACTION: D CHECKIN^XM

 ROUTINE: SEND^XMJMS TIMESTAMP: 53272,53151

 UPPERCASE MENU TEXT: SEND A MESSAGE

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10065

 NAME: DELETE/SAVE MESSAGE API

 USAGE: Supported ENTERED: JAN 31,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These APIs let you delete a message from a basket and/or save it to a basket:

 - KL^XMA1B delete a message from a basket (presumes S2 used later)

 - KLQ^XMA1B delete a message from a basket and put it in .5=WASTE

 - S2^XMA1B save a message to a basket

 ROUTINE: XMA1B

 COMPONENT: KLQ

 VARIABLES: XMDUZ Type: Input

 The DUZ of the user from whose basket the message is to be deleted.

 XMK Type: Used

 (optional) IEN of the basket from which the message is to be deleted. See the writeup for

 XMK in entry KL^XMA1B in this DBIA for more information.

 XMZ Type: Input

 Message IEN in the Message file of the message to be deleted.

 Delete a message from a basket and put it in the WASTE basket. If the basket we're deleting from is the WASTE

 basket, just delete it.

 This call uses KL^XMA1B to delete the message. See its writeup in this DBIA for more information.

 Compare to DELMSG^XMXAPI (DBIA 2729).

 Usage: S XMDUZ=user's DUZ

 S XMK=basket IEN

 S XMZ=message IEN

 D KLQ^XMA1B

 COMPONENT: S2

 VARIABLES: XMDUZ Type: Input

 DUZ of the user into whose basket the message is to be saved.

 XMKM Type: Input

 IEN of the user's basket into which the message is to be saved.

 XMZ Type: Input

 Message IEN in the Message file of the message to be saved.

 Save a message into a basket. If the message is currently in a different basket, you should first delete it

 from that basket (using KL^XMA1B), otherwise you'll end up with the same message in more than one basket.

 Compare to MOVEMSG^XMXAPI (DBIA 2729).

 XMKM is killed upon exit.

 Usage: S XMDUZ=user's DUZ

 S XMKM=basket IEN to save to

 S XMZ=message IEN

 D S2^XMA1B

 COMPONENT: KL

 VARIABLES: XMDUZ Type: Input

 DUZ of the user from whose basket the message is to be deleted.

 XMK Type: Used

 (optional) IEN of the basket in the user's mailbox from which the message is to be deleted.

 If XMK is not supplied, MailMan finds out which basket the message is in.

 If XMK is supplied, MailMan checks to make sure that the message is in that basket, and, if

 not, finds out which basket the message is in.

 XMZ Type: Input

 Message IEN in the Message file of the message to be deleted.

 Delete a message from a basket. The message is not put in the WASTE basket.

 If the message is in the specified basket, delete it from there.

 Otherwise, delete the message from the first mail basket in which found.

 If the message is not found in any basket, quit.

 Usage: S XMDUZ=user's DUZ

 S XMK=basket IEN

 S XMZ=message IEN

 D KL^XMA1B

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10066

 NAME: CREATE A MESSAGE STUB API

 USAGE: Supported ENTERED: NOV 2,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The API in this routine is the first step in sending a message, when the message text will be loaded directly into the mail

 global by the calling application (rather than being copied from a temporary "build site" as with ^XMD).

 This first step is to create a message stub, which is an entry in the Message file (3.9), with no text or recipients.

 The next step is to add the text into the text field of the message (DBIA 10113).

 Optionally, the next step is to set any special handling fields:

 S DIE=3.9,DA=XMZ,DR="<field #>////<value>" D ^DIE

 Field # Value Causes message to be

 ------- ----- --------------------

 1.7 P Priority

 1.95 y Closed

 1.96 y Confidential

 1.97 y Information only

 Example: To force message 100213 to be priority and closed:

 S DIE=3.9,DA=100213,DR="1.7////P;1.95////y" D ^DIE

 The final step is to address and send the message, using ENT1^XMD or ENT2^XMD (DBIA 10070).

 ROUTINE: XMA2

 COMPONENT: GET

 VARIABLES: This entry point should not be used. Use XMZ^XMA2, instead.

 GET^XMA2 functions exactly like XMZ^XMA2, except for one thing. If it fails, it causes the application to

 halt.

 COMPONENT: XMZ

 VARIABLES: XMSUB Type: Input

 The subject of the message. It is placed in the SUBJECT field (.01) of the message stub.

 If it is more than 65 characters, it is truncated to 65 characters.

 If it is less than 3 characters, "..." is appended to it.

 Leading and trailing blanks are removed.

 Any sequence of 3 or more blanks is reduced to 2.

 Any control characters are removed.

 Any up-arrows ("^") are encoded as "~U~".

 It may not pattern match 1"R"1.N, or else the call will fail, and XMZ will be set to -1.

 XMDUZ Type: Used

 (optional) This is who the message is from. It will be placed in the FROM field (1) of the

 message stub. It may be any of the following:

 - If zero, null, or not defined, it defaults to DUZ.

 - The DUZ of the person the message is "From". If not the same value as DUZ, the person

 indicated by DUZ (the surrogate) will be captured in the SENDER field (1.1).

 - A string from 1 to 70 characters long indicating a ficticious "from", such as "PACKAGE

 XYZ". (DUZ will NOT be captured in the SENDER field.)

 XMZ Type: Output

 Message IEN in the Message file 3.9, of the new message stub.

 If the call fails (usually because it can't get a lock on the Message file), XMZ will be set

 to -1.

 DUZ Type: Used

 The IEN in the NEW PERSON file (200) of the person actually creating the message stub. If

 null or zero or not defined, it defaults to the Postmaster (.5).

 Create a new message stub in the Message file 3.9.

 The SUBJECT field (.01) will be set to XMSUB. The FROM field (1) will be set to XMDUZ. The SENT DATE/TIME

 field (1.4) will be set to the current date/time, in internal FileMan format. If XMDUZ is a number, and it

 differs from DUZ, then the SENDER field (1.1) will be set to DUZ. If XMDUZ=.5 and DUZ'=.5, the INFORMATION

 ONLY? field (1.97) will be set to 'y', thus making the stub 'information only'.

 Compare to CRE8XMZ^XMXAPI (DBIA 2729).

 Usage: D XMZ^XMA2 I XMZ=-1 D error routine

 Note that it is important to check XMZ after the call. If it equals -1, the call has failed.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10067

 NAME: ADDRESSING API

 USAGE: Supported ENTERED: FEB 7,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine has four APIs to perform address lookup. They are generally used to address messages and bulletins. Compare

 them to TOWHOM^XMXAPI (DBIA 2729) and TOWHOM^XMXAPIU (DBIA 2774).

 DEST^XMA21 Perform an interactive recipient lookup showing XMDUN

 as the default for the FIRST recipient

 DES^XMA21 Perform an interactive recipient lookup showing XMMG

 as the default for the NEXT recipient

 WHO^XMA21 Perform a non-interactive recipient lookup if X is a

 local name or network address.

 INST^XMA21 Same as WHO^XMA21.

 This one has nothing to do with addressing:

 CHK^XMA21 Check to see if a user is a member of a mail group.

 ROUTINE: XMA21

 COMPONENT: DES

 VARIABLES: XMDUZ Type: Input

 DUZ of the user doing the addressing.

 XMMG Type: Used

 (optional) Name or DUZ of the NEXT default recipient to present to the user. If not

 supplied, default is XMDUZ.

 XMDF Type: Used

 (optional) If $D(XMDF), then all addressing restrictions are waived.

 XMY Type: Output

 Array of recipients chosen by the user. Any recipients already in the array prior to the

 call will still be there after the call.

 XMY(addressee)=""

 XMOUT Type: Output

 If $D(XMOUT), then the user aborted addressing, either by ^ or by time-out.

 X Type: Output

 If X="^", then the user aborted addressing, either by ^, or by time-out. Otherwise, X="".

 Just ignore this variable and rely on checking XMOUT.

 Perform an interactive recipient lookup, showing XMMG as the default for the NEXT recipient.

 The user is prompted for a recipient, with XMMG as the next default recipient. The prompting will continue

 until the user has finished entering recipients. The recipients are placed in the array XMY. Unlike

 DEST^XMA21, the array XMY is not killed upon entry to this API. (It is assumed that XMY already contains some

 valid recipients.)

 Compare to TOWHOM^XMXAPIU (DBIA 2774).

 Usage: S XMDUZ=user's DUZ

 S XMMG=next default recipient

 S XMDF="" (if you don't want any addressing restrictions)

 D DES^XMA21

 I $D(XMOUT) the user aborted

 COMPONENT: INST

 VARIABLES: XMDUZ Type: Used

 (optional) DUZ of the user doing the addressing. Default is DUZ.

 X Type: Input

 local or remote address

 XMDF Type: Used

 If $D(XMDF), all addressing restrictions are waived.

 XMLOC Type: Used

 If $D(XMLOC), any error (in XMMG) is written to the output device.

 XMY Type: Output

 If lookup is successful, the addressee is placed in array XMY. The array is not killed upon

 entry to this call, so anything already in XMY prior to the call will still be there after

 the call.

 XMY(addressee)=""

 Y Type: Output

 If the lookup is successful, Y is

 for a local address: DUZ^full name

 for a remote address: domain IEN^domain name

 If the lookup fails, Y=-1.

 XMMG Type: Output

 If the lookup is successful, XMMG is

 for a local address: ""

 for a remote address: "via "_full domain name via which the message will be routed.

 If the lookup fails, XMMG contains an error message suitable for printing. (If $D(XMLOC), it

 will be printed.)

 Perform a non-interactive recipient lookup.

 The recipient (in X) is looked up. If the lookup is successful, the recipient is placed in the array XMY. The

 array XMY is not killed upon entry to this API.

 Compare to TOWHOM^XMXAPI (DBIA 2729).

 Usage: S XMDUZ=user's DUZ

 S X=recipient

 S XMDF="" (if you don't want any addressing restrictions)

 S XMLOC="" (if you want any error to be written to the output device)

 D INST^XMA21

 If the call succeeds,

 Y=addressee info

 XMY(addressee)=""

 XMMG=other addressee info

 If the call fails,

 Y=-1

 XMMG=error message

 COMPONENT: WHO

 VARIABLES: This entry point is identical to INST^XMA21.

 COMPONENT: DEST

 VARIABLES: XMDUZ Type: Input

 DUZ of the user doing the addressing.

 XMDUN Type: Used

 The name or DUZ of the first default recipient. If not supplied, default is XMDUZ.

 XMDF Type: Used

 If $D(XMDF), then all addressing restrictions are waived.

 XMY Type: Output

 Array of recipients chosen by the user. The array is killed upon entry to the API, so any

 recipients already in the array prior to the call are gone.

 XMY(addressee)=""

 XMOUT Type: Output

 If $D(XMOUT), then the user aborted addressing, either by ^ or by time-out.

 X Type: Output

 If X="^", then the user aborted addressing, either by ^, or by time-out. Otherwise, X="".

 Just ignore this variable and rely on checking XMOUT.

 Perform an interactive recipient lookup, showing XMDUN as the default for the FIRST recipient.

 The user is prompted for a recipient, with XMDUN as the first default recipient. The prompting will continue

 until the user has finished entering recipients. The recipients are placed in the array XMY. Unlike

 DES^XMA21, the array XMY is killed upon entry to this API.

 Compare to TOWHOM^XMXAPIU (DBIA 2774).

 Usage: S XMDUZ=user's DUZ

 S XMDUN=first default recipient

 S XMDF="" (if you don't want any addressing restrictions)

 D DEST^XMA21

 I $D(XMOUT) the user aborted

 COMPONENT: CHK

 VARIABLES: XMDUZ Type: Input

 DUZ of the user whose group membership you wish to check.

 Y Type: Input

 IEN of the mail group in the MAIL GROUP file (#3.8) whose membership you wish to check.

 $T Type: Output

 If $T, then the user is a member; otherwise not.

 Check to see whether XMDUZ is a member of group Y.

 Example:

 >S Y=1,XMDUZ=4 D CHK^XMA21 W $T

 0 (User is not a member.)

 >S Y=2,XMDUZ=4 D CHK^XMA21 W $T

 1 (User is a member.)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10068

 NAME: START BACKGROUND DELIVERY TASK

 USAGE: Supported ENTERED: FEB 7,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine starts the background mail filer for local mail delivery.

 ROUTINE: XMADGO

 COMPONENT: ZTSK

 VARIABLES: This API starts tasks to deliver mesages in local delivery queues. There are no input variables.

 Usage: D ZTSK^XMADGO

 It looks at each of the queues to see if there are any messages in them. If there are, it checks to see if

 there's already a task running for that queue. If there isn't, it starts up a task to deliver messages in that

 queue. The tasked routine is GO^XMTDL.

 There is no need to start the background filer from here, and, in fact, usage of this entry point is not

 recommended. If, for some reason, the background filers aren't running, and they ought to be, the MailMan

 manager option XMMGR-START-BACKGROUND-FILER is the correct way to start them. (The MailMan manager option

 XMMGR-STOP-BACKGROUND-FILER can be used to stop the filer.)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10069

 NAME: SEND A BULLETIN API

 USAGE: Supported ENTERED: FEB 8,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API sends bulletins and has the following entry points:

 ^XMB - Create and send a bulletin in the background (task).

 EN^XMB - Create and send a bulletin in the foreground (while you wait). BULL^XMB - Interactively select a bulletin, define

 its parameters,

 and send it.

 See the MailMan Programmer Manual, Appendix D, Setting up Bulletins, for information on bulletins, how to set them up, and how

 to create a bulletin cross reference.

 ROUTINE: XMB

 COMPONENT: XMB

 VARIABLES: DUZ Type: Input

 Identity of the user. The user's IEN in the NEW PERSON file.

 XMB Type: Input

 See variable description for EN^XMB.

 XMB is not killed.

 XMB(Type: Used

 (optional) See variable description for EN^XMB.

 XMB array is not killed.

 XMBTMP Type: Used

 (optional) See variable description for EN^XMB.

 XMDF Type: Used

 (optional) See variable description for EN^XMB.

 XMDT Type: Used

 (optional) Date or date/time in the future when the bulletin should be sent. Default is NOW.

 Must be in a format which FileMan can understand.

 XMDUZ Type: Input

 The user's DUZ or free text. This is from whom the bulletin will appear to be.

 XMTEXT Type: Used

 (optional) See variable description for EN^XMB.

 XMY Type: Used

 (optional) See variable description for EN^XMB.

 Create and send a bulletin in the background. A task is created to do this. XMZ, the IEN of the bulletin

 created in the MESSAGE file (#3.9), is not returned. Unless you need to know XMZ, this entry point is

 preferred over EN^XMB, because it is faster.

 Compare to TASKBULL^XMXAPI (DBIA 2729).

 Recipients of the bulletin will include any entries in the XMY array that the caller has defined and the

 members of mail groups that are included in the definition of the entry in the Bulletin file (#3.6) at the time

 of delivery. There must be valid recipients or the bulletin will not be delivered.

 Usage: D ^XMB

 Inputs:

 XMB - name of Bulletin (in file 3.6)

 XMB(parameter #) - value to be stuffed into the bulletin for

 each parameter. (eg. XMB(1)=data for parameter #1)

 XMTEXT(line) - optional text to append to the bulletin

 XMY(DUZ or name@inst) - optional additional recipients

 XMDUZ - optional sender's DUZ

 XMDT - optional Date-Time for future delivery

 COMPONENT: EN

 VARIABLES: DUZ Type: Used

 (optional) The identity of the user. The user's IEN in the NEW PERSON file. Default is .5,

 the POSTMASTER.

 XMDUZ Type: Used

 (optional) The user's DUZ or free text. This is from whom the bulletin will appear to be.

 Default is DUZ.

 XMB(Type: Used

 If the bulletin has parameters, this must be an array containing the parameters to insert

 into the bulletin.

 XMB(1) = parameter 1

 XMB(2) = parameter 2

 etc.

 XMB is killed upon successful completion of this API.

 XMBTMP Type: Used

 (optional) If $D(XMBTMP), then MailMan will not initialize (kill) the ^TMP addressee global,

 because it contains bulletin addressees set prior to calling this API.

 XMDF Type: Used

 (optional) If $D(XMDF) all addressing restrictions are waived.

 XMTEXT Type: Used

 (optional) The open root of an array containing additional text to append to the bulletin.

 The array must be compatible with FileMan word processing APIs.

 XMTEXT is killed upon successful completion of this API.

 XMY Type: Used

 (optional) Array of addressees, in addition to the mail groups already defined in the

 bulletin, to which to send the bulletin.

 XMY(addressee A)=""

 XMY(addressee B)=""

 etc.

 XMY is killed upon successful completion of this API.

 XMB Type: Both

 The full name of the bulletin. It must be the complete name in the correct case.

 If the bulletin is not found, XMB will be set to -1.

 XMB is killed upon successful completion of this API.

 XMZ Type: Output

 The IEN in the MESSAGE file (3.9) of the bulletin.

 Create and send a bulletin in the foreground, i.e. while you wait. The delivery will happen in the background.

 XMZ, the IEN of the bulletin created in the MESSAGE file (#3.9), is returned.

 Compare to SENDBULL^XMXAPI (DBIA 2729).

 The recipients of the bulletin will include any entries in the XMY array that the caller has defined and the

 members of mail groups that are included in the definition of the entry in the Bulletin file (#3.6) at the time

 of delivery. There must be valid recipients or the bulletin will not be delivered.

 Usage: D EN^XMB

 Inputs:

 XMB - name of Bulletin (in file 3.6)

 XMB(parameter #) - value to be stuffed into the bulletin for

 each parameter. (eg. XMB(1)=data for parameter #1)

 XMTEXT(line) - optional text to append to the bulletin

 XMY(DUZ or name@inst) - optional additional recipients

 XMDUZ - optional sender's DUZ

 Outputs:

 XMZ - message number

 COMPONENT: BULL

 VARIABLES: Manually create and send a bulletin. MailMan interactively takes the user through the selection, creation, and

 sending of a bulletin.

 DUZ and XMDUZ must already be defined.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10070

 NAME: SEND / FORWARD A MESSAGE API

 USAGE: Supported ENTERED: FEB 19,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Contains the following APIs related to creating, sending, and/or forwarding messages:

 ^XMD create, address, and send a message

 EN1^XMD add text to a message, address it, and send it

 ENL^XMD add text to a message

 ENT^XMD interactive create, address, and send a message

 ENT1^XMD forward a message

 ENT2^XMD forward a message and prompt user for more recipients

 See the MailMan Programmer Manual, Appendix B, Efficient Use of the API, for some suggestions on how to efficiently create

 huge messages used for data transfer.

 I/O variables for the various APIs:

 DUZ (in, optional) User's DUZ. This is who is actually sending the message. If DUZ is not defined, it defaults to the

 Postmaster (.5).

 XMDUZ (in, optional) User's DUZ or free text. This is from whom the message will appear to be. If it is not defined, it

 defaults to DUZ. If it is free text, it must not be more than 70 characters.

 XMSUB (in) Subject of the message. Must be from 3 to 65 characters long. If it is less than 3 characters, then "..." will

 be appended to it. If it is more than 65 characters, it will be truncated.

 XMTEXT (in) The root of the array, in open format, which contains the text of the message. The array may be a local or

 global variable, and it must be in a format acceptable to FileMan word-processing APIs.

 XMSTRIP (in, optional) Characters that should be stripped from the text of the message. Default is none.

 XMDF (in, optional) If $D(XMDF), addressing restrictions are waived:

 - ignore 'domain closed'

 - ignore 'keys required for domain'

 - ignore 'may not forward to domain'

 - ignore 'may not forward priority mail to mail groups'

 - ignore 'message length restrictions to remote addressees'

 XMMG (in, optional) If XMY is not supplied and the process is not queued, XMMG may be used as the default for the first

 'send to:' prompt.

 (out) Contains an error message if an error occurs. Otherwise, undefined.

 XMZ (in) Message IEN in MESSAGE file (3.9) of message to be forwarded or altered.

 (out) Message IEN in Message file (3.9) of message created/sent.

 XMY((in) Addressee array. May contain any of the following:

 User's DUZ, or enough of user's name for a positive ID

 eg: XMY(1301)="" or XMY("lastname,firs")=""

 G.group name (enough for positive ID)

 eg: XMY("G.MY GROUP")=""

 S.server name (enough for positive ID)

 eg: XMY("S.YOUR SERVER OPTION")=""

 D.device name (enough for positive ID)

 eg: XMY("D.MY PRINTER")=""

 You may prefix each addressee (except devices and servers) by:

 I: for 'information only' recipient (may not reply)

 eg: XMY("I:1301")="" or XMY("I:lastname,firs")=""

 C: for 'copy' recipient (not expected to reply)

 eg: XMY("C:1301")="" or XMY("C:lastname,firs")=""

 L@datetime: for when (in future) to send to this recipient (datetime may be anything accepted by FileMan)

 eg: XMY("L@25 DEC@0500:1301")="" or XMY("L@1 JAN:lastname,firs")=""

 or XMY("L@2981225.05:1301")=""

 (may combine IL@datetime: or CL@datetime:)

 To delete recipient, prefix with -

 eg: XMY(-1301)="" or XMY("-lastname,firs")=""

 Append "@<sitename>" for any addressees at another site:

 eg: XMY("I:G.group@site.med.va.gov")=""

 or XMY("JOE,USER@site.med.va.gov")=""

 or XMY("6102@site.med.va.gov")=""

 If the sender (XMDUZ) is a recipient, you may specify the basket in the sender's mailbox to which the message should be

 delivered.

 eg: XMY(XMDUZ,0)=5 (basket IEN)

 or XMY(XMDUZ,0)="MY BASKET" (full basket name)

 If SHARED,MAIL is a recipient, you may specify the basket in SHARED,MAIL's mailbox to which the message should be delivered.

 eg: XMY(.6,0)=5 (basket IEN)

 or XMY(.6,0)="MY BASKET" (full basket name)

 If SHARED,MAIL is a recipient, you may specify the date on which the message should be deleted from SHARED,MAIL's mailbox,

 eg: XMY(.6,"D")=<date> (any date recognized by FileMan)

 Sample XMY entries:

 XMY("SMITH,JOHN")="" Addressed to a local user, whose name is SMITH,JOHN.

 XMY("G.MAIL_GROUP)="" Addressed to a local mail group, whose name is in the MAIL GROUP file.

 XMY("JONES,SAM@domain_name")="" Addressed to a user, at the site named domain_name. JONES,SAM must be in the NEW

 PERSON file at that site. If the local system domain name is domain_name, it will be a local recipient.

 XMY("G.MAIL_GROUP@domain_name")="" Addressed to a mail group, at the site named domain_name. MAIL_GROUP must be found

 in the MAIL GROUP file at that site.

 XMY("D.DEVICE@domain_name")="" Addressed to a device, at the site named domain_name. DEVICE must be found in the

 DEVICE file at that site.

 XMY("S.OPTION@domain_name")="" Addressed to an option, at the site named domain_name. OPTION must be found in the

 OPTION file at that site.

 XMY("INFO:MAIL_GROUP@domain_name")="" Addressed to a mail group at a remote site. The message will be delivered

 "information only" to that group, meaning that they will not be able to reply to it.

 ROUTINE: XMD

 COMPONENT: XMD

 VARIABLES: Create and send a new message. If no recipients are defined (in XMY), and '$D(ZTQUEUED), then prompt for them.

 Addressing restrictions are automatically waived, so there is no need to set XMDF.

 Compare to SENDMSG^XMXAPI (DBIA 2729).

 Usage:

 Set up the input variables

 D ^XMD

 Check the output variables

 More extensive definitions of the I/O variables can be found in the General Description.

 Core input variables:

 DUZ (optional) User DUZ.

 XMDUZ (optional) Message is from other than DUZ.

 XMSUB Message subject.

 XMTEXT Message text.

 XMY (optional) Message addressees. If none, and '$D(ZTQUEUED), the user will be prompted for them. If

 none, and $D(ZTQUEUED), the message will be created, but it won't be sent, and XMMG will not be defined.

 Additional input variables:

 DIFROM (optional) Specifically for FileMan package

 XMMG (optional) If there are no recipients in XMY, and the job is running in the foreground, XMMG may

 contain the default recipient presented to the user. If XMMG is not defined, then the default recipient is the

 user, as defined by XMDUZ.

 XMROU (optional) Array of routines to be loaded in a PackMan message. For each routine, set XMROU(x)="",

 where x is the routine name.

 XMSTRIP (optional) Characters to be removed from the message text

 Output variables:

 XMMG This is the variable which the calling program should check to see whether or not the call was

 successful. If XMMG is undefined, then the call was successful. If the call failed, then XMMG contains the

 error message.

 XMZ If the call was successful, then XMZ is the message IEN of the message which was created. If the call

 failed, then XMZ is unchanged or undefined.

 Variables killed upon exit:

 If the call is successful, XMSUB, XMTEXT, XMY, XMSTRIP, XMMG will be killed. If the call fails, those

 variables may or may not be killed, except for XMMG, which will contain an error message.

 WARNING: If calling XMD in a Pre-init or Post-init, you MUST NEW DIFROM prior to the call or your message will

 NOT be delivered.

 COMPONENT: ENT1

 VARIABLES: Forward a message. Addressing restrictions are automatically waived, so there is no need to set XMDF.

 Compare to FWDMSG^XMXAPI (DBIA 2729).

 Usage:

 Set up the input variables

 D ENT1^XMD

 More extensive definitions of the I/O variables can be found in the General Description.

 Input variables:

 DUZ (optional) User DUZ.

 XMDUZ (optional) Message is forwarded by other than DUZ.

 XMY Addressees to forward to

 XMZ Message IEN in MESSAGE file (3.9), of message to forward.

 Output variables:

 None.

 Variables killed upon exit:

 XMDUZ,XMY

 COMPONENT: ENT2

 VARIABLES: Forward a message. If '$D(ZTQUEUED), prompt for additional recipients, whether or not any are already defined.

 Usage:

 Set up the input variables

 D ENT2^XMD

 More extensive definitions of the I/O variables can be found in the General Description.

 Input variables:

 DUZ (optional) User DUZ.

 XMDUZ (optional) Message is forwarded by other than DUZ.

 XMDF (optional) If $D(XMDF), all addressing restrictions are waived.

 XMY (optional) Addressees to forward to. If '$D(ZTQUEUED) (job running in the foreground), the user will

 be prompted for additional recipients.

 XMZ Message IEN in MESSAGE file (3.9), of message to forward.

 Output variables:

 None.

 Variables killed upon exit:

 XMDUZ,XMY

 COMPONENT: ENT

 VARIABLES: Place this entry point in an interactive option for the process to send a message. It can be put onto many

 menus. It is the same as XMSEND, the Send a Message option. It requires that the Entry Action and Exit Action

 be specified. Set up the option as follows:

 Entry Action: S XMMENU(0)=<name of the menu option>

 Routine: ENT^XMD

 Exit Action: K XMMENU D CHECKOUT^XM

 Compare to SENDMSG^XMXAPIU (DBIA 2774).

 Input Variables:

 DUZ User's DUZ

 Output Variables:

 none

 COMPONENT: ENL

 VARIABLES: Add text to an existing message.

 Usage:

 Set up the input variables

 D ENL^XMD

 More extensive definitions of the I/O variables can be found in the General Description.

 Core input variables:

 DUZ User DUZ.

 XMTEXT Message text.

 XMZ Message IEN in the MESSAGE file (3.9).

 Additional input variables:

 XMSTRIP (optional) Characters to be removed from the message text

 Output variables:

 none

 Variables killed upon exit:

 XMSTRIP

 COMPONENT: EN1

 VARIABLES: Add text to a message, and address it and send it. If no recipients are defined (in XMY), and '$D(ZTQUEUED),

 then prompt the user for them.

 Usage:

 Set up the input variables

 D EN1^XMD

 More extensive definitions of the I/O variables can be found in the General Description.

 Core input variables:

 DUZ User DUZ.

 XMTEXT Message text.

 XMY (optional) Message addressees. If none, and '$D(ZTQUEUED), the user will be prompted for them. If

 none, and $D(ZTQUEUED), the message will be created, but it won't be sent, and XMMG will not be defined.

 XMZ Message IEN in the MESSAGE file (3.9).

 Additional input variables:

 DIFROM (optional) Specifically for FileMan package

 XMMG (optional) If there are no recipients in XMY, and the job is running in the foreground, XMMG may

 contain the default recipient presented to the user. If XMMG is not defined, then the default recipient is the

 user, as defined by DUZ.

 XMROU (optional) Array of routines to be loaded in a PackMan message. For each routine, set XMROU(x)="",

 where x is the routine name.

 XMSTRIP (optional) Characters to be removed from the message text

 Output variables:

 none

 Variables killed upon exit:

 XMTEXT, XMY, XMSTRIP, XMMG

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10071

 NAME: GLOBAL PACKMAN MESSAGE API

 USAGE: Supported ENTERED: FEB 19,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine contains the following API:

 ENT^XMPG - Create and send a PackMan message with globals

 ROUTINE: XMPG

 COMPONENT: ENT

 VARIABLES: DUZ Type: Input

 The user's DUZ. The user's IEN in the NEW PERSON file (200).

 XMDUZ Type: Used

 (optional) The DUZ of the person from whom the message should appear to be. Default is DUZ.

 XMSUB Type: Input

 The subject of the message. Must be 3-65 characters.

 XMTEXT Type: Input

 A semi-colon (;) delimited string of the open roots of arrays and globals to be loaded into

 the PackMan message.

 XMY Type: Used

 (optional) Recipients to whom to send the PackMan message.

 XMY(addressee)=""

 XMY is killed upon successful completion of this API.

 TMP("XMP", Type: Used

 (optional) If you wish to place any message text in the PackMan message to be read by any of

 the recipients, place it under ^TMP("XMP",$J), as follows:

 ^TMP("XMP",$J,1,0)="Hi! Here are the globals"

 ^TMP("XMP",$J,2,0)="for our project"

 etc.

 ^TMP("XMP",$J) is killed upon successful completion of this API.

 DIFROM Type: Used

 (optional) Specifically for FileMan or KIDS packages.

 XMZ Type: Output

 If the API is successful, message IEN in the MESSAGE file (3.9) of the Packman message which

 was created.

 If the API is not successful, it's unchanged or undefined.

 It's important, therefore, that XMZ be newed or killed before this API is called.

 XMMG Type: Output

 If the API is successful, it's unchanged or undefined.

 If the API is not successful, it contains an error message.

 It's important, therefore, that XMMG be newed or killed before this API is called.

 Create and send a PackMan message with any number of local or global data arrays. If no recipients are

 defined, the message will be created, but it won't be sent anywhere. Addressing restrictions are waived (it's

 as if you set XMDF). (To create and send a PackMan message with routines in it, use ^XMD).

 Usage: D ENT^XMPG

 Inputs:

 DUZ Sender

 XMSUB Subject

 XMY Recipients

 XMTEXT A semi-colon separated list of open roots

 Outputs:

 XMZ Message Number

 Example:

 K XMZ,XMMG ; It's a good idea to kill these or new them

 S XMSUB="Demo",XMY(DUZ)="",XMTEXT="LOCAL(;^TMP($J,""A"","

 D ENT^XMPG I '$D(XMZ) W *7,!,"*** Packman message NOT created."

 Note: Only the variables that are necessary for the entry point should exist. If other XM namespaced variable

 exists, results may not be predictable. If XMTEXT does not point to valid packman data, the data may not be

 successfully transferred in its entirety.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10072

 NAME: SERVER MESSAGE API

 USAGE: Supported ENTERED: FEB 6,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API deals with server messages:

 - REMSBMSG^XMA1C remove a message from a server basket

 - SETSB^XMA1C put a message into a server basket

 Server messages are usually placed in one of the Postmaster's server baskets (using SETSB^XMA1C) upon receipt of the message,

 and deleted from the basket (using REMSBMSG^XMA1C) upon successful processing of the message by the application to which the

 server belongs. See the Kernel Systems Manual for more information on servers.

 ROUTINE: XMA1C

 COMPONENT: SETSB

 VARIABLES: XMXX Type: Input

 Full name of the server basket, preceded by "S.", into which the message should be put. Note

 that the server basket name is the same as the server option name.

 XMZ Type: Input

 Message IEN in the Message file of the message to be put into the server basket.

 Put a message in a server basket.

 Servers may use this entry point to put messages into a Postmaster server basket to protect the message from

 automatic purges. TaskMan uses it to place server messages in a server basket if the server SAVE REQUEST field

 in the OPTION file is 1. A server might use this entry point if the message cannot be processed immediately

 (and SAVE REQUEST was not 1) or if the server wishes to pass the message to another server.

 As long as the message is in a server basket, MailMan will not purge it.

 Compare to PUTSERV^XMXAPI (DBIA 2729).

 Usage: S XMXX=full server basket name, beginning with "S."

 S XMZ=message IEN

 D SETSB^XMA1C

 COMPONENT: REMSBMSG

 VARIABLES: XMSER Type: Input

 Full name of the server basket, preceded by "S.", from which the message is to be removed.

 Note that the server basket name is the same as the server option name.

 XMZ Type: Input

 Message IEN in the Message file of the server message to be removed.

 Remove a message from a server basket.

 When the application which uses the server basket has finished processing a message in that basket, it should

 remove the message from the server basket. Otherwise, the message will stay forever. MailMan will not purge

 any message which is in a server basket.

 Upon exit, the following variables are killed: XMKD, XMZ, XMDUZ, XMK, XMSER

 Compare to ZAPSERV^XMXAPI (DBIA 2729).

 Usage: S XMSER=full server name, beginning with "S."

 S XMZ=message IEN

 D REMSBMSG^XMA1C

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10073

 NAME: MAILMAN: Message Body Access, including Servers

 USAGE: Supported ENTERED: FEB 19,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ^XMS3 contains the following application programmer entry point:

 REC^XMS3 to obtain the next line in a message

 ROUTINE: XMS3

 COMPONENT: REC

 VARIABLES: XMZ Type: Input

 The internal number of the message to be processed.

 XMPOS Type: Input

 The number of the last line read (or null).

 XMPOS Type: Output

 The number of the "next" line in the message; if no further lines, XMPOS=""

 XMER Type: Output

 0 unless no lines greater than XMPOS, then -1

 XMRG Type: Output

 line XMPOS of message XMZ

 D REC^XMS3 delivers the lines of a message one at a time. It is functionally equivalent to X XMREC, except

 that it can be used by programs that are not servers.

 This entry point is NOT RECOMMENDED. Use of DBIA 1283 provides equivalent capabilities today and more

 flexibility for the future.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10091

 NAME: MAILMAN SITE PARAMETERS

 USAGE: Supported ENTERED: JUN 23,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 4.3 ROOT: XMB(1,

 DESCRIPTION: TYPE: File

 ^XMB(1,D0,'XUS')

 217 DEFAULT INSTITUTION XUS;17 Read w/Fileman

 The field is used to define the default institution for the local site. Developers

 may get this data directly from the file. The entry is a pointer to file 4,

 Institution, and is the 17th piece of ^XMB(1,1,"XUS").

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10111

 NAME: MAILMAN: Maintenance of Mail Groups

 USAGE: Supported ENTERED: JAN 23,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 3.8 ROOT: XMB(3.8,

 DESCRIPTION: TYPE: File

 ^XMB(3.8,D0,0)

 .01 NAME 0;1 Read w/Fileman

 Read access through DIC. May be pointed to. If pointed to, name should be gotten

 by using $$GET1^DIQ. In exporting packages, if pointers are used, any exported

 records should have the Mail Group pointers purged before export. Free Text

 fields, with an input transform that checks via DIC, can also be used to then store

 the Mail Group name. Note that this permits reliable export of records that

 include a predefined Mail Group.

 A programmer API for most tasks is defined in DBIA 1146 MAILMAN: Groups: Access

 and Modification XMBGRP

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MAILMAN
 ICR#: 10113

 NAME: MAILMAN: Message Text - Direct Entry

 USAGE: Supported ENTERED: FEB 20,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 3.9 ROOT: XMB(3.9,

 DESCRIPTION: TYPE: File

 Summary

 Sites complain about the way their machines seems to slow down considerably when Austin DPC transmissions are created. Large

 messages may be created in a more efficient way than is being used by most applications. Since all DHCP sites are mandated to

 migrate to Kernel 7.1 by 12/01/93, all applications can now use this method of creating a message.

 Technical Background

 The simplest approach is probably the one people are using. It is pretty straight forward:

 Load the text of a message into an array

 Set a couple of variables

 D ^XMD

 With short messages, this is also fairly efficient if a local array is used. However, when a large message is built, it

 usually must be stored in a global array. Then, MailMan must read it and re-write it. This effectively doubles the amount of

 work the system must do to compile the text of the message. The killing of the temporary global array built to store the data

 passed to the MailMan programmer interface eats up additional resources.

 So why not write the text of the message (the data) directly into the message, especially now that it is possible and that all

 the entry points have been made available and are documented? Examine the examples on the following lines.

 Example

 The following steps assume that the standard variables already exist in the partition from either Log-on or because the job is

 a TaskMan task.

 Step 1 -- Create a Message with No Text

 S XMSUB="LARGE DATA TRANSMISSION"; Initialize Subject S XMDUZ="Application X" ; Sender D GET^XMA2

 ; Call Create Message Module

 See Note 1 below! I XMZ<1 G RETRY ; Abort or retry, if

 returned value <1

 Step 2 -- Put Text into Message

 F L=1:1 S X=$$data^routine Q:X="stop value" S ^XMB(3.9,XMZ,2,L,0)=X

 S ^XMB(3.9,XMZ,2,0)="^3.92^"_L_"^"_L_"^"_DT

 Step 3 -- Deliver Message to Recipients

 S XMDUN="SENDER,LARGEMESSAGE"; A Sender can be free text or you can

 ; Leave the variable undefined and the

 ; message will appear to be from the

 ; user who was logged on. S XMY ("XXX@Q-AUSTIN_'Q'_DOMAIN")="" ; Remote Recipient S

 XMY(234567)="" ; Individual as a recipient S XMY(234567)="basket name" ; Individual as a recipient in a

 basket .

 .

 .

 D ENT^XMD ; Call for MailMan Delivery

 The message will now be delivered. This may not happen immediately because the job of delivery the message is passed off to a

 'background filer'.

 --

 Note 1: In versions of MailMan previous to Kernel Version 7, Step 1 may occasionally fail! The interface, upon

 failing, will cause the job to halt. Because some applications require that a message be created as a result of a background

 task, a new entry point has been created for Kernel 7 that will not cause the process to be halted. It will instead pass back

 to the caller an indication of success (XMZ>0) or failure (XMZ<1). The use of this new entry point is illustrated below. IT

 IS RECOMMENDED that all applications that use the GET^XMA2entry point migrate to the XMZ^XMA2 entry point unless the

 developers (being aware of the potential problem) decide otherwise. If XMZ=-1 condition is not checked, this large message

 creation technique will stuff data into ^XMTS(3.9,-1. This may lead to other problems later on!

 Note 2: There is a way to tell MailMan to run silently via remote domain when ENT1^XMD is called with the

 XMY("XXX@DOMAIN") set. If the XMCHAN or ZTQUEUED variables are set, MailMan is usually silent. MailMan is silent when

 ZTQUEUED is present because it is a background job. However, DO NOT set the ZTQUEUED variable yourself! If anyone other than

 TaskMan ever sets ZTQUEUED, the whole intent of the variable is lost. Callers to the MailMan API functions and callable entry

 points should set XMCHAN to ensure silent operation. Be sure to kill XMCHAN when completed.

 ^XMB(3.9,D0,2,D1,0)

 3 TEXT 2;0 Direct Global Write &

 The supported references for MailMan include the ability for all DHCP packages to

 enter text directly into the word processing field of a message. Such a reference

 would be to:

 ^XMB(3.9,message#,2,line#,0)

 The way to use this has been documented in MailMan documentation under the topic of

 'Efficient Use of the [MailMan] Programmer Interface'.

 1 FROM 0;2 Read w/Fileman

 ^XMB(3.9,D0,2,0)

 3 TEXT 2;0 Write w/Fileman

 If you put lines into the global, you must define the "zero" node with:

 ^3.92^#lines^#lines^date

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MASTER PATIENT INDEX VISTA
 ICR#: 2701

 NAME: MPIF001

 USAGE: Supported ENTERED: JAN 12,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Function APIs to return values on the MPI node in the Patient file. This DBIA documents some entry points for accessing the

 MPI node in the Patient file for use by the CIRN developers and others that may need this data.

 ROUTINE: MPIF001

 COMPONENT: $$GETICN

 VARIABLES: DFN Type: Input

 DFN - IEN of patient in Patient file (#2)

 $$GETICN^MPIF001(DFN) This function returns the ICN, including checksum for a given DFN or -1^error message.

 COMPONENT: $$GETDFN

 VARIABLES: ICN Type: Input

 ICN - Integration Control Number (ICN) (not including checksum) for a given patient in the

 Patient file (#2).

 $$GETDFN^MPIF001(ICN) This function returns the IEN of the patient in the Patient file for a given ICN or

 -1^error message.

 COMPONENT: $$CMOR2

 VARIABLES: DFN Type: Input

 DFN - IEN of patient in Patient file (#2).

 $$CMOR2^MPIF001(DFN) This function returns the CMOR Site Name for a given DFN or -1^error message.

 COMPONENT: $$CMORNAME

 VARIABLES: CIEN Type: Input

 CIEN - IEN for entry in Institution file (#4).

 $$CMORNAME^MPIF001(CIEN) This function returns CMOR Site Name for a given Institution IEN or -1^error message.

 COMPONENT: $$GETVCCI

 VARIABLES: DFN Type: Input

 DFN - IEN of patient in Patient file (#2).

 $$GETVCCI^MPIF001(DFN) This function returns CMOR Station Number for a given DFN or -1^error message.

 COMPONENT: $$IFLOCAL

 VARIABLES: DFN Type: Input

 DFN - IEN of patient in Patient file (#2).

 $$IFLOCAL^MPIF001(DFN) This function is used to see if a patient has a Local ICN. Returning: 1 = patient has

 a Local ICN. 0 = patient does not exist, DFN is not defined or no MPI node OR Patient doesn't have a local

 ICN.

 COMPONENT: $$IFVCCI

 VARIABLES: DFN Type: Input

 DFN - IEN of patient in Patient file (#2).

 $$IFVCCI^MPIF001(DFN) This function returns 1 if your facility is the CMOR for the given patient. Returning:

 1 = your site is the CMOR. -1 = your site is NOT the CMOR.

 COMPONENT: $$HL7CMOR

 VARIABLES: DFN Type: Input

 DFN = IEN for patient in Patient file (#2).

 SEP Type: Input

 SEP = delimeter to separate station number and name. Not required. Defaults to ^ if not

 provided.

 $$HL7CMOR^MPIF001(DFN,SEP) This function returns the CMOR Station Number and Institution Name for a given

 patient. Returns: Station Number <sep> Institution Name or -1^error message. SEP defaults to ^ if not

 defined.

 COMPONENT: GETICN

 VARIABLES: See $$GETICN

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MASTER PATIENT INDEX VISTA
 ICR#: 2702

 NAME: MPIFAPI

 USAGE: Supported ENTERED: JAN 12,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Functions to return the MPI node, Subscriptioon Control Number from the MPI Node, the name of the HL7 Logical Link for the MPI

 and to return the next Local Integration Control Number. These APIs are provided for the CIRN developers and others that may

 need this data.

 ROUTINE: MPIFAPI

 COMPONENT: $$MPINODE

 VARIABLES: DFN Type: Input

 DFN - IEN of patient in Patient file (#2).

 $$MPINODE^MPIFAPI(DFN) This function returns the MPI node for a given patient in the Patient file (#2).

 Returning: MPI node OR -1^error message.

 COMPONENT: $$SUBNUM

 VARIABLES: DFN Type: Input

 DFN = IEN of patient in the Patient file (#2).

 $$SUBNUM^MPIFAPI(DFN) This function returns the Subscription Control Number from the MPI node for a given

 patient in the Patient file (#2). Returns: Subscription Control Number OR -1^error message.

 COMPONENT: $$EN2

 VARIABLES: $$EN2^MPIFAPI() This function creates and returns the next Local ICN (Integration Control Number) and ICN

 Checksum. Returns: ICN V ICN Checksum (no spaces).

 COMPONENT: $$MPILINK

 VARIABLES: This function returns the name of the MPI logical link from the HL Logical Link file.

 COMPONENT: GETADFN

 VARIABLES: ICN Type: Input

 This is the Integration Control Number that is being used to find a given patient.

 DFN Type: Output

 The IEN of the patient in the Patient (#2) file that currently has this ICN as the active ICN

 (stored in field 991.01). ICN is not found -1^error message is returned.

 This API will return the DFN for a given ICN ONLY if the ICN is the active ICN for a patient.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MENTAL HEALTH
 ICR#: 1612

 NAME: DSM FILE

 USAGE: Supported ENTERED: AUG 20,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 627.7 ROOT: YSD(627.7,

 DESCRIPTION: TYPE: File

 This will enable access to the DSM Code, DSM version and the Disorder Name.

 ^YSD(627.7,D0,0)

 .01 CODE 0;1 Direct Global Read & w

 2 DSM VERSION 0;3 Direct Global Read & w

 ^YSD(627.7,D0,D)

 40 DISORDER NAME D;1 Direct Global Read & w

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MENTAL HEALTH
 ICR#: 2535

 NAME: DBIA2535

 USAGE: Supported ENTERED: SEP 8,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 GAF API'S

 The purpose of this patch is the creation of two API's for use with Mental Health system's Global Assessment of Function (GAF)

 Scores. The API's will be used to (1) return the most recent GAF score and diagnosis date the score was assessed and (2)

 store a new GAF score and date in the Diagnostics Results file (627.8). These two API's have been added to routine YSGAF.

 ^YSD(627.8,D0,60)

 66 Patient Type 60;4 Both R/W w/Fileman

 Patient Type indicates that the patient is either an 'I'n-Patient or 'O'ut-Patient.

 ROUTINE: YSGAF

 COMPONENT: RET(YSX)

 VARIABLES: YSX Type: Input

 Contains the internal entry number.

 YSZ Type: Output

 Contains the result.

 Entry point RET^YSGAF(YSX) returns the most recent GAF score and diagnosis date. The internal entry number is

 passed into the call as variable YSX. The latest occurrence of the GAF score and GAF date are then passed back

 in the form of a concatenated string. If there is no GAF score entry then the API will pass back "-1" to

 indicate this situation.

 COMPONENT: UPD(YSPN,YSGN,YSGD,YSGC,YSPT)

 VARIABLES: YSPN Type: Input

 Patient name - Pointer to the patient name file (#2).

 YSGN Type: Input

 GAF score (Axis 5).

 YSGD Type: Input

 Date/Time of diagnosis.

 YSGC Type: Input

 Diagnosis by - Pointer to the new person file (#200).

 YSPT Type: Input

 Patient type - 'I'npatient or 'O'utpatient

 Entry point UPD^YSGAF(YSPN,YSGN,YSGD,YSGC,YSPT) is designed to store patient GAF score information in the

 DIAGNOSTIC RESULTS - MENTAL HEALTH file (627.8). The information passed into the call includes patient name,

 GAF score (Axis 5), date/time of diagnosis, name of person giving diagnosis and patient type.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MENTAL HEALTH
 ICR#: 2889

 NAME: DBIA2889

 USAGE: Supported ENTERED: AUG 16,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: YTAPI

 COMPONENT: LISTALL

 VARIABLES: DFN Type: Input

 Internal Entry number for patient name in the PATIENT file (#2).

 BEGIN Type: Input

 Inclusive date in %DT acceptable format (11/11/2011) to begin search [optional]. Example:

 YS("BEGIN")="10/01/89"

 END Type: Input

 Inclusive date in %DT acceptable format (11/11/2011) to end search [optional]. Example:

 YS("END")="11/11/2011"

 YSDATA Type: Output

 Array= internal administration date^external administration date^test code

 Data is sorted in order of most recent administration to the oldest administration. If no

 administrations are found Array(2) will not be returned. If patient has no If patient has no

 PSYCH INSTRUMENT PATIENT file (#601.2) data, Array(1) will return [ERROR] with an

 explanation. Example: YSDATA(1)=[DATA] YSDATA(2)=2901120^11/20/1990^AOR

 YSDATA(3)=2900730^07/30/1990^ALCO YSDATA(4)=2900730^07/30/1990^HX2 YSDATA(5)=

 2900730^07/30/1990^MROS YSDATA(6)= 2900730^07/30/1990^PSOC YSDATA(7)= 2900730^07/30/1990^TRMT

 This API returns all psychological test administrations for a specified patient during a specified time period.

 No scoring is returned.

 COMPONENT: LISTONE

 VARIABLES: DFN Type: Input

 This is the Patient's name, a pointer value to the Patient file #2.

 CODE Type: Input

 Test code from the MH INSTRUMENT file (#601) or "ASI" e.g. "CAGE", "BDI".

 BEGIN Type: Input

 Inclusive date in %DT acceptable format (11/11/2011) to begin search [optional].

 END Type: Input

 Inclusive date in %DT acceptable format (11/11/2011) to end search [optional].

 LIMIT Type: Input

 Constrains to the last N administrations [optional]

 SCALE Type: Input

 Scale number from the MH INSTRUMENT file (#601) or 1-7 on ASI [optional]

 YSDATA Type: Output

 Array= internal administration date ^ external administration date^test code [^scale name^raw

 score^transformed score] Data is sorted in order of most recent administration to the oldest

 administration. If no administrations are found Array(2) will not be returned. If patient has

 no PSYCH INSTRUMENT PATIENT file (#601.2) data, Array(1) will return [ERROR] with an

 explanation.

 EXAMPLE: Input

 YS("DFN")=83 YS("CODE")=MMPI2 YS("SCALE")=2

 Output

 YSDATA(1)=[DATA] YSDATA(2)=2940509^05/09/1994^MMPI2^F Infrequency^19^95

 YSDATA(3)=2920925^09/25/1992^MMPI2^F Infrequency^26^116 YSDATA(4)=2920924^09/24/1992^MMPI2^F

 Infrequency^25^113

 This API returns all psychological test administrations for a specified patient during a specified time period

 for a specified test. If a scale is also specified, scoring for that scale is returned. User must have

 adequate privileges to receive this information (i.e. often the YSP KEY).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MENTAL HEALTH
 ICR#: 2891

 NAME: DBIA2891

 USAGE: Supported ENTERED: AUG 19,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API returns all scoring information for a specified patient given a specified administration date for a specified test or

 instrument. User must have adequate privileges to receive this information (i.e. often the YSP KEY).

 ROUTINE: YTAPI2

 COMPONENT: SCOREIT

 VARIABLES: DFN Type: Input

 Patient internal identifier

 CODE Type: Input

 Test code from MH INSTRUMENT file (#601) or "ASI" (e.g. "CAGE", "BDI")

 ADATE Type: Input

 Inclusive administration date in %DT acceptable format (11/11/2011)

 YSDATA Type: Output

 Array(2)= Patient Name^Test Code^Test Title^Internal Admin date^External Admin Date ^Ordered

 by Array(3)=R1^Responses 1-200 undelimited Array(4)=R2^ Responses 201-400 undelimited (even

 if less than 200) Array(5)=R3^ Responses 401-600 undelimited Array(6)=S1^Scale Name^Raw

 Score^Transformed Score Array(7)=S2^ Scale Name^Raw Score^Transformed Score And onward as

 needed

 Example: Input

 YS("DFN")=83 YS("CODE")=MMPI2 YS("ADATE")=05/09/1994

 Output

 YSDATA(1)=[DATA] YSDATA(2)=CAPP,ANDY W^MMPI2^--- Minnesota Multiphasic Personality

 Inventory-2 -- -^2940509^05/09/1994^CAULFIELD,MARY A

 YSDATA(3)=R1^TTTFTTFTTTFTTFFFFFFTTFFFFFFFTFFFFFFFFFFFFFFFFFFFFFFTFFFFFFFFFFFFFFF

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTTTFFFTTFFFFFF

 FFF

 YSDATA(4)=R2^FFFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTTTTTTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFF

 FF

 FFTTT

 YSDATA(5)=R3^TTTTTTTTTTTTTTTTTTTTTTTFFFFFFFFFFFFFFFFFFFFTTFFFTFTFTFTFTFTFTFTFTFF

 FTFTFTFTFTFTFTFTFTFTFTFTTFTFTFTFFFFTFFTFTFTFTFTFTFFTFTFTFTFTFFFFFFFFFFFFFFFFFFFF

 FFFFFFFFFFFFFFFFFFFF YSDATA(6)=S1^L Lie^12^87 YSDATA(7)=S2^F Infrequency^19^95

 .

 .

 .

 YSDATA(89)=S84^Ma-S Hypomania, Subtle^10^50

 YS Type: Input

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MENTAL HEALTH
 ICR#: 2893

 NAME: DBIA2893

 USAGE: Supported ENTERED: AUG 19,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API allows saving of patient responses to a test or interview in the PSYCH INSTRUMENT PATIENT file (#601.2). The patient

 ien, the test code, and administration date is required along with the responses. All responses are checked for validity. No

 scoring is returned but successful addition to the PSYCH INSTRUMENT PATIENT file (#601.2) is indicated.

 ROUTINE: YTAPI1

 COMPONENT: SAVEIT

 VARIABLES: DFN Type: Input

 Patient internal identifier

 CODE Type: Input

 Test code from MH INSTRUMENT file (#601) or "ASI" (e.g. "CAGE", "BDI")

 ADATE Type: Input

 Inclusive administration date in %DT acceptable format (11/11/2011)

 STAFF Type: Input

 DUZ of professional ordering the test

 R1 Type: Input

 String of patient responses 1-200

 R2 Type: Input

 String of patient responses 201-400 [as needed]

 R3 Type: Input

 String of patient responses 401-600 [as needed]

 YSDATA Type: Output

 Array(1)=[DATA] indicates successful call

 Example: Input

 YS("DFN")=6 YS("ADATE")="T" YS("CODE")="ZUNG" YS("STAFF")=67 YS("R1")="12121212121212121212"

 Output

 YSDATA(1)=[DATA] YSDATA(2)=saved

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MENTAL HEALTH
 ICR#: 2895

 NAME: DBIA2895

 USAGE: Supported ENTERED: AUG 19,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: YTAPI3

 COMPONENT: SHOWIT

 VARIABLES: CODE Type: Input

 Test code from in the MH INSTRUMENT file (#601) (e.g. "CAGE", "BDI")

 ITEM Type: Input

 A positive whole number between 1 and the highest item number for the specified test.

 YSDATA Type: Output

 Array(1)=[DATA] ;indicates successful call Array(2)=MMPI2 item: 1 ;SECOND LINE IS TEST CODE

 AND ITEM NUMBER Array(3)=[BEGIN ITEM]; BEGINS EACH ITEM Array(4)=MMPI2^1 ;CODE^ITEM NUMBER

 Array(5)=[INTRO];HEADER ALWAYS PRESENT OPTIONALY FOLLOWED BY TEXT Array(12)=[TEXT];HEADER

 ALWAYS PRESENT ALWAYS FOLLOWED BY TEXT Array(14)=[BOTTOM];HEADER ALWAYS PRESENT OPTIONALY

 FOLLOWED BY TEXT Array(18)=[RESPONSE]];HEADER ALWAYS PRESENT ALWAYS FOLLOWED BY TEXT

 Array(21)=[END ITEM]; ENDS EACH ITEM

 Example: Input

 YS("CODE")="MMPI2" YS("ITEM")=1

 Output

 YSDATA(1)=[DATA] YSDATA(2)=[BEGIN ITEM] YSDATA(3)=MMPI2^1 YSDATA(4)=[INTRO] YSDATA(5)=Please

 read each statement carefully and decide whether it is true YSDATA(6)=as applied to you or

 false as applied to you. YSDATA(7)= YSDATA(8)=If a statement is true or mostly true, as

 applied to you, answer 'T'. YSDATA(9)=If a statement is false or not usually true, as

 applied to you, answer YSDATA(10)='F'. YSDATA(11)= YSDATA(12)=Remember to give your own

 opinion of yourself. YSDATA(13)=[TEXT] YSDATA(14)=I like mechanics magazines.

 YSDATA(15)=[BOTTOM] YSDATA(16)=T= True YSDATA(17)=F= False YSDATA(18)=Answer=

 YSDATA(19)=[RESPONSE] YSDATA(20)=TFX YSDATA(21)=[END ITEM]

 This API returns the text, bottom, introduction and possible correct responses for a specified test item in MH

 INSTRUMENT file (#601). It will work only for tests as opposed to interviews or batteries. The ASI is not

 supported.

 COMPONENT: SHOWALL

 VARIABLES: CODE Type: Input

 Test code from the MH INSTRUMENT file (#601). (e.g. "CAGE", "BDI")

 YSDATA Type: Output

 Array(1)=[DATA] ;indicates successful call Array(2)=MMPI2 item: 1 ;SECOND LINE IS TEST CODE

 AND ITEM NUMBER Array(3)=[BEGIN ITEM]; BEGINS EACH ITEM Array(4)=MMPI2^1 ;CODE^ITEM NUMBER

 Array(5)=[INTRO];HEADER ALWAYS PRESENT OPTIONALY FOLLOWED BY TEXT Array(12)=[TEXT];HEADER

 ALWAYS PRESENT ALWAYS FOLLOWED BY TEXT Array(14)=[BOTTOM];HEADER ALWAYS PRESENT OPTIONALY

 FOLLOWED BY TEXT Array(18)=[RESPONSE]];HEADER ALWAYS PRESENT ALWAYS FOLLOWED BY TEXT

 Array(21)=[END ITEM]; ENDS EACH ITEM

 .

 .

 .

 Array(1003)=[BEGIN ITEM]; BEGINS EACH ITEM Array(1004)=MMPI2^567 ;CODE^ITEM NUMBER

 Array(1005)=[INTRO];HEADER ALWAYS PRESENT OPTIONALY FOLLOWED BY TEXT

 Array(1012)=[TEXT];HEADER ALWAYS PRESENT ALWAYS FOLLOWED BY TEXT Array(1014)=[BOTTOM];HEADER

 ALWAYS PRESENT OPTIONALY FOLLOWED BY TEXT Array(1018)=[RESPONSE]];HEADER ALWAYS PRESENT

 ALWAYS FOLLOWED BY TEXT Array(1021)=[END ITEM]; ENDS EACH ITEM

 Example: Input

 YS("CODE")="MMPI2" YS("ITEM")=1

 Output

 YSDATA(1)=[DATA] YSDATA(2)=[BEGIN ITEM] YSDATA(3)=MMPI2^1 YSDATA(4)=[INTRO] YSDATA(5)=Please

 read each statement carefully and decide whether it is true YSDATA(6)=as applied to you or

 false as applied to you. YSDATA(7)= YSDATA(8)=If a statement is true or mostly true, as

 applied to you, answer 'T'. YSDATA(9)=If a statement is false or not usually true, as

 applied to you, answer YSDATA(10)='F'. YSDATA(11)= YSDATA(12)=Remember to give your own

 opinion of yourself. YSDATA(13)=[TEXT] YSDATA(14)=I like mechanics magazines.

 YSDATA(15)=[BOTTOM] YSDATA(16)=T= True YSDATA(17)=F= False YSDATA(18)=Answer=

 YSDATA(19)=[RESPONSE] YSDATA(20)=TFX YSDATA(21)=[END ITEM]

 .

 .

 .

 YSDATA(6950)=[BEGIN ITEM] YSDATA(6951)=MMPI2^567 YSDATA(6952)=[INTRO] YSDATA(6953)=[TEXT]

 YSDATA(6954)=Most married couples don't show much affection for each other.

 YSDATA(6955)=[BOTTOM] YSDATA(6956)=T= True YSDATA(6957)=F= False YSDATA(6958)=Answer=

 YSDATA(6959)=[RESPONSE] YSDATA(6960)=TFX YSDATA(6961)=[END ITEM]

 This API returns the text, bottom, introduction and possible correct responses for all items in a test in the

 MH INSTRUMENT file (#601). It will work only for tests as opposed to interviews or batteries. The ASI is not

 supported.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: MENTAL HEALTH
 ICR#: 2896

 NAME: DBIA2896

 USAGE: Supported ENTERED: JUN 4,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API returns the GAF scores for a specified patient. It can be constrained by both date range and occurrence limit. Please

 note that data for this API comes from the DIAGNOSTIC RESULTS - MENTAL HEALTH file (#627.8).

 ROUTINE: YSGAFAPI

 COMPONENT: GAFHX

 VARIABLES: DFN Type: Input

 Patient internal identifier

 BEGIN Type: Input

 Inclusive date in %DT acceptable format (11/11/2011) to begin search [optional]

 END Type: Input

 Inclusive date in %DT acceptable format (11/11/2011) to end search [optional]

 LIMIT Type: Input

 Constrains to the last N diagnoses [optional]

 YSDATA Type: Output

 Array(1)=[DATA] ;indicates successful call Array(1)=GAF Score^Internal Date^External

 Date^Provider^Comment

 .

 .

 Array(N)=GAF Score^Internal Date^External Date^Provider^Comment

 Example: Input

 YS("DFN")=29601 YS("LIMIT")=3

 Output

 YSDATA(1)=[DATA] YSDATA(2)=100^2981209.1105^12/09/1998@11:05^JONES,MARK^

 YSDATA(3)=99^2981209.092^12/09/1998@09:20^JONES,MARK^

 YSDATA(4)=66^2981124.1406^11/24/1998@14:06^JONES,MARK^

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 2531

 NAME: Application Programmer Interfaces (APIs)

 USAGE: Supported ENTERED: SEP 4,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Since the National Drug File is being redesigned, these APIs are designed to allow other applications to make a smooth

 transition to the new file structure.

 ROUTINE: PSNAPIS

 COMPONENT: PSA

 VARIABLES: S X=$$PSA^PSNAPIS(ndc,.array) where ndc is a 12 digit National Drug Code and array is an array defined by the

 calling application returns

 array(p50)=Drug name from the DRUG file (#50) and p50 is the internal entry number in that file for every drug

 which has the same product name as the name of the drug identified by the ndc. Returns X as the number of

 entries in array.

 COMPONENT: PSJING

 VARIABLES: S X=$$PSJING^PSNAPIS(p1,p3,.array) where p1 and p3 are the first and third "^" pieces of the "ND" node in the

 DRUG File (#50) for a selected drug and array is a array defined by the calling application returns

 array(ien)=ien^ingredient where ien is the internal entry number in the DRUG INGREDIENTS file (#50.416) and

 ingredient is the name of the ingredient for every ingredient in the selected drug. Returns X as the number of

 entries in array.

 COMPONENT: PSJDF

 VARIABLES: S X=$$PSJDF^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for a

 selected drug returns X=ien^dose where ien is the internal entry number in the DOSAGE FORM file (#50.606) and

 dose is the name of the dosage form for the selected drug.

 COMPONENT: PSJST

 VARIABLES: S X=$$PSJST^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for the

 selected drug returns X=1^strength where strength is the strength in the VA PRODUCT file (#50.68).

 COMPONENT: CLASS

 VARIABLES: S X=$$CLASS^PSNAPIS(class) where class is a five character VA Drug Classification Code (e.g. CN103) returns X=1

 if class is a valid code or 0 if it is not.

 COMPONENT: DRUG

 VARIABLES: S X=$$DRUG^PSNAPIS(drug name) returns X=1 if drug name is either a valid Name entry in the VA GENERIC File

 (#50.6) or a valid Trade Name entry in the NDC/UPN File (#50.67). Returns X=0 otherwise.

 COMPONENT: PROD0

 VARIABLES: S X=$$PROD0^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for a

 selected drug returns product information from the NATIONAL DRUG file (#50.6).

 X=VA PRODUCT NAME^DOSAGE FORM ENTRY^STRENGTH ENTRY^UNITS

 ^^^GCNSEQNO^PREVIOUS GCNSEQNO

 COMPONENT: PROD2

 VARIABLES: S X=$$PROD2^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for a

 selected drug returns additional product information.

 X=VA PRINT NAME^VA PRODUCT IDENTIFIER^TRANSMIT TO CMOP^VA DISPENSE UNIT

 COMPONENT: DCLASS

 VARIABLES: S X=$$DCLASS^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 returns

 the VA DRUG CLASSIFICATION for the selected drug (e.g. CYANIDE ANTIDOTES).

 COMPONENT: DCLCODE

 VARIABLES: S X=$$DCLCODE^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for a

 selected drug returns the 5 character class code for the selected drug (e.g. AD200).

 COMPONENT: VAGN

 VARIABLES: S X=$$VAGN^PSNAPIS(p1) where p1 is the first piece of the "ND" node in File #50 for a selected drug returns

 X=VA GENERIC NAME for the selected drug.

 COMPONENT: DFSU

 VARIABLES: S X=$$DFSU^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for a

 selected drug returns dose, strength, and units

 X=DFIEN^DOSE^STIEN^STRENGTH^UNIEN^UNITS

 where DFIEN is the internal entry number of the dosage form, DOSE is

 the name of the dosage from, STIEN is the internal entry number of the

 strength, STRENGTH is the strength, UNIEN is the internal entry number

 of the units and UNITS is the unit.

 COMPONENT: VAP

 VARIABLES: S X=$$VAP^PSNAPIS(da,.array) where da is an internal entry number in the VA GENERIC file (#50.6) and array is

 an array defined by the calling application returns array(ien)=ien^VA PRODUCT NAME^dfien^DOSE^clien^ CLASS

 where ien is the internal entry number of the product, dfien is the internal entry number of the DOSAGE FORM,

 clien is the internal entry number of the class, and CLASS is the five character class code for all products

 associated with the selected drug.

 COMPONENT: PSPT

 VARIABLES: S X=$$PSPT^PSNAPIS(p1,p3,.array) where p1 and p3 are the first and third pieces of the "ND" node in File #50

 for a selected drug and array is defined by the calling application returns

 array(psien^ptien)=psien^psize^ptien^ptype

 where psien is the internal entry number of the package size, ptien is

 the internal entry number of the package type, psize is the package

 size, and ptype is the package type for each package size and type

 combination for the selected drug. Returns X equals the number of

 entries in array.

 COMPONENT: DSS

 VARIABLES: S X=$$DSS^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for a

 selected drug returns x equals the five or seven digit DSS identifier for the selected drug.

 COMPONENT: CPRS

 VARIABLES: S X=$$CPRS^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in File #50 for a

 selected drug returns X=DOSAGE FORM^CLASS CODE^STRENGTH^UNITS for the selected drug.

 COMPONENT: CIRN

 VARIABLES: D CIRN^PSNAPIS(ndc,.array) where ndc is a 12 digit National Drug Code and array is defined by the calling

 application returns

 array=ndc

 array(0)=internal entry number in file 50.6

 array(1)=VA GENERIC NAME

 array(2)=dose form ien^^class ien

 array(3)=strength

 array(4)=units ien

 array(5)=package size ien

 array(6)=package type pointer

 array(7)=NDC^MANUFACTURER^TRADE NAME^VA PRODUCT NAME POINTER^ROUTE OF

 ADMINISTRATION

 If ndc is not a valid entry array is returned as "000000000000" and the seven elements of array are returned as

 null.

 COMPONENT: B

 VARIABLES: S X=$$B^PSNAPIS returns the closed global root of the "B" cross reference on the VA Generic Name.

 COMPONENT: T

 VARIABLES: S X=$$T^PSNAPIS returns the closed global root of the "T" cross reference on the Trade Name in the NDC/UPN file

 (#50.67).

 COMPONENT: OVRIDE

 VARIABLES: S X=$$OVRIDE^PSNAPIS(p1,p3) where p1 and p3 are the first and third pieces of the "ND" node in the DRUG File

 (#50) for the selected drug. Returns the value of the OVERRIDE DF DOSE CHK EXCLUSION Field (#31) from the VA

 PRODUCT File (#50.68). This field should always be populated with a '1' for 'YES' or a '0' for 'NO', but if the

 data is not populated, a null will be returned.

 COMPONENT: FDAMG

 VARIABLES: S X=$$FDAMG^PSNAPIS(ien) where ien is the internal entry number in the VA PRODUCT file (#50.68), and returns

 the URL for the medication guide if one exists or null if it does not.

 COMPONENT: POSDOS

 VARIABLES: S X=$$POSDOS^PSNAPIS(ien) where ien is the internal entry number in the VA PRODUCT file (#50.68). It returns

 the values from the following three fields for the VA Product, separated by up-arrow (^):

 CREATE DEFAULT POSSIBLE DOSAGE (#40)

 POSSIBLE DOSAGES TO CREATE (#41)

 PACKAGE (#42)

 Example: "N^O^O"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 2574

 NAME: ADDITIONAL APIS FOR NDF

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA describes additional Application Programmer Interfaces (APIs) for the National Drug File. APIs described here are

 in addition to those described in DBIA # 2531.

 ROUTINE: PSNAPIS

 COMPONENT: TTOG

 VARIABLES: S X=$$TTOG^PSNAPIS(TRADE,.LIST) where TRADE is a free text trade name and LIST is an array defined by the

 calling application returns

 LIST(IEN)=IEN^GENERIC NAME where IEN is the internal entry number in File #50.6 and GENERIC NAME is the .01

 field of that file for every entry which has the given trade name. Also returns X as the number of entries in

 LIST.

 COMPONENT: CLIST

 VARIABLES: S X=$$CLIST^PSNAPIS(DA,.LIST) where DA is an internal entry number in File #50.6 and LIST is an array defined

 by the calling application returns LIST(IEN)=IEN^CLASS where IEN is the internal entry number in File #50.605

 and CLASS is the 5 character class code for every class associated with that entry in File #50.6. Also returns

 X as the number of entries in LIST.

 COMPONENT: TGTOG

 VARIABLES: S X=$$TGTOG^PSNAPIS(NAME) where NAME is a free text entry returns X=IEN from the VA GENERIC file (#50.6) if

 NAME is either a valid Name from the VA GENERIC file (#50.6) or if NAME is a valid Trade Name from the NDC/UPN

 file (#50.67). Returns X=0 otherwise.

 COMPONENT: TGTOG2

 VARIABLES: S X=$$TGTOG2^PSNAPIS(NAME,.LIST) returns LIST(IEN)=IEN^GENERIC NAME where IEN is the internal entry number in

 File #50.6 and GENERIC NAME is the .01 field of that entry for all entries for which NAME is a partial or exact

 match to either the trade name or the generic name. Also returns X as the number of entries in LIST.

 COMPONENT: CIRN2

 VARIABLES: S X=$$CIRN2^PSNAPIS(P1,P3,.LIST) where P1 and P3 are the first and third pieces of the ND node in File #50 and

 LIST is an array defined by the calling application returns LIST(J)=NDC where J is a simple index and NDC is a

 twelve character National Drug Code (NDC) for all NDCs associated with the product specified by P1 and P3.

 Also returns X as the number of entries in LIST.

 COMPONENT: CLASS2

 VARIABLES: S X=$$CLASS2^PSNAPIS(IEN) where IEN is an internal entry number in File #50.605 returns X as the first two

 pieces of the zero node in that entry.

 COMPONENT: FORMI

 VARIABLES: S X=$$FORMI^PSNAPIS(P1,P3) where P1 and P3 are the first and third pieces of the "ND" node in File #50 for a

 selected entry returns X=1 if the item is on the National Formulary, X=0 otherwise.

 COMPONENT: FORMR

 VARIABLES: S X=$$FORMR^PSNAPIS(P1,P3) where P1 and P3 are the first and third pieces of the "ND" node in File #50 for a

 selected entry returns X=1 if there are restrictions placed on the item, X=0 otherwise.

 COMPONENT: CMOP

 VARIABLES: S X=$$CMOP^PSNAPIS(CODE) where code is a five character CMOP identifier (e. g. A0105) returns X equal the

 corresponding product name if CODE is a valid identifier, null otherwise.

 COMPONENT: FORMRX

 VARIABLES: S X=$$FORMRX^PSNAPIS(DA,K,.LIST) where DA and K are the first and third pieces of the ND node in File #50 for

 the chosen drug returns X=1 if there are formulary restrictions, 0 if there are not. Also, if there are

 restrictions, returns LIST as the word-processing field describing these restrictions.

 COMPONENT: $$DDIEX(VAR1,VAR2)

 VARIABLES: VAR1 Type: Input

 piece one of the "ND" node of ^PSDRUG file 50

 NATIONAL DRUG FILE ENTRY field 20

 VAR2 Type: Input

 piece three of the "ND" node of ^PSDRUG file 50

 PSNDF VA PRODUCT NAME ENTRY field 22

 $$DDIEX Type: Output

 1 indicates that a drug has been exempted from drug-drug interaction order checking.

 0 indicates that a drug is not exempted from drug-drug interaction order checking.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4531

 NAME: DBIA4531

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by NDF (National Drug File) as an API to the DRUG INGREDIENTS file (#50.416). This API is to used in the

 future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSN50P41

 COMPONENT: $$B

 VARIABLES: $$B Type: Output

 $$B = "^PS(50.416, "B")" the file root of the "B" cross-reference on the DRUG INGREDIENTS

 file (#50.416)

 Returns the file root of the "B" cross-reference. The $$B^PSN50P41 API will accomplish this task.

 Format: S X=$$B^PSN50P41

 COMPONENT: ZERO(PSNIEN,PSNFT,PSNFL,LIST)

 VARIABLES: PSNIEN Type: Input

 PSNIEN = IEN of entry in DRUG INGREDIENTS file (#50.416) [optional]

 PSNFT Type: Input

 PSNFT = the NAME field (#.01) of the DRUG INGREDIENTS file (#50.416) (a value of "??" may be

 used) [optional]

 PSNFL Type: Input

 PSNFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSNIEN,.01)=NAME(50.416,.01)

 ^TMP($J,LIST,PSNIEN,2)=PRIMARY INGREDIENT(50.416,2)^NAME(50.416,.01) (The PRIMARY INGREDIENT

 field (#2) stores the IEN of the DRUG INGREDIENTS file (#50.416) that point to other entry in

 this file)

 ^TMP($J,LIST,PSNIEN,3)=INACTIVATION DATE(50.416,3)^External format (ex: SEP 12,1999)

 ^TMP($J,LIST,"B",NAME,PSNIEN)= ""

 Format: D ZERO^PSN50P41(PSNIEN,PSNFT,PSNFL,LIST)

 COMPONENT: NAME(PSNFT,LIST)

 VARIABLES: PSNFT Type: Input

 NAME field (#.01) of the DRUG INGREDIENTS file (#50.416) (a value of "??" may be used)

 [required]

 LIST Type: Input

 defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0) = Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSNIEN,.01) = NAME (50.416,.01)

 ^TMP($J,LIST,PSNIEN,2) = PRIMARY INGREDIENT (50.416,2)^NAME (50.416,.01) (The PRIMARY

 INGREDIENT field (#2) stores the IEN of the DRUG INGREDIENTS file (#50.416) that point to

 other entry in this file)

 ^TMP($J,LIST,"P",NAME,PSNIEN) = ""

 Where:

 PSNIEN is IEN of entry in the DRUG INGREDIENTS file (#50.416)

 Returns fields in the zero node in the DRUG INGREDIENTS file (#50.416) in the array defined by the calling

 application. The "P cross-reference in the format of ^PS(50.416,"P ,NAME(50.416,.01),IEN(50.416)) will be

 used.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4540

 NAME: DBIA4540

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by NDF (National Drug File) as an API to the VA GENERIC file (#50.6). This API is to used in the future

 by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSN50P6

 COMPONENT: ZERO(PSNIEN,PSNFT,PSNFL,PSNX,LIST)

 VARIABLES: PSNIEN Type: Input

 PSNIEN = IEN of entry in VA GENERIC file (#50.6) [optional]

 PSNFT Type: Input

 PSNFT = NAME field (#.01) of the VA GENERIC file (#50.6) (a value of "??" may be used)

 [optional]

 PSNX Type: Input

 PSNX = 1 for exact match flag [optional]

 PSNFL Type: Input

 PSNFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSNIEN,.01)=NAME(50.6,.01)

 ^TMP($J,LIST,PSNIEN,1)=INACTIVATION DATE(50.6,1)^External format (ex: SEP 12,1999)

 ^TMP($J,LIST,"B",NAME,PSNIEN)= ""

 Format: D ZERO^PSN50P6(PSNIEN,PSNFT,PSNFL,PSNX,LIST)

 COMPONENT: $$ROOT

 VARIABLES: $$ROOT Type: Output

 $$ROOT Where: $$ROOT is "^PSNDF(50.6,"

 $$ROOT returns the global root of VA Generic file (#50.6) Format: S X=$$ROOT^PSN50P6

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4543

 NAME: DBIA4543

 USAGE: Supported ENTERED: DEC 27,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by NDF (National Drug File) as an API to the VA DRUG CLASS file (#50.605). This API is to used in the

 future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSN50P65

 COMPONENT: IEN(PSNIEN,PSNFT,LIST)

 VARIABLES: PSNIEN Type: Input

 PSNIEN - IEN of entry in VA DRUG CLASS file (#50.605) [optional]

 PSNFT Type: Input

 PSNFT - CODE field (#.01) of VA DRUG CLASS file (#50.605) (a value of "??" may be used)

 [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSNIEN,.01)=CODE(50.605,.01)

 ^TMP($J,LIST,PSNIEN,1)=CLASSIFICATION(50.605,1)

 ^TMP($J,LIST,"B",CODE,PSNIEN)= ""

 Format: D IEN^PSN50P65(PSNIEN,PSNFT,LIST)

 COMPONENT: C(PSNIEN,PSNFT,LIST)

 VARIABLES: PSNIEN Type: Input

 PSNIEN = IEN of entry in VA DRUG CLASS file (#50.605) [optional]

 PSNFT Type: Input

 PSNFT = the CLASSIFICATION field (#1) of the VA DRUG CLASS file (#50.605) (a value of "??"

 may be used) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSNIEN,.01)=CODE(50.605,.01)

 ^TMP($J,LIST,PSNIEN,1)=CLASSIFICATION(50.605,1)

 ^TMP($J,LIST,PSNIEN,2)=PARENT CLASS(50.605,2)^CODE (50.605,.01)

 ^TMP($J,LIST,PSNIEN,3)=TYPE(50.605,3)

 ^TMP($J,LIST,"C",CODE,PSNIEN)= ""

 Note: The "C" cross-reference in the format of

 ^PS(50.605,"C",CLASSIFICATION(50.605,1),IEN(50.605)) will be used for the lookup

 Format: D C^PSN50P65(PSNIEN,PSNFT,LIST)

 COMPONENT: $$ROOT(PSNC)

 VARIABLES: PSNC Type: Input

 PSNC = If "1" the global root of the "C" cross-reference is returned otherwise, the global

 root of the zero node is returned

 $$ROOT Type: Output

 $$ROOT Where: $$ROOT = "^PS(50.605, ""C"")" if PSNC is passed in as 1 $$ROOT = "^PS(50.605,")

 if PSNC is null

 Format: S X=$$ROOT^PSN50P65(PSNC)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4545

 NAME: DBIA4545

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by NDF (National Drug File) as an API to the VA PRODUCT file (#50.68). This API is to used in the future

 by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSN50P68

 COMPONENT: DATA(PSNIEN,PSNFT,LIST)

 VARIABLES: PSNIEN Type: Input

 PSNIEN = IEN of entry in VA PRODUCT file (#50.68) [optional]

 PSNFT Type: Input

 PSNFT = NAME field (#.01) of the VA PRODUCT file (#50.68) (a value of "??" may be used)

 [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSNIEN,.01)=NAME(50.68,.01)

 ^TMP($J,LIST,PSNIEN,.05)=VA GENERIC NAME(50.68,.05)^NAME(50.6,.01)

 ^TMP($J,LIST,PSNIEN,3)=UNITS(50.68,3)^NAME (50.607,.01)

 ^TMP($J,LIST,PSNIEN,4)=NATIONAL FORMULARY NAME(50.68,4)

 ^TMP($J,LIST,PSNIEN,11)=GCNSEQNO(50.68,11)

 ^TMP($J,LIST,PSNIEN,12)=PREVIOUS GCNSEQNO (50.68,12)

 ^TMP($J,LIST,PSNIEN,13)=NDC LINK TO GCNSEQNO(50.68,13)

 ^TMP($J,LIST,PSNIEN,19)=CS FEDERAL SCHEDULE(50.68,19)^External format for the set of codes

 ^TMP($J,LIST,PSNIEN,2000)=SERVICE CODE(50.68,2000)

 Note: If there is no data in the SERVICE CODE field (#2000) of the VA PRODUCT file (#50.68),

 the value 600000 will be returned for the SERVICE CODE.

 ^TMP($J,LIST,"B",NAME,PSNIEN)= ""

 Format: D DATA^PSN50P68(PSNIEN,PSNFT,LIST)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4554

 NAME: DBIA4554

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by NDF (National Drug File) as an API to do simulated VA FileMan calls. This API is to be used in the

 future by all packages needing to use FileMan to look at NDF files as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSNDI

 COMPONENT: IX(PSNFILE,PSNPACK,.DIC,D,.X,DLAYGO,PSNDATE)

 VARIABLES: PSNFILE Type: Input

 PSNFILE = File number used for validation of access [required]

 PSNPACK Type: Input

 PSNPACK = Name space of the calling application. Ex: PSJ for Inpatient Meds, PSO for

 Outpatient. PSNPACK is used to check if write access is allowed [optional]

 .DIC Type: Input

 See VA FileMan Programmer Manual for IX^DIC call, for DIC, D, X, and DLAYGO input definitions

 PSNDATE Type: Input

 PSNDATE = Inactivation Date. If the file has an Inactivation Date, then any entry with an

 Inactivation Date on or before PSNDATE will not be returned [optional]

 PSNDIY Type: Output

 PSNDIY will return null if the values for PSNFILE and PSNPACK are valid (it will return -1 if

 conditions were not met)

 See VA FileMan Programmer Manual for IX^DIC output definition

 DLAYGO should only be passed in if the calling application has this type of access through

 another Integration Agreement

 COMPONENT: DIC(PSNFILE,PSNPACK,.DIC,.X,DLAYGO,PSNDATE)

 VARIABLES: PSNFILE Type: Input

 PSNFILE = File number used for validation of access [required]

 PSNPACK Type: Input

 PSNPACK = Name space of the calling application. Ex: PSJ for Inpatient Meds, PSO for

 Outpatient. PSNPACK is used to check if write access is allowed [optional]

 .DIC Type: Input

 See VA FileMan Programmer Manual for ^DIC call, for DIC, X, AND DLAYGO input definitions

 PSNDATE Type: Input

 PSNDATE = Inactivation Date. If the file has an Inactivation Date, then any entry with an

 Inactivation Date on or before PSNDATE will not be returned [optional]

 PSNDIY Type: Output

 PSNDIY will return null if the values for PSNFILE and PSNPACK are valid (it will return -1 if

 conditions were not met)

 See VA FileMan Programmer Manual for DIC output definition

 DLAYGO should only be passed in if the calling application has this type of access through

 another Integration Agreement

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4829

 NAME: DBIA4829

 USAGE: Supported ENTERED: FEB 14,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by NDF (National Drug File) as an API to the NDC/UPN file (#50.67). This API is to used in the future by

 all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSN5067

 COMPONENT: ALL(PSNIEN,PSNFT,PSNFL,LIST)

 VARIABLES: PSNIEN Type: Input

 PSNIEN = Internal Entry Number from the NDC/UPN file (#50.67). If a value is passed in for

 PSNIEN, then any value passed in for the PSNFT parameter will be ignored. [optional]

 PSNFT Type: Input

 PSNFT = TRADE NAME field (#4) of the NDC/UPN file (#50.67) (a value of "??" may be used).

 This value will be ignored if a value for PSNIEN is passed in.[optional]

 PSNFL Type: Input

 PSNFL = Inactivation date: A null value will return all entries (entry of a FileMan format

 date (ex: 3030917) will return active entries after this date) [optional]

 LIST Type: Input

 LIST = array name defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSNIEN,.01)=SEQUENCE NUMBER(50.67,.01)

 ^TMP($J,LIST,PSNIEN,1)=NDC(50.67,1)

 ^TMP($J,LIST,PSNIEN,2)=UPN(50.67,2)

 ^TMP($J,LIST,PSNIEN,3)=MANUFACTURER(50.67,3)^NAME(55.95,.01)

 ^TMP($J,LIST,PSNIEN,4)=TRADE NAME(50.67,4)

 ^TMP($J,LIST,PSNIEN,5)=VA PRODUCT NAME(50.67,5)^NAME(50.68,.01)

 ^TMP($J,LIST,PSNIEN,7)=INACTIVATION DATE(50.67,7)^External format (ex: SEP 12,1999)

 ^TMP($J,LIST,PSNIEN,8)=PACKAGE SIZE(50.67,8)^NAME(50.609,.01)

 ^TMP($J,LIST,PSNIEN,9)=PACKAGE TYPE(50.67,9)^NAME(50.608,.01)

 ^TMP($J,LIST,PSNIEN,10)=OTX/RX INDICATOR(50.67,10)^External format for the set of codes

 ^TMP($J,LIST,"B",TRADE NAME,PSNIEN)= ""

 Note: The "B" cross-reference uses the TRADE NAME field (#4) as the data value. The TRADE

 NAME field (#4) is not a required field.

 This component will return data from the NDC/UPN file (#50.67).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4997

 NAME: Pointing to the VA DRUG CLASS (#50.605) File

 USAGE: Supported ENTERED: JUN 5,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 50.605 ROOT: PS(50.605

 DESCRIPTION: TYPE: File

 This agreement allows for other applications to store a pointer to the Vista VA DRUG CLASS (#50.605) file. This number can be

 used as an Identification Number to retrieve data.

 ^PS(50.605

 .01 CODE 0;1 Pointed to

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4998

 NAME: Pointing to the DRUG INGREDIENTS (#50.416) File

 USAGE: Supported ENTERED: JUN 5,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 50.416 ROOT: PS(50.416

 DESCRIPTION: TYPE: File

 This agreement allows for other applications to store a pointer to the Vista DRUG INGREDIENTS (#50.416) file. This number can

 be used as an Identification Number to retrieve data.

 ^PS(50.416

 .01 NAME 0;1 Pointed to

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NATIONAL DRUG FILE
 ICR#: 4999

 NAME: Pointing to the VA GENERIC (#50.6) File

 USAGE: Supported ENTERED: JUN 5,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 50.6 ROOT: PSNDF(50.6

 DESCRIPTION: TYPE: File

 This agreement allows for other applications to store a pointer to the Vista VA GENERIC (#50.6) file. This number can be used

 as an Identification Number to retrieve data.

 ^PSNDF(50.6

 .01 NAME 0;1 Pointed to

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NEW PERSON
 ICR#: 10098

 NAME: see Veterans Administration

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: NURSING SERVICE
 ICR#: 3052

 NAME: Nursing Ward Location API

 USAGE: Supported ENTERED: FEB 24,2000

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Patch NUR*4*31 introduces a new supported Application Programming Interface(API). This API provides a "Query" and "Look-up"

 on the NURS LOCATION file (#211.4). This DBIA was developed as a way to provide access to File #211.4 and allow Nursing to

 retire two existing private DBIAs.

 ROUTINE: NURSUT5

 COMPONENT: WARD(FUNCT,.ARRAY)

 VARIABLES: FUNCT Type: Input

 FUNCT = Piece1_^_Piece2

 Piece1 must contain an "L" or "Q"

 Piece1 "L" means Look-up of specified

 entry in File 211.4, and

 Piece2 must contain the IEN for

 the entry in File 211.4.

 Piece1 "Q" means do a DIC style query

 on File 211.4, and

 Piece2 must contain "I","A" or

 ""(i.e., null). This will be

 the screen used on the look-up.

 The API will do a DIC style

 look-up for the ward.

 "I" means look-up only

 inactive wards.

 "A" means look-up only

 active wards.

 "" means look-up all

 wards.

 .ARRAY Type: Both

 .ARRAY = Recommend the return

 array should be

 namespaced.

 Return Values:

 ARRAY = -1 means that the

 Look-up or Query

 failed.

 ARRAY = IEN means that the

 Look-up or Query was

 successful.

 ARRAY can be any variable array that the developer chooses. When the API returns the data it

 will be placed into the variable array specified. If the data value is missing the array

 element for that value will not be returned.

 Return Array:

 ARRAY(IEN,.01) = Pointer to File 44

 "^" External value

 of Hospital Location

 file(44), Name

 field(.01)

 ARRAY(IEN,.02) = Facility pointer to

 File 4_"^"_ External

 name of facility

 ARRAY(IEN,.03) = Pointer to File 212.7

 "^" External value

 of NURS Product Line

 file(212.7), Name

 field(.01)

 ARRAY(IEN,1) = Patient care status

 internal value_"^"_

 External value of

 Patient care status

 ARRAY(IEN,1.5) = Ward status Internal

 value_"^"_ External

 value of Ward status

 ARRAY(IEN,2) = Total number of MAS

 ward pointers

 X = the IEN of the entry

 within the MAS ward

 Multiple.

 ARRAY(IEN,2,X,.01) = Pointer to File

 42 _"^"_ External

 value of Ward

 Location file(42),

 Name field(.01)

 ARRAY(IEN,2,X,1) = Pointer to File

 213.3_"^"_External

 value of NURS AMIS

 Ward file(213.3),

 Bed Section

 field(.01)

 ARRAY(IEN,4) = Total number of

 AMIS ward pointers.

 Y = the IEN of the entry

 within the AMIS

 Bed section Multiple.

 ARRAY(IEN,4,Y,.01) = Pointer to file

 213.3_"^"_External

 value of NURS AMIS

 Ward file(213.3),

 Bed Section

 field(.01)

 ARRAY(IEN,11) = Professional Percentage

 ARRAY(IEN,12) = Pointer to File

 211.5_"^"_External

 value of NURS

 Clinical Background

 file(211.5),

 Description field(.01)

 ARRAY(IEN,37) = Indicates whether

 or not active staff

 is assigned to this

 ward.

 In the following examples the ARRAY is variable VAR. The first example is a query for all active wards. The

 second example is a look-up a specific entry in the NURS LOCATION file (#211.4).

 1) Coding example of Query call:

 <tab>KILL VAR ; initialize VAR

 <tab>DO WARD^NURSUT5("Q^A",.VAR) ; Call to API

 User interface:

 Select NURSING UNIT NAME: ?

 NOTE: The letters NUR may be in front of the location name.

 This is not to be corrected under any circumstance.

 DO YOU WANT THE ENTIRE 26-ENTRY NURSING UNIT LIST? Y (Yes)

 CHOOSE FROM:

 10E SUPPORT ISC

 10W SUPPORT ISC

 12E SUPPORT ISC

 2AS SUPPORT ISC

 3AS HINES ISC

 3E SUPPORT ISC

 4AS PSYCHIATRY SUPPORT ISC

 5NP HINES ISC

 Select NURSING UNIT NAME: 4AS PSYCHIATRY

 2) Coding example of Look-up call:

 <tab>KILL VAR ; initialize VAR

 <tab>DO WARD^NURSUT5("L^5",.VAR) ; Call to API

 In both cases when the API returns the data it will be placed into the variable array specified. If the data

 value is missing the array element for that value will not be returned. The following is an example of the

 return array.

 Example of Return Array:

 VAR=5

 VAR(5,.01)="30^4AS PSYCHIATRY"

 VAR(5,.02)="499^SUPPORT ISC"

 VAR(5,.03)="1^NURSING"

 VAR(5,1)="A^ACTIVE"

 VAR(5,1.5)="A^ACTIVE"

 VAR(5,2)=1

 VAR(5,2,1,.01)="4^4AS"

 VAR(5,2,1,1)="1^PSYCHIATRIC"

 VAR(5,4)=1

 VAR(5,4,1.01)="1^PSYCHIATRIC"

 VAR(5,11)="60"

 VAR(5,12)="8^PSYCHIATRY"

 VAR(5,37)="YES"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ORDER ENTRY/RESULTS REPORTING
 ICR#: 2186

 NAME: DBIA2186

 USAGE: Supported ENTERED: OCT 16,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine has a number of supported entry points to support package interfaces with CPRS.

 ROUTINE: ORX1

 COMPONENT: $$NA(DEFAULT,REQUIRD,FB,DIRA,DC,LIST)

 VARIABLES: DEFAULT Type: Input

 Free text code or pointer value to the nature of order in file 100.02

 REQUIRD Type: Input

 Set to 1 to require a response from the user.

 FB Type: Input

 Used to screen selection by type (frontdoor or backdoor types).

 DIRA Type: Input

 Prompt used to set DIR("A") in call to ^DIR

 DC Type: Input

 Set to 1 if you only want to include DC types.

 LIST Type: Input

 List of nature of order codes allowed (from file 100.02). If this is passed then DC and FB

 parameters are ignored.

 Y Type: Output

 Y represents the value returned by the function. It is in the form:

 pointer^name^code

 This is a function that will prompt for and return a Nature of Order from the Nature of Order file.

 COMPONENT: NA1(SCREEN)

 VARIABLES: SCREEN Type: Input

 Used like DIC("S") to screen out entries.

 This is a call to get a standard help matrix for Nature of Order.

 COMPONENT: NA2(SCREEN)

 VARIABLES: SCREEN Type: Input

 Used like DIC("S") to screen out entries.

 This is a call to get a standard help matrix for DC Reason.

 COMPONENT: $$DC(DEFAULT,REQ,PKG,DIRA)

 VARIABLES: DEFAULT Type: Input

 Internal # from ORDER REASON (100.03) file to use as default.

 REQ Type: Input

 Set to 1 to require a response.

 PKG Type: Input

 Pointer to file 9.4 (Package) to screen selection to package specific reasons.

 DIRA Type: Input

 Default prompt used to set DIR("A") when calling ^DIR.

 Y Type: Output

 Y represents the value returned by this function. It is in the form:

 pointer^name

 Function to prompt for and get a DC Reason from the Order Reason (100.03) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ORDER ENTRY/RESULTS REPORTING
 ICR#: 2187

 NAME: DBIA2187

 USAGE: Supported ENTERED: OCT 16,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This is a supported entry point for use by packages interfacing with CPRS.

 ROUTINE: ORERR

 COMPONENT: EN(ORTYP,ORMSG,ORVAR)

 VARIABLES: ORTYP Type: Input

 Text to identify problem.

 ORMSG Type: Input

 HL7 message array.

 ORVAR Type: Input

 ORVAR is an array with a list of variable names as subscripts that you need saved when ORERR

 is called.

 This call will log an error/problem in the OE/RR Errors (100.4) file. It is used by OE/RR and interfacing

 packages to identify potential problems.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ORDER ENTRY/RESULTS REPORTING
 ICR#: 2414

 NAME: ORDERS CONVERSION CHECK

 USAGE: Supported ENTERED: MAY 15,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 100.99 ROOT: ORD(100.99,

 DESCRIPTION: TYPE: File

 This DBIA authorizes direct global read of some fields in the ^ORD(100.99,1,"CONV") node. This node contains the fields used

 by the CPRS v1 Orders Conversion. Calling packages can use this information to determine whether the Orders Conversion is

 complete. It also authorizes access to ^ORD(100.99,1,"PTCONV") which is a multiple which contains the DFNs of patients left

 to convert.

 ^ORD(100.99,1,'CONV')

 3.01 OR3 CONVERSION COMPL CONV;1 Direct Global Read & w

 This will be a 1 if the conversion is complete or a 0 if it is in progress. If

 CPRS has not been installed or the conversion has not yet started, this node will

 not exist.

 3.06 OR3 BACKGROUND JOB S CONV;6 Direct Global Read & w

 This field will contain the start date/time for the CPRS v1 Orders Conversion.

 3.07 OR3 BACKGROUND JOB S CONV;7 Direct Global Read & w

 This field contains the completion time of the Orders Conversion.

 ^ORD(100.99,1,'PTCONV',DFN)

 .01 OR3 PATIENTS TO CONV 0;1 Direct Global Read & w

 DINUMed entry of PATIENT file entries that have not yet been converted

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ORDER ENTRY/RESULTS REPORTING
 ICR#: 4859

 NAME: ORDER CHECK API

 USAGE: Supported ENTERED: MAY 22,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This Integration Aggreement will permit ancilliary packages to obtain the order check information for a specific order.

 ROUTINE: ORCHECK

 COMPONENT: OCAPI

 VARIABLES: IFN Type: Input

 This is the order number to gather the order checking info on.

 ORPLACE Type: Both

 This variable is the subscript that will be used to store the information in the return data.

 i.e.

 ^TMP($J,ORPLACE,D0,"OC LEVEL")="order check level"

 ,"OC TEXT")="order check text"

 ,"OR REASON")="over ride reason text"

 ,"OR PROVIDER")="provider DUZ who entered over ride reason"

 ,"OR DT")="date/time over ride reason was entered"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ORDER ENTRY/RESULTS REPORTING
 ICR#: 4922

 NAME: ORDER HL7 MESSAGE ESCAPE API

 USAGE: Supported ENTERED: OCT 23,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA describes the API that OE/RR has created to escape and unescape HL7 messages that are sent back and forth between

 CPRS and it's ancillary packages.

 ROUTINE: ORHLESC

 COMPONENT: ESC

 VARIABLES: STRING Type: Input

 DELIM Type: Input

 $$ESC Type: Output

 This entry point removes characters defined in DELIM from the string STRING and replaces them with an escape

 sequence.

 If DELIM is not passed to $$ESC, it will default to the standard HL7 encoding characters "~|\&^".|

 ~ Component separator converted to \S\

 | Repetition separator converted to \R\|

 \ Escape character converted to \E\

 & Sub-Component converted to \T\

 ^ Field separator converted to \F\

 COMPONENT: UNESC

 VARIABLES: STRING Type: Input

 DELIM Type: Input

 $$UNESC Type: Output

 This entry point replaces the escape sequences in STRING with the proper escaped charater from DELIM. See

 entry point ESC of ORHLESC for details on defaults for DELIM and mapping of escaped characters to escape

 sequenses.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: ORDER ENTRY/RESULTS REPORTING
 ICR#: 10092

 NAME: Routine

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: Routine

 COMPONENT: ORVOM

 VARIABLES: Export utility for distributing package-specific protocols. Requires entries in the Order Parameters File.

 (Available for use till DIFROM incorporates this functionality)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 1878

 NAME: DBIA1878

 USAGE: Supported ENTERED: DEC 11,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Open subscription for Outpatient Pharmacy prescription data.

 ROUTINE: PSOORDER

 COMPONENT: EN(DFN,RX#)

 VARIABLES: DFN Type: Input

 This variable is the patient's internal entry number from the Patient file (#2). This

 variable is optional. If the internal entry number is not sent, then a null value must be

 passed in it's place.

 RX# Type: Input

 This variable is the internal entry number of a prescription. This number either comes from

 the Pharmacy Patient file (#55), Prescription Profile sub-file which requires a separate

 DBIA.

 Return Outpatient Prescriptions:

 Open Subscription (Supported).

 Requires version 7 of Outpatient Pharmacy software installed.

 Entry Point:

 EN^PSOORDER(DFN,RX#)

 Passed:

 DFN: Internal entry number for patient in Patient file (#2).

 DFN is optional. A null value must be passed in it's place.

 RX#: Internal entry number for prescription in Prescription file (#52).

 Returned:

 ^TMP("PSOR",$J,RXN,0)=ID^FD^LSFD^ST^RX#^QTY^DS^RF^RFM^DRCT^RXCT^EXDT^RELDT^RTSDT^WPC^PAT^LDT

 RXN = Internal Rx #

 ID = Issue date of Rx

 FD = Fill date of Rx.

 LSFD = Last fill date of Rx

 ST = Status of Rx. This variable has the format A;B where:

 A = code

 B = external printable form, (e.g., A for ACTIVE,

 DC for discontinued)

 If status of prescription equals Hold:

 ^TMP("PSOR",$J,RXN,"HOLD",0)=HDRS^HDCOM^HDDT

 HDRS = Hold Reason, HDCOM = Hold Comments, HDDT = Hold Date

 If status of prescription equals Suspended or has had an entry in the Suspense file (#52.5)

 ^TMP("PSOR",$J,RXN,"SUS",0)=PRT^CMIND

 PRT = Printed Status: Printed, or Not Printed

 CMIND = CMOP Indicator. Data will only appear in this field if sites has the CMOP package installed and in

 use. Q = Queued for Transmission, X = Transmission Completed, L = Loading for Transmission, P = Printed

 Locally

 RX# = External Rx number

 QTY = Quantity Dispensed

 DS = Day Supply

 RF = Number of refills

 RFM = Number of refills remaining

 DRCT = Drug Cost of Original Fill

 RXCT = Cost of Original Fill

 EXDT = Expiration/Cancel date of Rx

 RELDT = Release Date/Time

 RTSDT = Returned to Stock Date

 WPC = Was Patient Counseled - (Yes/No)

 PAT = Patient. This variable has the format A;B where A is the internal pointer and B is the external

 printable form.

 LDT = This date is the date the original Rx was added to the prescription file (#52). Login Date.

 ^TMP("PSOR",$J,RXN,1)= PR^CLK^VRP^CLN^RXP^MW^DIV^OERR#^FP^NDC^TPBRX

 PR = Provider. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 CLK = Entered By (clerk code). This variable has the format A;B where A is the internal pointer and B is

 external printable form.

 VRP = Verifying Pharmacist. This variable has the format A;B where A is the internal pointer and B is

 external printable form.

 CLN = Clinic. This variable has the format A;B where A is the internal pointer and B is external printable

 form. Data comes from file #44.

 RXP = Rx Patient Status. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 M/W = Mail/Window Routing. This variable has the format A;B where A is the code and B is external

 printable form.

 DIV = Pointer to Outpatient Site file (#59).

 OERR# = Order number that points to the CPRS Orders file (#100).

 FP = Finishing Person. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 NDC = National Drug Code.

 TPBRX = This variable indicates that the Rx has been created as part of the Transitional Pharmacy Benefit

 project.

 CMOP Data: If applicable

 ^TMP("PSOR",$J,RXN,"CMOP",n,0)=TRANS #^SEQ #^FILL #^CMSTA^CMDCDT^NDC

 TRANS # = Transaction number. Pointer value to the CMOP Transmission file (#550.2).

 SEQ # = Sequence number. This number represents the order number sent to the CMOP Host facility.

 Fill # = Fill #. 0 for original, 1-11 for refills.

 CMSTA = CMOP Status. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 CMDCDT = CMOP cancel date

 NDC = National Drug file Code - free text

 ^TMP("PSOR",$J,RXN,"CMOP",1,1,0)=CMDC REASON

 CMDC REASON = CMOP cancel reason.

 note: CMDCDT and CMDC REASON fields are only populated if CMSTA equals 3.

 Drug Data:

 ^TMP("PSOR",$J,RXN,"DRUG",0)= DR^VA PRINT NAME^DRUG ID^VA DRUG CLASS

 DR = Drug in Rx. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 VA Print Name = VA Print name found in NDF

 DRUG ID = National drug ID found in NDF

 VA DRUG CLASS = VA DRUG CLASSIFICATION

 ^TMP("PSOR",$J,RXN,"DRUGOI",0)= ORDERABLE ITEM

 ORDERABLE ITEM = Pharmacy Orderable Item tied to drug in Rx. This variable has the format A;B where A is

 the internal pointer and B is external printable form concatenated with dose form, i.e., ASPIRIN TAB.

 Copay: If applicable

 ^TMP("PSOR",$J,RXN,"IB",0)=COPAY TRANSACTION TYPE^IB NUMBER)

 COPAY TRANSACTION TYPE = 1 or 2

 IB NUMBER = IB pointer number

 Refills:

 ^TMP("PSOR",$J,RXN,"REF",n,0)=RFD^PR^CLK^QTY^DS^DRCT^RXCT^RELDT^RTSDT^M/W^DIV^LDT^NDC

 RXN = Internal Rx #

 RFD = Refill Date

 PR = Provider. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 CLK = Refill entry by. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 QTY = Quantity Dispensed

 DS = Day Supply

 DRCT = Drug Cost of Refill

 RXCT = Cost of Refill

 RELDT = Release Date/Time

 RTSDT = Returned to Stock Date

 M/W = Mail/Window Routing. This variable has the format A;B where A is the code and B is external

 printable form.

 DIV = Pointer to Outpatient Site file (#59).

 LDT = This date indicates the date the refill was requested. This is not the date the refill will be

 dispensed (Login Date).

 NDC = National Drug Code

 Partial Fills:

 ^TMP("PSOR",$J,RXN,"RPAR",n,0)=PRD^PR^CLK^QTY^DS^DRCT^RXCT^RELDT^RTSDT^M/W^DIV^LDT^NDC

 RXN = Internal Rx #

 PRD = Partial Date

 PR = Provider. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 CLK = Refill entry by. This variable has the format A;B where A is the internal pointer and B is external

 printable form.

 QTY = Quantity Dispensed

 DS = Day Supply

 DRCT = Drug Cost of partial

 RXCT = Cost of partial

 RELDT = Release Date/Time

 RTSDT = Returned to Stock Date

 M/W = Mail/Window Routing. This variable has the format A;B where A is the code and B is external

 printable form.

 DIV = Pointer to Outpatient Site file (#59).

 LDT = This date indicates the date the partial fill was created (Login Date).

 NDC = National Drug Code

 Activity Log:

 ^TMP("PSOR",$J,RXN,"ACT",n,0)=D/T^REA^NEW PERSON^RX #^COMMENTS

 D/T = Date/Time entry made

 REA = Reason entry was made

 New Person = Entry created by

 RX # = Which fill the activity occurred on (original, refill, partial).

 Comments = Comments about the Activity that occurred.

 Medication Instructions:

 ^TMP("PSOR",$J,RXN,"SIG",n,0)= Condensed Medication Instructions (SIG)

 ^TMP("PSOR",$J,RXN,"SIG1",n,0)= Expanded Medication Instructions (SIG)

 Dispensing Instructions:

 ^TMP("PSOR",$J,RXN,"MI",N,0)=DOSAGE^DOSE^UNITS^NOUN^DURATION^CONJUNCTION^MRT^SCH^VERB

 DOSAGE = This is the strength of the medication dispensed. This variable can be a numeric value or

 free-text.

 DOSE = This numeric value represents the total number of pills to make a total dosage. This value is

 only returned when the dosage is numeric.

 UNITS = This data element is the unit of measure the medication is dispense. This variable has the

 format A;B where A is the internal pointer and B is external printable form.

 NOUN = This data element indicates the form the medication was dispensed, i.e., tablet.

 DURATION = This indicates how long this dosage should be taken.

 CONJUNCTION = This data element is used for complex dosaging instructions.

 MRT = This data element indicates how the medication is ingested (medication route). This variable has

 the format A;B where A is the internal pointer and B is external printable form.

 SCH = This data indicates when the medication is taken (schedule).

 VERB = This data element indicates what action is taken to ingest the medication.

 Patient Instructions:

 ^TMP("PSOR",$J,RXN,"PI",n,0)=EXPANDED PATIENT INSTRUCTIONS

 The ^TMP("PSOR",$J) is killed each time the entry point is called. It will be the responsibility of each

 developer to kill the ^TMP("PSOR",$J) global and the DFN and Rx # variables when finished.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4820

 NAME: PRESCRIPTION FILE (#52) DATA ELEMENTS

 USAGE: Supported ENTERED: DEC 7,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The PSO52API routine shall be used to return requested data elements for the PRESCRIPTION file (#52).

 ROUTINE: PSO52API

 COMPONENT: RX(DFN,LIST,IEN,RX#,NODE,SDATE,EDATE)

 VARIABLES: DFN Type: Both

 Internal entry number from the PATIENT file (#2) [required]

 LIST Type: Both

 Subscript name used in the ^TMP global [required]

 IEN Type: Input

 Internal entry number from the PRESCRIPTION file (#52) [optional].

 RX# Type: Input

 RX # field (#.01) from the PRESCRIPTION file (#52) [optional].

 NODE Type: Input

 This string variable is used to determine what data elements from the PRESCRIPTION file (#52)

 are returned.

 If NODE is passed in null, all possible pre-defined data elements are returned. [optional]

 EDATE Type: Input

 EXPIRATION DATE field (#26) from the PRESCRIPTION file (#52) using the

 ^PS(55,Patient,"P","A",Expiration Date,DA) cross-reference from PHARMACY PATIENT file (#55)

 when prescriptions are requested within a date range. [optional]

 SDATE Type: Input

 EXPIRATION DATE field (#26) from the PRESCRIPTION file (#52) using the

 ^PS(55,Patient,"P","A",Expiration Date,DA) cross-reference from PHARMACY PATIENT file (#55)

 when prescriptions are requested within a date range. [optional]

 RX^PSO52API(DFN,LIST,IEN,RX#,NODE,SDATE,EDATE)

 Input:

 DFN

 LIST

 IEN

 RX#

 NODE

 SDATE

 EDATE

 Where:

 DFN = IEN from the PATIENT file (#2) [required]

 LIST = Subscript name used in the ^TMP global [required]

 IEN = Internal prescription number in PRESCRIPTION file (#52) [optional]

 RX# = RX # field (#.01) from the PRESCRIPTION file (#52) [optional]

 NODE = will be passed "null" or as a string of data separated by commas containing some or all of the

 following 0,2,3,R,I,P,O,T,L,S,M,C,A,ICD and/or ST [optional]

 SDATE = Start Date [optional]

 EDATE = End Date [optional]

 Note: This API has defined one entry point by parameter passing, to return data from available data nodes from

 the PRESCRIPTION file (#52). The variable "NODE" shall be passed null or as a string of data separated by

 commas. Every field from the PRESCRIPTION file (#52) shall not be returned, though the string must be defined

 to contain some or all of the following: 0, 2, 3, R, I, P, O, T, L, S, M, C, A, ICD, ST. Each section describes

 what is returned by each string variable. TRADE NAME field (#6.5) (piece 1 of the "TN" node), from the

 PRESCRIPTION file (#52) that is associated with DRUG NAME field (#6) will be returned as part of the 0 node

 data, if populated. The status and "B" cross-reference of valid prescriptions is always returned.

 0 - returns the Zero node

 2 - returns the Zero and Two nodes

 3 - returns the Two and Three nodes

 R - returns all refills for a prescription (If a specific refill is wanted, this variable must be passed in

 the following format: "R^^n" (indicating which refill is wanted))

 I - returns Integrated Billing (IB) data ([^null, O or R^n] if 2nd piece is defined as null IB data for both

 original and all refills are returned. If 2nd piece is defined as 'O' only IB data for the original fill is

 returned. If 2nd piece is defined as 'R' refill data is returned and the 3rd piece is null, all refill IB

 data are returned, or if the 3rd piece has a number it shall return the IB node for that refill only.)

 P - returns all partial fills for a prescription

 O - returns the Orderable Item for a prescription

 T - returns the TPB node

 L - returns the Label multiple

 S - returns the SAND node

 M - returns the medication instructions (SIG)

 C - returns CMOP data

 A - returns the Activity Logs for a prescription

 ICD - returns the ICD multiple

 ST - returns the status of the prescription

 Note: If NODE is passed in null, all possible nodes are returned.

 Note: If an invalid parameter is passed into the NODE variable the following node shall be returned:

 ^TMP($J,LIST,DFN,IEN,"INVALID REQUEST",NODE)=Invalid Data Requested

 Output: (If node = 0 (zero))

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,.01)=RX #(52,.01)

 ^TMP($J,LIST,DFN,IEN,1)=ISSUE DATE (52,1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,2)=PATIENT (52,2)^NAME (2,.01)

 ^TMP($J,LIST,DFN,IEN,3)=PATIENT STATUS (52,3)

 ^TMP($J,LIST,DFN,IEN,4)=PROVIDER (52,4)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,5)=CLINIC (52,5)^NAME(44,.01)

 ^TMP($J,LIST,DFN,IEN,6)=DRUG (52,6)^GENERIC NAME(50,.01)

 ^TMP($J,LIST,DFN,IEN,6.5)=TRADE NAME (52,6.5)

 ^TMP($J,LIST,DFN,IEN,7)=QTY (52,7)

 ^TMP($J,LIST,DFN,IEN,8)=DAYS SUPPLY (52,8)

 ^TMP($J,LIST,DFN,IEN,9)=# OF REFILLS (52,9)

 ^TMP($J,LIST,DFN,IEN,10.3)=ORDER CONVERTED (52,10.3)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,10.6)=COPIES (52,10.6)

 ^TMP($J,LIST,DFN,IEN,11)=MAIL/WINDOW (52,11)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,16)=ENTERED BY (52,16)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,17)=UNIT PRICE OF DRUG (52,17)

 Output: (If node = 2)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,.01)=RX #(52,.01)

 ^TMP($J,LIST,DFN,IEN,1)=ISSUE DATE (52,1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,2)=PATIENT (52,2)^NAME (2,.01)

 ^TMP($J,LIST,DFN,IEN,3)=PATIENT STATUS (52,3)

 ^TMP($J,LIST,DFN,IEN,4)=PROVIDER (52,4)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,5)=CLINIC (52,5)^NAME(44,.01)

 ^TMP($J,LIST,DFN,IEN,6)=DRUG (52,6)^GENERIC NAME(50,.01)

 ^TMP($J,LIST,DFN,IEN,6.5)=TRADE NAME (52,6.5)

 ^TMP($J,LIST,DFN,IEN,7)=QTY (52,7)

 ^TMP($J,LIST,DFN,IEN,8)=DAYS SUPPLY (52,8)

 ^TMP($J,LIST,DFN,IEN,9)=# OF REFILLS (52,9)

 ^TMP($J,LIST,DFN,IEN,10.3)=ORDER CONVERTED (52,10.3)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,10.6)=COPIES (52,10.6)

 ^TMP($J,LIST,DFN,IEN,11)=MAIL/WINDOW (52,11)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,16)=ENTERED BY (52,16)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,17)=UNIT PRICE OF DRUG (52,17)

 ^TMP($J,LIST,DFN,IEN,20)=DIVISION (52,20)^NAME(59,.01)

 ^TMP($J,LIST,DFN,IEN,21)=LOGIN DATE (52,21)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,22)=FILL DATE (52,22)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,23)=PHARMACIST (52,23)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN 24)=LOT # (52,24)

 ^TMP($J,LIST,DFN,IEN 25)=DISPENSED DATE (52,25)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,26)=EXPIRATION DATE (52,26)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,27)=NDC (52,27)

 ^TMP($J,LIST,DFN,IEN,28)=MANUFACTURER (52,28)

 ^TMP($J,LIST,DFN,IEN,29)=DRUG EXPIRATION DATE (52,29)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,30)=GENERIC PROVIDER (52,30)

 ^TMP($J,LIST,DFN,IEN,31)=RELEASE DATE/TIME (52,31)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN 32.1)=RETURNED TO STOCK (52,32.1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,32.2)=REPRINT (52,32.2)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,32.3)=BINGO WAIT TIME (52,32.3)

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,104)=VERIFYING PHARMACIST (52,104)^NAME (200,.01)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Output: (If node = 3)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,12)=REMARKS (52,12)

 ^TMP($J,LIST,DFN,IEN,20)=DIVISION (52,20)^NAME (59,.01)

 ^TMP($J,LIST,DFN,IEN,21)=LOGIN DATE (52,21)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,22)=FILL DATE (52,22)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,23)=PHARMACIST (52,23)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN 24)=LOT # (52,24)

 ^TMP($J,LIST,DFN,IEN 25)=DISPENSED DATE (52,25)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,26)=EXPIRATION DATE (52,26)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,26.1)=CANCEL DATE (52,26.1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,27)=NDC (52,27)

 ^TMP($J,LIST,DFN,IEN,28)=MANUFACTURER (52,28)

 ^TMP($J,LIST,DFN,IEN,29)=DRUG EXPIRATION DATE (52,29)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,30)=GENERIC PROVIDER (52,30)

 ^TMP($J,LIST,DFN,IEN,31)=RELEASE DATE/TIME (52,31)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN 32.1)=RETURNED TO STOCK (52,32.1)^External (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,32.2)=REPRINT (52,32.2)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,32.3)=BINGO WAIT TIME (52,32.3)

 ^TMP($J,LIST,DFN,IEN,34.1)=DRUG ALLERGY INDICATION (52,34.1)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,101)=LAST DISPENSED DATE (52,101)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,102)=NEXT POSSIBLE FILL (52,102)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,102.1)=PRIOR FILL DATE (52,102.1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,102.2)=PENDING NEXT POSSIBLE FILLDATE (52,102.2) ^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,104)=VERIFYING PHARMACIST (52,104)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,109)=COSIGNING PHYSICIAN (52,109)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,112)=ORIGINAL QTY (52,112)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Output: (If node = R(r)[^^n(o)])

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"RF",0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"RF",n,.01)=REFILL DATE (52.1,.01)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"RF",n,1)=QTY (52.1,1)

 ^TMP($J,LIST,DFN,IEN,"RF",n,1.1)=DAYS SUPPLY (52.1,1.1)

 ^TMP($J,LIST,DFN,IEN,"RF",n,1.2)=CURRENT UNIT PRICE OF DRUG (52.1,1.2)

 ^TMP($J,LIST,DFN,IEN,"RF",n,2)=MAIL/WINDOW (52.1,2)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"RF",n,3)=REMARKS (52.1,3)

 ^TMP($J,LIST,DFN,IEN,"RF",n,4)=PHARMACIST NAME (52.1,4)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,"RF",n,5)=LOT # (52.1,5)

 ^TMP($J,LIST,DFN,IEN,"RF",n,6)=CLERK CODE (52.1,6)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,"RF",n,7)=LOGIN DATE (52.1,7)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"RF",n,8)=DIVISION (52.1,8)^NAME (59,.01)

 ^TMP($J,LIST,DFN,IEN,"RF",n,10.1)=DISPENSE DATE (52.1,10.1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"RF",n,12)=MANUFACTURER (52.1,12)

 ^TMP($J,LIST,DFN,IEN,"RF",n,13)=DRUG EXPIRATION DATE (52.1,13)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"RF",n,14)=RETURNED TO STOCK (52.1,14)External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"RF",n,15)=PROVIDER (52.1,15)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,"RF",n,17)=RELEASED DATE/TIME (52.1,17)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Where:

 n = the IEN of entry in the Refill multiple

 Output: (If node = I(r)[^null,O or R^n])

 [ORIGINAL FILLS]

 ^TMP($J,LIST,DFN,IEN,105)=COPAY TRANSACTION TYPE (52,105)

 ^TMP($J,LIST,DFN,IEN,106)=IB NUMBER (52,106)^REFERENCE NUMBER(350,.01)

 ^TMP($J,LIST,DFN,IEN,106.5)=COPAY TYPE AUDIT (52,106.5)

 ^TMP($J,LIST,DFN,IEN,106.6)=COPAY EXCEEDING CAP (52,106.6)^TRANSACTION NUMBER(354.71,.01)

 [REFILLS]

 ^TMP($J,LIST,DFN,IEN,"IB",0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"IB",n,9)= IB NUMBER (52.1,9)^REFERENCE NUMBER(350,.01)

 ^TMP($J,LIST,DFN,IEN,"IB",n,9.1)=COPAY EXCEEDING CAP (52.1,9.1)^ TRANSACTION NUMBER(354.71,.01)

 Where:

 n = the IEN of entry in the Refill multiple for IB

 Output: (If node = P)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"P",0)= Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"P",n,.01)=PARTIAL DATE (52.2,.01)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"P",n,.02)=MAIL/WINDOW (52.2,.02)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"P",n,.03)=REMARKS (52.2,.03)

 ^TMP($J,LIST,DFN,IEN,"P",n,.04)=QTY (52.2,.04)

 ^TMP($J,LIST,DFN,IEN,"P",n,.041)=DAYS SUPPLY (52.2,.041)

 ^TMP($J,LIST,DFN,IEN,"P",n,.042)=CURRENT UNIT PRICE OF DRUG (52.2,.042)

 ^TMP($J,LIST,DFN,IEN,"P",n,.05)=PHARMACIST NAME (52.2,.05)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,"P",n,.06)=LOT # (52.2,.06)

 ^TMP($J,LIST,DFN,IEN,"P",n,.08)=LOGIN DATE (52.2,.08)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"P",n,.09)=DIVISION (52.2,.09)^NAME (59,.01)

 ^TMP($J,LIST,DFN,IEN,"P",n,1)=NDC (52.2,1)

 ^TMP($J,LIST,DFN,IEN,"P",n,5)=RETURNED TO STOCK (52.2,5)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"P",n,6)=PROVIDER (52.2,6)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,"P",n,8)=RELEASE DATE/TIME (52.2,8)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Where:

 n = the IEN of entry in the Partial multiple

 Output: (If node = O)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"OI")=IEN(52,39.2)^NAME(50.7,.01)^DOSAGE FORM(50.7,.02)^NAME (50.606,.01)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Output: (If node = T)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND"

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,201)=TPB RX (52,201)^External Format for the Set of Codes

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Output: (If node = L)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"L",0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"L",n,.01)=LABEL DATE/TIME (52.032,.01)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"L",n,1)=RX REFERENCE (52.032,1)

 ^TMP($J,LIST,DFN,IEN,"L",n,2)=LABEL COMMENT (52.032,1)

 ^TMP($J,LIST,DFN,IEN,"L",n,3)=PRINTED BY (52.032,3)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,"L",n,4)=WARNING LABEL TYPE (52.032,4)^External Format for the Set of Codes

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Where:

 n = the IEN of entry in the Label multiple

 Output: (If node = S)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,301)=CLOZAPINE DOSAGE (MG/DAY) (52,301)

 ^TMP($J,LIST,DFN,IEN,302)=WBC RESULTS (52,302)

 ^TMP($J,LIST,DFN,IEN,303)=DATE OF WBC TEST (52,303)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Output: (If node = M)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"M",0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"M",n,0)=MEDICATION INSTRUCTIONS(52.04,.01)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Where:

 n = the IEN of entry in the Medication Instruction (SIG) multiple

 Output: (If node = C)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"C",0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"C",n,2)=RX INDICATOR (52.01,2)

 ^TMP($J,LIST,DFN,IEN,"C",n,3)=STATUS (52.01,3)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"C",n,4)=NDC (52.10,4)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Where:

 n = the IEN of entry in the CMOP Event multiple

 Output: (If node = A)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"A",0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"A",n,.01)=ACTIVITY LOG (52.03,.01)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,"A",n,.02)=REASON (52.03,.02)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"A",n,.03)=INITIATOR OF ACTIVITY (52.03,.03)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,"A",n,.04)=RX REFERENCE (52.03,.04)

 ^TMP($J,LIST,DFN,IEN,"A",n,.05)=COMMENTS (52.30,.05)

 ^TMP($J,LIST,"B",RX#,IEN)=""

 Where:

 n = the IEN of entry in the Activity Log multiple

 Output: (If node = ICD)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100) ^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"ICD",0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,"ICD",n,.01)=ICD DIAGNOSIS (52.052311,.01)^CODE NUMBER (80,.01)

 ^TMP($J,LIST,DFN,IEN,"ICD",n,1)=AGENT ORANGE (52.052311,1)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"ICD",n,2)=IONIZING RADIATION (52.052311,2)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"ICD",n,3)=SERVICE CONNECTION (52.052311,3)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"ICD",n,4)=ENVIRONMENTAL CONTAMINANTS (52.052311,4)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"ICD",n,5)=MILITARY SEXUAL TRAUMA (52.052311,5)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"ICD",n,6)=HEAD AND/OR NECK CANCER (52.052311,6)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,"ICD",n,7)=COMBAT VETERAN (52.052311,7)^External Format for the Set of Codes

 Where:

 n = the IEN of entry in the ICD multiple

 Output: (If node = ST)

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,"B",RX#,IEN)=""

 COMPONENT: PROF(DFN,LIST,SDATE,EDATE)

 VARIABLES: DFN Type: Both

 Internal entry number from the PATIENT file (#2) [required].

 LIST Type: Both

 Subscript name used in the ^TMP global [required]

 SDATE Type: Input

 EXPIRATION DATE field (#26) from the PRESCRIPTION file (#52) using the

 ^PS(55,Patient,"P","A",Expiration Date,DA) cross-reference from PHARMACY PATIENT file (#55)

 when prescriptions are requested within a date range. [optional]

 EDATE Type: Input

 EXPIRATION DATE field (#26) from the PRESCRIPTION file (#52) using the

 ^PS(55,Patient,"P","A",Expiration Date,DA) cross-reference from PHARMACY PATIENT file (#55)

 when prescriptions are requested within a date range. [optional]

 PROF^PSO52API(DFN,LIST,SDATE,EDATE)

 Input:

 DFN

 LIST

 SDATE

 EDATE

 Where:

 DFN = IEN from the PATIENT file (#2) [required]

 LIST = Subscript name used in the ^TMP global [required]

 SDATE = Starting Expiration Date [optional]

 EDATE = Ending Expiration Date [optional]

 Note: If patient does not have any prescriptions, but has archived prescriptions, a

 ^TMP($J,LIST,DFN,"ARC")="PATIENT HAS ARCHIVED PRESCRIPTION" shall be defined. If SDATE is passed in, suspended

 RXs starting with this date shall be returned (^PS(55,DFN,"P","A")). If EDATE is passed in, RXs up to and

 including this date shall be returned (^PS(55,DFN,"P","A")).

 Output:

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO PRESCRIPTION DATA FOUND

 ^TMP($J,LIST,DFN,IEN,.01)=RX #(52,.01)^IEN

 ^TMP($J,LIST,DFN,IEN,1)=ISSUE DATE (52,1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN,2)=PATIENT (52,2)^NAME (2,.01)

 ^TMP($J,LIST,DFN,IEN,3)=PATIENT STATUS (52,3)^NAME (53,.01)

 ^TMP($J,LIST,DFN,IEN,4)=PROVIDER (52,4)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,5)=CLINIC (52,5)^NAME (44,.01)

 ^TMP($J,LIST,DFN,IEN,6)=DRUG (52,6)^GENERIC NAME (50,.01)

 ^TMP($J,LIST,DFN,IEN,6.5)=TRADE NAME (52,6.5)

 ^TMP($J,LIST,DFN,IEN,7)=QTY (52,7)

 ^TMP($J,LIST,DFN,IEN,8)=DAYS SUPPLY (52,8)

 ^TMP($J,LIST,DFN,IEN,9)=# OF REFILLS (52,9)

 ^TMP($J,LIST,DFN,IEN,10.3)=ORDER CONVERTED (52,10.3) ^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,10.6)=COPIES (52,10.6)

 ^TMP($J,LIST,DFN,IEN,11)=MAIL/WINDOW (52,11)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,16)=ENTERED BY (52,16)^NAME (200,.01)

 ^TMP($J,LIST,DFN,IEN,17)=UNIT PRICE OF DRUG (52,17)

 ^TMP($J,LIST,DFN,IEN,100)=STATUS (52,100)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,"ARC")="PATIENT HAS ARCHIVED PRESCRIPTION"

 ^TMP($J,LIST,"B",RX #,IEN)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4821

 NAME: DBIA4821

 USAGE: Supported ENTERED: DEC 7,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The routine PSO5241 API shall be used to return requested data elements for the PENDING OUTPATIENT ORDERS file (#52.41).

 Various data elements shall be returned by parameter passing.

 ROUTINE: PSO5241

 COMPONENT: PEN(DFN,LIST,IEN,PLACER NUMBER)

 VARIABLES: DFN Type: Both

 Internal entry number from the PATIENT file (#2) [required]

 LIST Type: Both

 Subscript name used in the ^TMP global [required]

 IEN Type: Input

 Internal record number from the PENDING OUTPATIENT ORDERS file (#52.41) [optional]

 PLACER NUM Type: Input

 Pointer to ORDERS file (#100) [optional]

 PEN^PSO5241(DFN,LIST,IEN,PLACER NUMBER)

 Input:

 DFN

 LIST

 IEN

 PLACER NUMBER

 Where:

 DFN = IEN from the PATIENT file (#2) [required]

 LIST = Subscript name used in the ^TMP global [required]

 IEN = Internal record number in PENDING OUTPATIENT ORDERS file (#52.41) [optional]

 PLACER NUMBER = Pointer to ORDERS file (#100) [optional]

 Note: If IEN is passed in, PLACER NUMBER is ignored. If PLACER NUMBER is passed in without IEN, lookup is done

 on ^PS(52.41,"B" cross-reference. If no IEN and no PLACER NUMBER is passed, ^PS(52.41,"P" xref is used to

 return all pending orders (ORDER TYPE = NW:NEW ORDER;HD:HOLD;RNW:RENEW;RF: REFILL REQUEST)

 Output:

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,.01)=PLACER NUMBER(52.41,.01)

 ^TMP($J,LIST,DFN,IEN,2)=ORDER TYPE (52.41,2) ^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,8)=IEN(52.41,8)^NAME(50.7,.01)^DOSAGE FORM(50.7,.02) ^NAME (50.606,.01) - Orderable Item

 ^TMP($J,LIST,DFN,IEN,11)=DRUG (52.41,11) ^GENERIC NAME(50,.01)

 ^TMP($J,LIST,DFN,"B",PLACER NUMBER,IEN)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4822

 NAME: DBIA4822

 USAGE: Supported ENTERED: DEC 7,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The routine PSO525AP shall be used to return requested data elements for the RX SUSPENSE file (#52.5). Various data elements

 shall be returned by parameter passing. The following requirements shall describe what is passed in and what is returned.

 ROUTINE: PSO525AP

 COMPONENT: SUS(LIST,DFN,IEN,RX#,SDATE,EDATE)

 VARIABLES: LIST Type: Both

 Subscript name used in the ^TMP global [required]

 DFN Type: Input

 Internal entry number from the PATIENT file (#2) [optional]

 IEN Type: Input

 Internal entry number from RX SUSPENSE file (#52.5) [optional]

 RX# Type: Input

 Pointer to PRESCRIPTION file (#52) [optional]

 SDATE Type: Input

 Starting suspense date if data is to be returned within date range using the SUSPENSE DATE

 field (#.02) C cross-reference from RX SUSPENSE file (#52.5). [optional]

 EDATE Type: Input

 Ending suspense date if data is to be returned within date range using the SUSPENSE DATE

 field (#.02) C cross-reference from RX SUSPENSE file (#52.5). [optional]

 SUS^PSO525AP(LIST,DFN,IEN,RX#,SDATE,EDATE)

 Input:

 LIST

 DFN

 IEN

 RX#

 SDATE

 EDATE

 Where:

 LIST = Subscript name used in the ^TMP global [required]

 DFN = IEN from the PATIENT file (#2) [optional]

 IEN = Internal record number in RX SUSPENSE file (#52.5) [optional]

 RX# = Pointer to PRESCRIPTION file (#52) [optional]

 SDATE = Starting Suspense Date [optional]

 EDATE = Ending Suspense Date [optional]

 Note: If IEN is passed in, RX # is ignored. If RX # is passed in without IEN lookup is done on ^PS(52.5,"B"

 cross-reference. If no IEN and no RX # is passed, "AF" cross-reference shall be used to return suspended RXs.

 If SDATE is passed in, suspended RXs starting with this date shall be returned. If EDATE is passed in,

 suspended RXs up to and including this date shall be returned.

 Output:

 ^TMP($J,LIST,DFN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,IEN,.01)=RX # (52.5,01)

 ^TMP($J,LIST,DFN,IEN,.02)=Suspense Date (52.5,.02)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,IEN.05)=Partial (52.5,.05)

 ^TMP($J,LIST,DFN,IEN,5)=Printed (52.5,2)^External Format for the Set of codes

 ^TMP($J,LIST,DFN,IEN,3)=CMOP INDICATOR (52.5,3)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,IEN,9)=Fill (52.5,9)

 ^TMP($J,LIST,"B",RX#,IEN)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4823

 NAME: DBIA4823

 USAGE: Supported ENTERED: DEC 7,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API shall return the following fields from the CLOZAPINE PRESCRIPTION OVERRIDES file (#52.52) for the IEN or free text

 entry received: DATE/TIME, PRESCRIPTION NUMBER, USER ENTERING, APPROVING TEAM MEMBER, REASON FOR LOCKOUT, and COMMENTS.

 ROUTINE: PSO5252

 COMPONENT: EN(LIST,IEN,RX#,SDATE,EDATE)

 VARIABLES: LIST Type: Both

 Subscript name used in the ^TMP global [required]

 IEN Type: Input

 Internal entry number from CLOZAPINE PRESCRIPTION OVERRIDES file (#52.52) [optional]

 RX# Type: Input

 Pointer to PRESCRIPTION file (#52) [optional]

 SDATE Type: Input

 Starting date/time if data is to be returned within date range using the DATE TIME field

 (#.01) B cross-reference from CLOZAPINE PRESCRIPTION OVERRIDES file (#52.52). [optional]

 EDATE Type: Input

 Ending date/time if data is to be returned within date range using the DATE TIME field (#.01)

 B cross-reference from CLOZAPINE PRESCRIPTION OVERRIDES file (#52.52). [optional]

 EN^PSO5252(LIST,IEN,RX#,SDATE,EDATE)

 Input:

 LIST

 IEN

 RX#

 SDATE

 EDATE

 Where:

 LIST = Subscript name used in the ^TMP global [required]

 IEN = Internal record number in CLOZAPINE PRESCRIPTION OVERRIDES file (#52.52) [optional]

 RX# = Pointer to PRESCRIPTION file (#52) [optional]

 SDATE = Starting Date [optional]

 EDATE = Ending Date [optional]

 Note: If RX # is passed in without IEN, lookup is done on ^PS(52.52,"A". If no IEN and no RX # is passed, "B"

 cross-reference shall be used to return Override RXs.

 Output:

 ^TMP($J,LIST,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,IEN,.01)= DATE TIME (52.52,.01)

 ^TMP($J,LIST,IEN,1)=PRESCRIPTION NUMBER (52.52,1)^RX # (52,.01)

 ^TMP($J,LIST,IEN,2)=USER ENTERING (52.52,2)^NAME (200,.01)

 ^TMP($J,LIST,IEN,3)=APPROVING TEAM MEMBER (52.52,3)^NAME (200,.01)

 ^TMP($J,LIST,IEN,4)=REASON FOR LOCKOUT (52.52,4)^External Format for the Set of Codes

 ^TMP($J,LIST,IEN,5)=COMMENTS (52.52,5)

 ^TMP($J,LIST,"B",DATE TIME,IEN)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4824

 NAME: DBIA4824

 USAGE: Supported ENTERED: DEC 7,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API shall return the following fields from the TPB ELIGIBILITY file (#52.91) for the IEN or free text entry received:

 PATIENT, DATE PHARMACY BENEFITS BEGAN, INACTIVATION OF BENEFITS DATE, INACTIVATION REASON CODE, DESIRED APPOINTMENT DATE, WAIT

 TYPE, STATION NUMBER, INSTITUTION, EXCLUSION REASON, PRIMARY CARE SCHEDULED APPT DATE, RX#, and DATE LETTER PRINTED.

 ROUTINE: PSO5291

 COMPONENT: PSO(PSOIEN,PSOTXT,LIST)

 VARIABLES: PSOIEN Type: Input

 Internal Entry Number [optional]

 PSOTXT Type: Input

 Free text entry of .01 field from TPB ELIGIBILITY file (#52.91) [optional]

 LIST Type: Both

 Subscript name used in the ^TMP global [required]

 PSO^PSO5291(PSOIEN,PSOTXT,LIST)

 Input:

 PSOIEN

 PSOTXT

 LIST

 Where:

 PSOIEN = Internal Entry Number in TPB ELIGIBILITY file (#52.91) [optional]

 PSOTXT = Free text entry [optional]

 LIST = Subscript name used in the ^TMP global [required]

 Note: Either the IEN or free text entry must be present.

 Output:

 ^TMP($J,LIST,PSOIEN,0)=TOTAL entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSOIEN,.01)=PATIENT (IEN) (52.91,.01)^NAME (2,.01)

 ^TMP($J,LIST,PSOIEN,1)=DATE PHARMACY BENEFIT BEGAN(52.91,1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PSOIEN,2)=INACTIVATION OF BENEFIT DATE(52.91,2)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PSOIEN,3)=INACTIVATION REASON CODE (52.91,3)^External Format for the Set of Codes

 ^TMP($J,LIST,PSOIEN,4)=DESIRED APPOINTMENT DATE(52.91,4)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PSOIEN,5)=WAIT TYPE (52.91,5)^External Format for the Set of Codes

 ^TMP($J,LIST,PSOIEN,6)=STATION NUMBER(52.91,6)

 ^TMP($J,LIST,PSOIEN,7)=INSTITUTION (52.91,7)^NAME (4,.01)

 ^TMP($J,LIST,PSOIEN,8)=EXCLUSION REASON (52.91,8)^External Format for the Set of Codes

 ^TMP($J,LIST,PSOIEN,9)=PRIMARY CARE SCHEDULE APT DATE(52.91,9)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PSOIEN,10)=RX #(52.91,10)

 ^TMP($J,LIST,PSOIEN,11)=DATE LETTER PRINTED(52.91,11)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,"B",PATIENT,PSOIEN)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4825

 NAME: DBIA4825

 USAGE: Supported ENTERED: DEC 7,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API shall be provided to scan the NAME field (#.01) of RX PATIENT STATUS file (#53) utilizing the "B" cross-reference and

 return a listing of records for a specific value based on logical criteria received for the patient status. The following

 fields shall be included: NAME, ABBR, DAYS SUPPLY, REFILLS, RENEWABLE, SC/A&A/OTHER/INPATIENT/NVA, EXEMPT FROM COPAYMENT, and

 EXEMPT FROM CHAMPUS BILLING.

 ROUTINE: PSO53

 COMPONENT: PSO(PSOIEN,PSOTXT,LIST)

 VARIABLES: PSOIEN Type: Input

 Internal Entry Number [optional]

 PSOTXT Type: Input

 Free text entry of .01 field from RX PATIENT STATUS file (#53) [optional]

 LIST Type: Both

 Subscript name used in the ^TMP global [required]

 PSO^PSO53(PSOIEN,PSOTXT,LIST)

 Input:

 PSOIEN

 PSOTXT

 LIST

 Where:

 PSOIEN = Internal Entry Number [optional]

 PSOTXT = Free text entry [optional]

 LIST = Subscript name used in the ^TMP global [required]

 Output:

 ^TMP($J,LIST,PSOIEN,0)=TOTAL entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSOIEN,.001)=NUMBER(53,.001)

 ^TMP($J,LIST,PSOIEN,.01)=NAME(53,.01)

 ^TMP($J,LIST,PSOIEN,2)=ABBR(53,2)

 ^TMP($J,LIST,PSOIEN,3)=DAYS SUPPLY(53,3)

 ^TMP($J,LIST,PSOIEN,4)=REFILLS(53,4)

 ^TMP($J,LIST,PSOIEN,5)=RENEWABLE (53,5)^External Format for the Set of Codes

 ^TMP($J,LIST,PSOIEN,6)=SC/A&A/OTHER/INPATIENT/NVA (53,6)^External Format for the Set of Codes

 ^TMP($J,LIST,PSOIEN,15)=EXEMPT FROM COPAYMENT (53,15)^External Format for the Set of Codes

 ^TMP($J,LIST,PSOIEN,16)=EXEMPT FROM CHAMPUS BILLING (53,16)^External Format for the Set of Codes

 ^TMP($J,LIST,"B",NAME,PSOIEN)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4827

 NAME: OUTPATIENT SITE FILE

 USAGE: Supported ENTERED: DEC 7,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API shall return the following fields from the OUTPATIENT SITE file (#59) for the IEN or free text entry received: NAME,

 MAILING FRANK STREET ADDRESS, AREA CODE, PHONE NUMBER, MAILING FRANK ZIP+4 CODE, SITE NUMBER, MAILING FRANK CITY, MAILING

 FRANK STATE, SITE DEA NUMBER, RELATED INSTITUTION, NPI INSTITUTION, IB SERVICE/SECTION and NCPDP NUMBER.

 ROUTINE: PSO59

 COMPONENT: PSS(PSOIEN,PSOTXT,LIST)

 VARIABLES: PSOIEN Type: Input

 Internal Entry Number [optional]

 PSOTXT Type: Input

 Free text entry of .01 field from OUTPATIENT SITE file (#59) or a value of "??" may be used

 [optional]

 LIST Type: Both

 Subscript name used in the ^TMP global [required]

 PSS^PSO59(PSOIEN,PSOTXT,LIST)

 Input:

 PSOIEN

 PSOTXT

 LIST

 Where:

 PSOIEN = Internal Entry Number in OUTPATIENT SITE file (#59) [optional]

 PSOTXT = Free text entry (a value of "??" may be used) [optional]

 LIST = Subscript name used in the ^TMP global [required]

 Note: Either the IEN or free text entry must be present.

 Output:

 ^TMP($J,LIST,PSOIEN,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,PSOIEN,.01)=NAME(59,.01)

 ^TMP($J,LIST,PSOIEN,.02)=MAILING FRANK STREET ADDRESS(59,.02)

 ^TMP($J,LIST,PSOIEN,.03)=AREA CODE (59,.03)

 ^TMP($J,LIST,PSOIEN,.04)=PHONE NUMBER (59,.04)

 ^TMP($J,LIST,PSOIEN,.05)=MAILING FRANK ZIP+4 CODE(59,.05)

 ^TMP($J,LIST,PSOIEN,.06)=SITE NUMBER(59,.06)

 ^TMP($J,LIST,PSOIEN,.07)=MAILING FRANK CITY(59,.07)

 ^TMP($J,LIST,PSOIEN,.08)=MAILING FRANK STATE (59,.08)^NAME (5,.01)

 ^TMP($J,LIST,PSOIEN,1)=SITE DEA NUMBER (59,1)

 ^TMP($J,LIST,PSOIEN,2)=SITE (NATIONAL NAME)(59,2)^NAME (736,.01) <***See note below***>

 ^TMP($J,LIST,PSOIEN,100)=RELATED INSTITUTION (59,100)^NAME (4,.01)

 ^TMP($J,LIST,PSOIEN,101)=NPI INSTITUTION (59,101)^NAME (4,.01)

 ^TMP($J,LIST,PSOIEN,1003)=IB SERVICE/SECTION (59,1003)^NAME (49,.01)

 ^TMP($J,LIST,PSOIEN,1008)=NCPDP NUMBER (59,1008)

 ^TMP($J,LIST,"B",NAME,PSOIEN)=""

 Note: The SITE (NATIONAL NAME) field (#2) of the OUTPATIENT SITE file (#59) points to the QUIC SORT DATA file

 (#736), which no longer exists. Therefore, the PSO59 routine will no longer return the ^TMP($J,LIST,PSOIEN,2)

 node.

 .

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4858

 NAME: DBIA 4858

 USAGE: Supported ENTERED: MAY 15,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PSO (Outpatient Pharmacy) as an API to do simulated VA FileMan calls. This API is to be used in the

 future by all packages needing to use FileMan to look at the PRESCRIPTION file (#52) and the OUTPATIENT SITE file (#59) as all

 the Pharmacy packages are being re-engineered.

 ROUTINE: PSODI

 COMPONENT: DIQ(PSOFILE,DIC,.DR,.DA,.DIQ)

 VARIABLES: PSOFILE Type: Input

 File number used for validation of access [REQUIRED]

 DIC Type: Input

 See VA FileMan Programmer Manual for EN^DIQ1 call for DIC, DR, DA, and DIQ input definitions

 PSODIY Type: Output

 PSODIY will return null if the value for PSOFILE is valid (it will return -1 if conditions

 were not met)

 See VA FileMan Programmer Manual for EN^DIQ1 output definition

 FORMAT: D DIQ^PSODI(PSOFILE,DIC,.DR,.DA,.DIQ)

 COMPONENT: STATUS(PSOFILE,PSOFIELD,LIST)

 VARIABLES: PSOFILE Type: Input

 File number used for validation of access [REQUIRED]

 PSOFIELD Type: Input

 Field number from the specified file associated with the value in PSOFILE [REQUIRED]

 LIST Type: Input

 Array name defined by the calling application [REQUIRED]

 PSODIY Type: Output

 PSODIY will return null if the value for PSOFILE is valid (it will return -1 if conditions

 were not met)

 FORMAT: D STATUS^PSODI(PSOFILE,PSOFIELD,LIST) NOTE: Make sure LIST("POINTER") is not defined when making this

 call.

 COMPONENT: DIC(PSOFILE,.DIC,.X)

 VARIABLES: PSOFILE Type: Input

 File number used for validation of access [REQUIRED]

 DIC Type: Input

 See VA FileMan Programmer Manual for ^DIC call for DIC and X input definitions

 PSODIY Type: Output

 PSODIY will return null if the value for PSOFILE is valid (it will return -1 if conditions

 were not met)

 FORMAT: D DIC^PSODI(PSOFILE,.DIC,.X)

 COMPONENT: GET1(PSOFILE,PSOIEN,PSOFIELD,PSOFLAGS,PSOWORD)

 VARIABLES: PSOFILE Type: Input

 File or sub-file number [REQUIRED]

 PSOIEN Type: Input

 IEN for data return [REQUIRED]

 PSOFIELD Type: Input

 Field for data return [REQUIRED]

 FLAGS Type: Input

 Controls the processing of data returned [REQUIRED]

 PSOWORD Type: Input

 Return of word processing fields [REQUIRED only with word processing fields]

 $$GET1 Type: Output

 Returned field will be in the format "1^(field)". See VA FileMan Programmer Manual V 22.0

 for $$GET1^DIQ output definition.

 FORMAT:

 S X=$$GET1^PSODI(PSOFILE,PSOIEN,PSOFIELD,PSOFLAGS,PSOWORD)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 4902

 NAME: OBTAIN FILLS, REFILLS, PARTIAL FILLS FROM PRESCRIPTION FILE

 USAGE: Supported ENTERED: SEP 13,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This ICR is provided by Outpatient Pharmacy as an API to extract information related to original prescription fills, refills,

 and partial fills. This API is to be used by all packages needing to retrieve data from the "AD", "AL", and "AM" cross

 references in the PRESCRIPTION file (#52).

 ROUTINE: PSO52EX

 COMPONENT: EXTRACT(SDATE,EDATE,LIST)

 VARIABLES: SDATE Type: Input

 Start date of record retrieval [REQUIRED]

 EDATE Type: Input

 End date of record retrieval [OPTIONAL]

 LIST Type: Input

 Subscript name used in the ^TMP Global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=Total entries found in X-refs or -1^NO DATA FOUND

 Original Fill: (Returned Every Time) ^TMP($J,LIST,IEN,.01) = RX # (52,.01)

 ^TMP($J,LIST,IEN,2) = PATIENT (52,2)^NAME (2,.01) ^TMP($J,LIST,IEN,6) = DRUG (52,6)^GENERIC

 NAME (50,.01)

 ^TMP($J,LIST,IEN,7) = QTY (52,7) ^TMP($J,LIST,IEN,8) = DAYS SUPPLY (52,8)

 ^TMP($J,LIST,IEN,17) = UNIT PRICE OF DRUG (52,17)

 Refills: (n = instance of a refill) ^TMP($J,LIST,IEN,"RF",0) = # OF ENTRIES

 ^TMP($J,LIST,IEN,"RF",n,.01) = REFILL DATE (52.1,.01)^External format

 ^TMP($J,LIST,IEN,"RF",n,1) = QTY (52.1,1) ^TMP($J,LIST,IEN,"RF",n,1.1) = DAYS SUPPLY

 (52.1,1.1)

 ^TMP($J,LIST,IEN,"RF",n,1.2) = CURRENT UNIT PRICE OF DRUG (52.1,1.2)

 Partial Fills: (n = instance of a partial fill) ^TMP($J,LIST,IEN,"P",0)=# OF ENTRIES

 ^TMP($J,LIST,IEN,"P",n,.01) = PARTIAL DATE (52.2,.01)^External format

 ^TMP($J,LIST,IEN,"P",n,.04) = QTY (52.2,.04) ^TMP($J,LIST,IEN,"P",n,.041) = DAYS SUPPLY

 (52.2,.041)

 ^TMP($J,LIST,IEN,"P",n,.042) = CURRENT UNIT PRICE OF DRUG (52.2,.042)

 ^TMP($J,LIST,"AL",Date/Time,IEN,Fill)="" ^TMP($J,LIST,"AM",Date/Time,IEN,Fill)=""

 FORMAT: D EXTRACT^PSO52EX(SDATE,EDATE,LIST)

 COMPONENT: REF(SDATE,EDATE,LIST)

 VARIABLES: SDATE Type: Input

 Start date of "AD" cross reference retrieval [REQUIRED]

 EDATE Type: Input

 End date of "AD" cross reference retrieval [OPTIONAL]

 LIST Type: Input

 Subscript name used in the ^TMP Global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,"AD",Date,RX,Fill)=""

 FORMAT: D REF^PSO52EX(SDATE,EDATE,LIST)

 COMPONENT: ARXREF(PSODATE,PSOIEN,PSOFILL)

 VARIABLES: PSODATE Type: Input

 Release date/time of prescription [REQUIRED]

 PSOIEN Type: Input

 Internal entry number from the PRESCRIPTION file (#52) [REQUIRED]

 PSOFILL Type: Input

 Fill number of prescription (0 for Original Fill, 1 for Refill #1, 2 for Refill #2, etc.)

 [REQUIRED]

 $$ARXREF Type: Output

 0 (zero) = Data does not exist in the "AR" cross reference, indicating the fill was not

 dispensed from the Consolidated Mail Outpatient Pharmacy (CMOP).

 1 (one) = Data does exist in the "AR" cross reference, indicating the fill was dispensed from

 the CMOP.

 FORMAT: S X=$$ARXREF^PSO52EX(PSODATE,PSOIEN,PSOFILL)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 5000

 NAME: Pointing to the PRESCRIPTION (#52) File

 USAGE: Supported ENTERED: JUN 5,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 52 ROOT: PSRX(

 DESCRIPTION: TYPE: File

 This agreement allows for other applications to store a pointer to the Vista PRESCRIPTION (#52) file. This number can be used

 as an Identification Number to retrieve data.

 ^PSRX(

 .01 RX# 0;1 Pointed to

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: OUTPATIENT PHARMACY
 ICR#: 5014

 NAME: Pointing to the OUTPATIENT SITE (#59) File

 USAGE: Supported ENTERED: JUL 11,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 59 ROOT: PS(59

 DESCRIPTION: TYPE: File

 This agreement allows for other applications to store a pointer to the Vista OUTPATIENT SITE (#59) file. This number can be

 used as an Identification Number to retrieve data.

 ^PS(59

 .01 CODE 0;1 Pointed to

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PATIENT DATA EXCHANGE
 ICR#: 441

 NAME: DBIA439-C

 USAGE: Supported ENTERED: APR 11,1994

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VAQUIN01

 COMPONENT: PDX(.......)

 VARIABLES: VAQOPT Type: Input

 REQ=request, UNS=unsolicited

 VAQDFN Type: Input

 IFN of patient in patient file

 VAQNM Type: Input

 Name of patient

 VAQISSN Type: Input

 Patient SSN (no dashes)

 VAQIDOB Type: Input

 patients date of birth (external format)

 DOMROOT Type: Input

 array of domains (full global reference) (ie: PXB.ISC-ALBANY.VA.GOV)=Institution name or

 null)

 SEGROOT Type: Input

 array of segments (full globlobal reference) (ie: PDX*MIN)=P1^P2 P1 = TIME LIMIT P2 =

 OCCURRENCE LIMIT

 NOTROOT Type: Input

 array of who to notify (only used for request)

 TLIMIT Type: Input

 time limit for health summary (ie: 1D,12M,5Y)

 OLIMIT Type: Input

 occurrence limit for health summary, up to 5 digits

 Output: 0 - ok

 -1^error text

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3035

 NAME: DBIA3035-A

 USAGE: Supported ENTERED: MAY 29,2003

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 2

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V CPT (#9000010.18) file. The V CPT (#9000010.18) file is used

 to store CPT related services performed during a visit.

 ROUTINE: PXAAVCPT

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V CPT (#9000010.18) file with the patient visit IEN.

 $$GETIENS Type: Output

 If the value returned is equal to 0, no record was found in the V CPT (#9000010.18) file for

 the given visit IEN. If the value returned is equal to 1, one or more records were found in

 the V CPT (#9000010.18).

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V CPT (#9000010.18) file associated with the

 given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 ARRAY Type: Input

 (required) All the field values of the V CPT (#9000010.18) file for the given record IEN such

 as; Patient Name, Diagnosis Field, Narrative Field, etc are loaded into this array variable.

 $$LOADFLDS Type: Output

 If the value returned is equal to 0, no record was found in the V CPT (#9000010.18) file for

 the given IEN. Returns 1 if the API has successfully loaded all the field values into the

 ARRAY variable.

 This API loads all the field values for a given record IEN in the V CPT (#9000010.18) file.

 COMPONENT: $$CPT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$CPT Type: Output

 Returns the CPT code that most closely represents the clinical procedure performed on the

 patient during the encounter.

 This API returns field (#.01) - CPT, of the V CPT (#900018.10) file. The CPT code that most closely represents

 the clinical procedure performed on the patient during the encounter.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V CPT (#9000010.18) file. A pointer to the Patient Name

 to whom the procedure was performed.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file.

 This API returns field (#.03) - VISIT, of the V CPT (#9000010.18) file. A pointer to the VISIT (#9000010)

 file.

 COMPONENT: $$PROVNARR(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$PROVNARR Type: Output

 A pointer to the Provider Narrative (#9999999.27) file.

 This API returns field (#.04) - PROVIDER NARRATIVE, of the V CPT (#9000010.18) file. A pointer to the Provider

 Narrative (#9999999.27) file.

 COMPONENT: $$DIAGNOSI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$DIAGNOSI Type: Output

 A pointer to the ICD Diagnosis (#80) file.

 This API returns field (#.05) - DIAGNOSIS, of the V CPT (#9000010.18) file. A pointer to the ICD Diagnosis

 (#80) file.

 COMPONENT: $$PRINPROC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$PRINPROC Type: Output

 Returns 'Y' if this procedure has been identified as the principal procedure done to the

 patient during the encounter.

 This API returns field (#.07) - PRINCIPAL PROCEDURE, of the V CPT (#9000010.18) file. A flag identifying

 whether this procedure was the principal procedure performed on the patient during the encounter.

 COMPONENT: $$QUANTITY(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$QUANTITY Type: Output

 The number of times this procedure was performed for the given visit.

 This API returns field (#.16) - QUANTITY, of the V CPT (#9000010.18) file. A number between 1 and 99

 indicating how many times this procedure was performed.

 COMPONENT: $$CPTMODIF(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$CPTMODIF Type: Output

 A pointer to the CPT Modifier (#81.3) file.

 This API returns field (#1) - CPT MODIFIER, of the V CPT (#9000010.18) file. A pointer to the CPT Modifier

 (#81.3) file.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$EVENTDT Type: Output

 The Date and Time that the procedure took place.

 This API returns field (#1201) - EVENT DATE & TIME of the V CPT (#9000010.18) file, the date and time the

 procedure was performed. Note : This date and time may be different from the visit date and time. For

 example, for clinic appointment visits, the visit date and time is the date and time of the appointment, not

 the time the provider performed the clinical event.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$ORDEPROV Type: Output

 A value identifying the provider who ordered the procedure.

 This API returns field (#1202) - ORDERING PROVIDER of the V CPT (#9000010.18) file. Indicates identification

 of the provider who ordered the procedure.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$ENCOPROV Type: Output

 A value identifying the provider who performed the procedure.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V CPT (#9000010.18) file. Indicates the

 identification of the provider who performed the procedure.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$EDITFLAG Type: Output

 A value indicating if PCE detects that any original data as being edited.

 This API returns field (#80101) - EDITED FLAG, of the V CPT (#9000010.18) file. A value indicating if PCE

 detects that any original procedure data as being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V CPT (#9000010.18) file. This field is populated

 automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data source

 file_"-"_A for Add or E for Edit_" "_DUZ of the person who entered the data_";".

 COMPONENT: $$PRONARCA(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$PRONARCA Type: Output

 Returns a pointer to the Provider Narrative (#9999999.27) file which indicates the heading or

 category used to represent the provider narrative on the scanner form.

 This API returns field (#80201) PROVIDER NARRATIVE CATEGORY of the V CPT (#9000010.18) file. A pointer to the

 Provider Narrative (#9999999.27) file which is the heading or category used to represent the provider narrative

 on the scanner form.

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the procedure performed and entered

 manually.

 This API returns field (#81101) - COMMENTS, of the V CPT (#9000010.18) file. Any comments related to the

 procedure performed.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$VERIFIED Type: Output

 Returns '1' to indicate the record was Electronically Signed. Returns '0' to indicate that

 the record was Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V CPT (#9000010.18) file. A flag indicating whether the

 record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V CPT (#9000010.18) file. A pointer to the Package (#9.4)

 file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V CPT (#9000010.18) file. A pointer to the PCE Data

 Source (#839.7) file.

 COMPONENT: $$DIAGNOS2(IEN)

 VARIABLES: $$DIAGNOS2 Type: Output

 A pointer to the ICD Diagnosis (#80) file.

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 This API returns field (#.09) - DIAGNOSIS 2, of the V CPT (#9000010.18) file. A pointer to the ICD Diagnosis

 (#80) file.

 COMPONENT: $$DIAGNOS3(IEN)

 VARIABLES: $$DIAGNOS3 Type: Output

 Pointer to the ICD Diagnosis File (#80)

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 This API returns field (#.1) - DIAGNOSIS 3, of the V CPT (#9000010.18) file. A pointer to the ICD Diagnosis

 (#80) file.

 COMPONENT: $$DIAGNOS4(IEN)

 VARIABLES: $$DIAGNOS4 Type: Output

 Pointer to the ICD Diagnosis File (#80)

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 This API returns field (#.11) - DIAGNOSIS 4, of the V CPT (#9000010.18) file. A pointer to the ICD Diagnosis

 (#80) file.

 COMPONENT: $$SERVCONN(IEN)

 VARIABLES: $$SERVCONN Type: Output

 If this CPT code is treating a service connected problem

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 This API returns the Service Connected indicator, field (#80001), for this procedure.

 COMPONENT: $$AGENORAN(IEN)

 VARIABLES: $$AGENORAN Type: Output

 If this CPT code is treating an agent orange problem

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 This API returns the AGENT ORANGE EXPOSURE indicator, field (#80002), for this procedure

 COMPONENT: $$IONIRADI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$IONIRADI Type: Output

 If this CPT code is treating a problem related to an Ionizing Radiation Exposure

 This API returns the IONIZING RADIATION EXPOSURE indicator, field (#80003), for this procedure

 COMPONENT: $$ENVICONT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 $$ENVICONT Type: Output

 If this CPT code is treating a problem related to Environmental Contaminants

 This API returns the ENVIRONMENTAL CONTAMINANTS indicator, field (#80004), for this procedure

 COMPONENT: $$MILSXTRA(IEN)

 VARIABLES: $$MILSXTRA Type: Output

 If this CPT code is treating a problem related to Military Sexual Trauma

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 This API returns the MILITARY SEXUAL TRAUMA indicator, field (#80005), for this procedure

 COMPONENT: $$CANCERHN(IEN)

 VARIABLES: $$CANCERHN Type: Output

 If this CPT code is treating a problem related to Head/Neck Cancer

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V CPT

 (#9000010.18) file.

 This API returns the HEAD AND/OR NECK CANCER indicator, field (#80006), for this procedure

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3038

 NAME: DBIA3035-B

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V HEALTH FACTORS (#9000010.23) file. The V HEALTH FACTORS

 (#9000010.23) file is used for storing patient health factors identified during a visit.

 ROUTINE: PXAAVHF

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V HEALTH FACTORS (#9000010.23) file with the patient

 visit IEN, VSITIEN.

 $$GETIENS Type: Output

 If the value returned is equal to 0, no record was found in the V HEALTH FACTORS

 (#9000010.23) file for the given visit IEN. If the value returned is equal to 1, one or more

 records were found in the V HEALTH FACTORS (#9000010.23) file.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V HEALTH FACTORS (#9000010.23) file

 associated with the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 ARRAY Type: Input

 (required) All the field values of the V HEALTH FACTORS (#9000010.23) file for the given

 record IEN such as; Patient Name, Health Factor, Event Date and Time, etc are loaded into

 this array variable.

 $$LOADFLDS Type: Output

 If the value returned is equal to 0, no record was found in the V HEALTH FACTORS

 (#9000010.23) file for the given IEN. Returns 1 if the API has successfully loaded all the

 field values into the ARRAY variable.

 This API loads all the field values for a given V HEALTH FACTORS (#9000010.23) record.

 COMPONENT: $$HEALFACT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$HEALFACT Type: Output

 A pointer to the Health Factor (#9999999.64) file.

 This API returns field (#.01) - HEALTH FACTOR, of the V HEALTH FACTORS (#9000010.23) file. A pointer to the

 Health Factor (#9999999.64) file that most closely represents the patient's health factor status during the

 encounter for a given health factor category.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V HEALTH FACTORS (#9000010.23) file. A pointer to the

 PATIENT/IHS (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file.

 This API returns field (#.03) - VISIT, of the V HEALTH FACTORS (#9000010.23) file. A pointer to the VISIT

 (#9000010) file.

 COMPONENT: $$LEVESEVE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$LEVESEVE Type: Output

 'M' - Minimal level of severity. 'MO' - Moderate level of severity. 'H' - Heavy/Severe

 level of severity.

 This API returns field (#.04) - LEVEL/SEVERITY, of the V HEALTH FACTORS (#9000010.23) file. This field

 indicates the Level/Severity of the patient's Health Factors identified during the visit.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$EVENTDT Type: Output

 The Date and Time that the procedure took place.

 This API returns field (#1201) - EVENT DATE & TIME, of the V HEALTH FACTORS (#9000010.23) fil. The date and

 time the health factor was recorded by the provider. Note : This date and time may be different from the

 visit date and time. For example, for clinic appointment visits, the visit date and time is the date and time

 of the appointment, not the time the provider performed the clinical event.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who ordered this health

 factor to be recorded.

 This API returns field (#1202) - ORDERING PROVIDER, of the V HEALTH FACTORS (#9000010.23) file. A pointer to

 the NEW PERSON (#200) file identifying the provider who ordered this health factor to be recorded.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who recorded the health

 factor.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V HEALTH FACTORS (#9000010.23) file. A pointer to

 the NEW PERSON (#200) file identifying the provider who recorded the health factor.

 COMPONENT: $$EDITED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$EDITED Type: Output

 Returns '1' indicating if PCE detects that any original data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V HEALTH FACTORS (#9000010.23) file. A value indicating

 if PCE detects that any original health factor data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V HEALTH FACTORS (#9000010.23) file. This field is

 populated automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data

 source file_"-"_A for Add or E for Edit_" "_DUZ of the person who entered the data_";".

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the patient's health factors.

 This API returns field (#81101) - COMMENTS, of the V HEALTH FACTORS (#9000010.23) file. Any comments related

 to the patient's health factors.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$VERIFIED Type: Output

 1 - Electronically Signed. 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V HEALTH FACTORS (#9000010.23) file. A flag indicating

 whether the record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V HEALTH FACTORS (#9000010.23) file. A pointer to the

 Package (#9.4) file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V HEALTH

 FACTORS (#9000010.23) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V HEALTH FACTORS (#9000010.23) file. A pointer to the

 PCE Data Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3043

 NAME: DBIA3035-C

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V IMMUNIZATION (#9000010.11) file. The V IMMUNIZATION

 (#9000010.11) file is used to store immunizations specific to a particular visit for a particular patient. This file contains

 one record for each immunization.

 ROUTINE: PXAAVIMM

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V IMMUNIZATION (#9000010.11) file with the patient

 visit IEN.

 $$GETIENS Type: Output

 Returns '0' if no records were found in the V IMMUNIZATION (#9000010.11) file for the given

 visit IEN. Returns '1' if one or more records were found in the V IMMUNIZATION (#9000010.11)

 file for the given visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V IMMUNIZATION (#9000010.11) file associated

 with the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$LOADFLDS Type: Output

 Returns '0' if no records were found in the V IMMUNIZATION (#9000010.11) file for the given

 IEN. Returns '1' if the API has successfully loaded all the field values into the ARRAY

 variable.

 ARRAY Type: Input

 (required) All the field values of the V IMMUNIZATION (#9000010.11) file for the given record

 IEN such as; Patient Name, Immunization, Comments, etc are loaded into this array variable.

 This API loads all the field values for a given record IEN in the V IMMUNIZATION (#9000010.11) file.

 COMPONENT: $$IMMUNIZA(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$IMMUNIZA Type: Output

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 This API returns field (#.01) - IMMUNIZATION, of the V IMMUNIZATION (#9000010.11) file. A pointer to the

 IMMUNIZATION (#9999999.14) file.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V IMMUNIZATION (#9000010.11) file. A pointer to the

 PATIENT/IHS (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file indicating the date and time when the immunization was

 given.

 This API returns field (#.03) - VISIT, of the V IMMUNIZATION (#9000010.11) file. A pointer to the VISIT

 (#9000010) file.

 COMPONENT: $$SERIES(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$SERIES Type: Output

 P - Partially Complete, C - Complete, B - Booster, 1 - Series 1, 2 - Series 2, 3 - Series 3,

 4 Series 4, 5 - Series 5, 6 - Series 6, 7 - Series 7, 8 -Series 8

 This API returns field (#.04) - SERIES, of the V IMMUNIZATION (#9000010.11) file. This field specifies which

 series of immunization types were given to the patient.

 COMPONENT: $$REACTION(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$REACTION Type: Output

 0 - NONE,1 - FEVER, 2 - IRRITABILITY, 3 - LOCAL REACTION OR SWELLING, 4 - VOMITING, 5 - RASH

 OR ITCHING, 6 - LETHARGY, 7 - CONVULSIONS, 8 - ARTHRITIS or ARTHRALGIAS, 9 - ANAPHYLAXIS or

 COLLAPSE, 10 - RESPIRATORY DISTRESS, 11 - OTHER

 This API returns field (#.06) - REACTION, of the V IMMUNIZATION (#9000010.11) file. This field represents the

 patients reaction to the immunization.

 COMPONENT: $$CONTRAIN(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$CONTRAIN Type: Output

 Returns '0' to indicate that the immunization was not recorded as contraindicated. Returns

 '1' to indicate that the immunization was recorded as contraindicated.

 This API returns field (#.07) - CONTRAINDICATED, of the V IMMUNIZATION (#9000010.11) file. Indicates whether

 the immunization was recorded as contraindicated.

 COMPONENT: $$REMARKS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$REMARKS Type: Output

 Additional comments or remarks related to the immunization given to the patient.

 This API returns field (#1101) - REMARKS, of the V IMMUNIZATION (#9000010.11) file. Additional comments or

 remarks related to the immunization given to the patient.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$EVENTDT Type: Output

 The date and time the immunization was given.

 This API returns field (#1201) - EVENT DATE & TIME, of the V IMMUNIZATION (#9000010.11) file. The date and

 time the immunization was given.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who ordered this

 immunization.

 This API returns field (#1202) - ORDERING PROVIDER, of the V IMMUNIZATION (#9000010.11) file. A pointer to the

 NEW PERSON (#200) file identifying the provider who ordered this immunization.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who administered the

 immunization.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V IMMUNIZATION (#9000010.11) file. A pointer to

 the NEW PERSON (#200) file identifying the provider who administered the immunization.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original immunization data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V IMMUNIZATION (#9000010.11) file. This field indicates

 if PCE detects that any original immunization data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V IMMUNIZATION (#9000010.11) file. This field is

 populated automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data

 source file_"-"_A for Add or E for Edit_" "_DUZ of the person who entered the data_";"

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the immunization.

 This API returns field (#81101) - COMMENTS, of the V IMMUNIZATION (#9000010.11) file. Any comments related to

 the procedure performed.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$VERIFIED Type: Output

 1 - Electronically Signed, 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V IMMUNIZATION (#9000010.11) file. This field indictaes

 whether the record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V IMMUNIZATION (#9000010.11) file. A pointer to the Package

 (#9.4) file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V

 IMMUNIZATION (#9000010.11) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V IMMUNIZATION (#9000010.11) file A pointer to the PCE

 Data Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3044

 NAME: DBIA3035-D

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V MEASUREMENT (#9000010.01) file. The V MEASUREMENT

 (#9000010.01) file is used to store measurements such as; weight, height, blood pressure, etc., taken by a health professional

 during an outpatient encounter.

 ROUTINE: PXAAVMSR

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V MEASUREMENT (#9000010.01) file with the patient visit

 IEN.

 $$GETIENS Type: Output

 Returns 0 if no record was found in the V MEASUREMENT (#9000010.01) file for the given visit

 IEN. Returns 1 if one or more records were found in the V MEASUREMENT (#9000010.01) file for

 the given visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V MEASUREMENT (#9000010.01) file associated

 with the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 ARRAY Type: Input

 (required) All the field values of the V MEASUREMENT (#9000010.01) file for the given record

 IEN such as; weight, height, blood pressure, etc

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the V MEASUREMENT (#9000010.01) file for the given IEN.

 Returns 1 if the API has successfully loaded all the field values into the ARRAY variable.

 This API loads all the field values for a given record IEN in the V MEASUREMENT (#9000010.01) file.

 COMPONENT: $$TYPE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$TYPE Type: Output

 A pointer to the MEASUREMENT TYPE (#9999999.07) file.

 This API returns field (#.01) - TYPE, of the V MEASUREMENT (#9000010.01) file. A pointer to the MEASUREMENT

 TYPE (#9999999.07) file which indicates the type of measurement taken on the patient.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V MEASUREMENT (#9000010.01) file. A pointer to the

 PATIENT/IHS (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file indicating the date and time the immunization was

 given.

 This API returns field (#.03) - VISIT, of the V MEASUREMENT (#9000010.01) file. A pointer to the VISIT

 (#9000010) file.

 COMPONENT: $$VALUE(IEN)

 VARIABLES: $$VALUE Type: Output

 The value of the measurement taken on the patient.

 IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 This API returns field (#.04) - VALUE, of the V MEASUREMENT (#9000010.01) file. This field specifies the value

 of the measurement taken on the patient.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$EVENTDT Type: Output

 The date and time the measurement was taken by the provider.

 This API returns field (#1201) - EVTN DATE & TIME, of the V MEASUREMENT (#9000010.01) file. The date and time

 the measurement was taken by the provider.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who ordered the measurement

 to be taken.

 This API returns field (#1202) - ORDERING PROVIDER, of the V MEASUREMENT (#9000010.01) file. A pointer to the

 NEW PERSON (#200) file identifying the provider who ordered the measurement.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who took the measurement.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V MEASUREMENT (#9000010.01) file. A pointer to the

 NEW PERSON (#200) file identifying the provider who took the measurement.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original measurement data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V MEASUREMENT (#9000010.01) file. This field indicates

 if PCE detects that any original measurement data is being edited.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#80102) - DATA SOURCE, of the V MEASUREMENT (#9000010.01) file. A pointer to the PCE

 Data Source (#839.7) file.

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V MEASUREMENT

 (#9000010.01) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the Measurements taken during the

 encounter.

 This API returns field (#81101) - COMMENTS, of the V HEALTH FACTORS (#9000010.23) file. Any comments related

 to the measurements taken during the encounter.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3045

 NAME: DBIA3035-E

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V PATIENT ED (#9000010.16) file. The V PATIENT ED (#9000010.16)

 file is used to store stores the patient education given to a patient or his responsible care given.

 ROUTINE: PXAAVPED

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V PATIENT ED (#9000010.16) file with the patient visit

 IEN.

 $$GETIENS Type: Output

 Returns 0 if no record was found in the V PATIENT ED (#9000010.16) file for the given visit

 IEN. Returns 1 if one or more records were found in the V PATIENT ED (#9000010.16) file for

 the given visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V PATIENT ED (#9000010.16) file associated

 with the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 ARRAY Type: Input

 (required) Loads all the field values of the V PATIENT ED (#9000010.16) file for the given

 record IEN such as; Patient Name, Topic, Level of Understanding.

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the V PATIENT ED (#9000010.16) file for the given patient

 IEN. Returns 1 if the API has successfully loaded all the field values into the ARRAY

 variable.

 This API loads all the field values for a given record IEN in the V PATIENT ED (#9000010.16) file.

 COMPONENT: $$TOPIC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$TOPIC Type: Output

 A pointer to the EDUCATION TOPICS (#9999999.09) file.

 This API returns field (#.01) - TOPIC, of the V PATIENT ED (#9000010.16) file. A pointer to the EDUCATION

 TOPICS (#9999999.09) file indicating the education given to the patient.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V PATIENT ED (#9000010.16) file. A pointer to the

 PATIENT/IHS (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file indicating the date and time when the immunization was

 given.

 This API returns field (#.03) - VISIT, of the V PATIENT ED (#9000010.16) file. A pointer to the VISIT

 (#9000010) file.

 COMPONENT: $$LEVEOFUN(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$LEVEOFUN Type: Output

 1 - POOR, 2 - FAIR, 3 - GOOD, 4 - GROUP-NO ASSESSMENT, 5 - REFUSED.

 This API returns field (#.06) - LEVEL OF UNDERSTANDING, of the V PATIENT ED (#9000010.16) file. A number which

 best rates the patient's level of understanding of the education given.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$EVENTDT Type: Output

 The date and time the patient education was given.

 This API returns field (#1201) - EVENT DATE & TIME, of the V PATIENT ED (#9000010.16) file. The date and time

 the patient education was given.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who ordered the patient

 education.

 This API returns field (#1202) - ORDERING PROVIDER, of the V PATIENT ED (#9000010.16) file. A pointer to the

 NEW PERSON (#200) file identifying the provider who ordered the patient education.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who gave the patient

 education.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V PATIENT ED (#9000010.16) file. A pointer to the

 NEW PERSON (#200) file identifying the provider who gave the patient education.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original exam data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V PATIENT ED (#9000010.16) file. This field indicates if

 PCE detects that any original exam data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V PATIENT ED (#9000010.16) file. This field is populated

 automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data source

 file_"-"_A for Add or E for Edit _" "_DUZ of the person who entered the data_";"

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the patient's education.

 This API returns field (#81101) - COMMENTS, of the V PATIENT ED (#9000010.16) file. Any comments related to

 the patient's education.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$VERIFIED Type: Output

 1 - Electronically Signed, 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V PATIENT ED (#9000010.16) file. This field flag indicates

 whether the record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V PATIENT ED (#9000010.16) file. A pointer to the Package

 (#9.4) file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PATIENT ED

 (#9000010.16) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V PATIENT ED (#9000010.16) file. A pointer to the PCE

 Data Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3046

 NAME: DBIA3035-F

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V POV (#9000010.07) file. The V POV (#9000010.07) file is used

 to store clinical data related to the "purpose of visit" or "problem of visit", (POV).

 ROUTINE: PXAAVPOV

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V POV (#9000010.07) file with the patient visit IEN.

 $$GETIENS Type: Output

 Returns 0 if no record was found in the V POV (#9000010.07) file for the given visit IEN.

 Returns 1 if one or more records were found in the V POV (#9000010.07) file for the given

 visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V POV (#9000010.07) file associated with the

 given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 ARRAY Type: Input

 (required) All the field values of the V POV (#9000010.07) file for the given record IEN such

 as; Patient Name Provider Narrative, Modifier, etc

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the V POV (#9000010.07) file for the given patient IEN.

 Returns 1 if the API has successfully loaded all the field values into the ARRAY variable.

 This API loads all the field values for a given record IEN in the V POV (#9000010.07) file.

 COMPONENT: $$POV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$POV Type: Output

 A pointer to the ICD DIAGNOSIS (#80) file which indicates the ICD Diagnosis code or text for

 the problem treated at the encounter.

 This API returns field (#.01) - PURPOSE OF VISIT, of the V POV (#9000010.07) file. A pointer to the ICD

 DIAGNOSIS (#80) file.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V POV (#9000010.07) file. A pointer to the PATIENT/IHS

 (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file.

 This API returns field (#.03) - VISIT, of the V POV (#9000010.07) file. A pointer to the VISIT (#9000010)

 file.

 COMPONENT: $$PROVNARR(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$PROVNARR Type: Output

 A pointer to the PROVIDER NARRATIVE (#9999999.27) file.

 This API returns field (#.04) - PROVIDER NARRATIVE, of the V POV (#9000010.07) file. A pointer to the PROVIDER

 NARRATIVE (#9999999.27) file indicating the providers text describing the diagnosis that was treated at the

 visit.

 COMPONENT: $$MODIFIER(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$MODIFIER Type: Output

 'C' - CONSIDER, 'D' - DOUBTFUL, 'F' - FOLLOW UP, 'M' - MAYBE , POSSIBLE, PERHAPS, 'O' - RULE

 OUT, 'P' - PROBABLE, 'R' - RESOLVED, 'S' - SUSPECT, SUSPICIOUS, 'T' - STATUS POST

 This API returns field (#.06) - MODIFIER, of the V POV (#9000010.07) file. This field indicates how the

 provider may modify the diagnosis or problem treated to reflect the status of the diagnosis as of this visit.

 COMPONENT: $$PRIMSECO(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$PRIMSECO Type: Output

 'P' - PRIMARY, 'S' - SECONDARY

 This API returns field (#.12) - PRIMARY/SECONDARY, of the V POV (#9000010.07) file. This field represents the

 clinically pertinent ranking of problems treated.

 COMPONENT: $$DATEOFIN(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$DATEOFIN Type: Output

 The date the injury occurred for the problem being treated.

 This API returns field (#.13) - DATE OF INJURY, of the V POV (#9000010.07) file. The date the injury occurred

 for the problem being treated.

 COMPONENT: $$CLINTERM(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$CLINTERM Type: Output

 A pointer to the EXPRESSIONS (#757.01) file.

 This API returns field (#.15) - CLINICAL TERM of the V POV (#9000010.07) file. A pointer to the EXPRESSIONS

 (#757.01) file which indicates the field in the clinical lexicon term which most closely represents the

 provider narrative of the problem treated.

 COMPONENT: $$PROLISEN(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$PROLISEN Type: Output

 A pointer to the PROBLEM (#9000011) file.

 This API returns field (#.16) - PROBLEM LIST ENTRY, of the V POV (#9000010.07) file. A pointer to the PROBLEM

 (#9000011) file which identifies the Problem List Entry related to the problem treated at the visit.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$EVENTDT Type: Output

 The date and time the problem was treated.

 This API returns field (#1201) - EVENT DATE AND TIME, of the V POV (#9000010.07) file. The date and time the

 problem was treated.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who ordered the problem to

 be treated.

 This API returns field (#1202) - ORDERING PROVIDER, of the V POV (#9000010.07) file. A pointer to the NEW

 PERSON (#200) file identifying the provider who ordered the problem to be treated.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who treated the problem.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V POV (#9000010.07) file. A pointer to the NEW

 (#200) file identifying the provider who treated the problem.

 COMPONENT: $$SERVCONN(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$SERVCONN Type: Output

 1 - YES, 0 - NO

 This API returns field (#80001) - SERVICE CONNECTED, of the V POV (#9000010.07) file. This field indicates

 whether the problem treated was service connected.

 COMPONENT: $$AGEORAEX(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$AGEORAEX Type: Output

 1 - YES, 0 - NO

 This API returns field (#80002) - AGENT ORANGE EXPOSURE, of the V POV (#9000010.07) file. This field indicates

 if the problem treated is related to Agent Orange exposure.

 COMPONENT: $$IONRADEX(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$IONRADEX Type: Output

 1 - YES, 0 - NO

 This API returns field (#80003) - IONIZING RADIATION EXPOSURE, of the V POV (#9000010.07) file. This field

 indicates if the problem treated is related to Ionizing Radiation exposure.

 COMPONENT: $$PERGULEX(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$PERGULEX Type: Output

 1 - YES, 0 - NO

 This API returns field (#80003) - PERSIAN GULF EXPOSURE, of the V POV (#9000010.07) file. This field indicates

 if the problem treated is related to Persian Gulf exposure.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original exam data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V POV (#9000010.07) file. This field indicates if PCE

 detects that any original exam data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V POV (#9000010.07) file. This field is populated

 automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data source

 file_"-"_A for Add or E for Edit_" "_DUZ of the person who entered the data_";"

 COMPONENT: $$PRONARCA(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$PRONARCA Type: Output

 A pointer to the PROVIDER NARRATIVE (#9999999.27) file.

 This API returns field (#80201) - PROVIDER NARRATIVE CATEGORY, of the V POV (#9000010.07) file. A pointer to

 the PROVIDER NARRATIVE (#9999999.27) file indicating the category narrative related to the problem treated.

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the purpose of visit.

 This API returns field (#81101) - COMMENTS, of the V POV (#9000010.07) file. Any comments related to the

 purpose of visit.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$VERIFIED Type: Output

 1 - Electronically Signed, 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V POV (#9000010.07) file. This field indicates whether the

 record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V POV (#9000010.07) file. A pointer to the Package (#9.4)

 file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V POV

 (#9000010.07) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V POV (#9000010.07) file. A pointer to the PCE Data

 Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3047

 NAME: DBIA3035-G

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V PROVIDER (#9000010.06) file. This file, along with a Purpose

 of Visit (POV), is required for each patient encounter at a facility.

 ROUTINE: PXAAVPRV

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V PROVIDER (#9000010.06) file with the patient visit

 IEN.

 $$GETIENS Type: Output

 Returns 0 if no record was found in the V PROVIDER (#9000010.06) file for the given visit

 IEN. Returns 1 if one or more records were found in the V PROVIDER (#9000010.06) file for

 the given visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V PROVIDER (#9000010.06) file associated

 with the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 ARRAY Type: Input

 (required) All the field values of the V PROVIDER (#9000010.06) file for the given record IEN

 such as; Patient Name, Provider Narrative, Modifier, etc

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the V PROVIDER (#9000010.06) file for the given patient

 IEN. Returns 1 if the API has successfully loaded all the field values into the ARRAY

 variable.

 This API loads all the field values for a given record IEN in the V PROVIDER (#9000010.06) file.

 COMPONENT: $$PROVIDER(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$PROVIDER Type: Output

 A pointer to the NEW PERSON (#200) file.

 This API returns field (#.01) - PROVIDER, of the V PROVIDER (#9000010.06) file. A pointer to the NEW PERSON

 (#200) file.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V PROVIDER (#9000010.06) file. A pointer to the

 PATIENT/IHS (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file indicating the date and time when the immunization was

 given.

 This API returns field (#.03) - VISIT, of the V PROVIDER (#9000010.06) file. A pointer to the VISIT (#9000010)

 file.

 COMPONENT: $$PRIMSECO(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$PRIMSECO Type: Output

 Returns 'P' - PRIMARY or 'S' - SECONDARY

 This API returns field (#.04) - PRIMARY/SECONDARY, of the V PROVIDER (#9000010.06) file. This field indicates

 that the provider was the primary or secondary care giver for the encounter.

 COMPONENT: $$OPERATTE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$OPERATTE Type: Output

 Returns 'A' - ATTENDING or 'O' - OPERATING.

 This API returns field (#.05) - OPERATING/ATTENDING, of the V PROVIDER (#9000010.06) file. This field

 indicates whether the provider was Operating or Attending.

 COMPONENT: $$PERSCLAS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$PERSCLAS Type: Output

 A pointer to the PERSON CLASS (#8932.1) file.

 This API returns field (#.06) - PERSON CLASS, of the V PROVIDER (#9000010.06) file. This field indicates class

 of the provider at the time of the encounter and is a pointer to the PERSON CLASS (#8932.1) file.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$EVENTDT Type: Output

 The date and time the provider had the encounter with the patient.

 This API returns field (#1201) - EVENT DATE AND TIME, of the V PROVIDER (#9000010.06) file. The date and time

 the provider had the encounter with the patient.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original provider data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V PROVIDER (#9000010.06) file. This field indicates if

 PCE detects that any original provider data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V PROVIDER (#9000010.06) file. This field is populated

 automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data source

 file_"-"_A for Add or E for Edit_" " _DUZ of the person who entered the data_";"

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the patient's provider.

 This API returns field (#81101) - COMMENTS, of the V PROVIDER (#9000010.06) file. Any comments related to the

 patient's provider.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$VERIFIED Type: Output

 Returns 1 - Electronically Signed or 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V PROVIDER (#9000010.06) file. This field indicates whether

 the record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V PROVIDER (#9000010.06) file. A pointer to the Package

 (#9.4) file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V PROVIDER

 (#9000010.06) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V PROVIDER (#9000010.06) file. A pointer to the PCE Data

 Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3048

 NAME: DBIA3035-H

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the VISIT (#9000010) file. The VISIT (#9000010) file contains a

 record of all patient visits at health care facilities or by health care providers, including direct outpatient and clinic

 visits, as well as inpatient encounters with providers of care.

 ROUTINE: PXAAVSIT

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 ARRAY Type: Input

 (required) All the field values of the VISIT (#9000010) file for the given record IEN such

 as; Patient Name, Provider Narrative, Modifier, etc.

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the VISIT (#9000010) file for the given patient IEN.

 Returns 1 if the API has successfully loaded all the field values into the ARRAY variable.

 This API loads all the field values for a given record IEN in the VISIT (#9000010) file.

 COMPONENT: $$VISADDAT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$VISADDAT Type: Output

 The date and time of the visit.

 This API returns field (#.01) - VISIT/ADMIT DATE AND TIME, of the VISIT (#9000010) file. The date and time of

 the visit.

 COMPONENT: $$DATVISCR(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$DATVISCR Type: Output

 The date and time of the visit was created.

 This API returns field (#.02) - DATE VISIT CREATED, of the VISIT (#9000010) file.

 COMPONENT: $$TYPE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$TYPE Type: Output

 Returns; 'I' - HIS, 'C' - CONTRACT, 'T' - TRIBAL, 'O' - OTHER, '6' - 638 PROGRAM, 'V' - VA

 This API returns field (#.03) - VISIT TYPE, of the VISIT (#9000010) file.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.05) - PATIENT NAME, of the VISIT (#9000010) file. A pointer to the PATIENT/IHS

 (#9000001) file.

 COMPONENT: $$LOCOFENC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$LOCOFENC Type: Output

 A pointer to the LOCATION (#9999999.06) file.

 This API returns field (#.06) - LOCATION OF ENCOUNTER, of the VISIT (#9000010) file. A pointer to the LOCATION

 (#9999999.06) file.

 COMPONENT: $$SERVCATE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$SERVCATE Type: Output

 Returns; 'A' - AMBULATORY, 'H' - HOSPITALIZATION, 'I' - IN HOSPITAL, 'C' - CHART REVIEW, 'T'

 - TELECOMMUNICATIONS, 'N' - NOT FOUND, 'S' - DAY SURGERY, 'O' - OBSERVATION, 'E' - EVENT

 (HISTORICAL), 'R' - NURSING HOME, 'D' - DAILY HOSPITALIZATION DATA, 'X' - ANCILLARY PACKAGE

 DAILY DATA

 This API returns field (#.07) - SERVICE CATEGORY, of the VISIT (#9000010) file.

 COMPONENT: $$DSSID(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$DSSID Type: Output

 A pointer to the CLINIC STOP (#40.7) file.

 This API returns field (#.08) - DSS ID, of the VISIT (#9000010) file. A pointer to the CLINIC STOP (#40.7)

 file and indicates the organized clinic in which this visit took place.

 COMPONENT: $$DEPENTCO(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$DEPENTCO Type: Output

 A number representing how many "V" file entries are pointing to this visit.

 This API returns field (#.09) - DEPENDENT ENTRY COUNT, of the VISIT (#9000010) file. A number representing how

 many "V" file entries are pointing to this visit.

 COMPONENT: $$DELEFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$DELEFLAG Type: Output

 Returns; '1' - YES or '0' - NO.

 This API returns field (#.11) - DELETE FLAG, of the VISIT (#9000010) file. Flag set to signify that the visit

 has been deleted.

 COMPONENT: $$PARVISLI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$PARVISLI Type: Output

 A pointer to the VISIT (#9000010) file.

 This API returns field (#.12) - PARENT VISIT LINK, of the VISIT (#9000010) file. A pointer to the VISIT

 (#9000010) file, the PARENT VISIT LINK field points back to the VISIT file.

 COMPONENT: $$DATLASMO(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$DATLASMO Type: Output

 Date last modified.

 This API returns field (#.13) - DATE LAST MODIFIED, of the VISIT (#9000010) file.

 COMPONENT: $$CHEOUDAT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$CHEOUDAT Type: Output

 Check out date and time.

 This API returns field (#.18) - CHECK OUT DATE AND TIME, of the VISIT (#9000010) file.

 COMPONENT: $$ELIGIBIL(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$ELIGIBIL Type: Output

 A pointer to the ELIGIBILITY CODE (#8) file.

 This API returns field (#.21) - ELIGIBILITY, of the VISIT (#9000010) file. A pointer to the ELIGIBILITY CODE

 (#8) file which defines the patient's eligibility for this visit.

 COMPONENT: $$HOSPLOCA(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$HOSPLOCA Type: Output

 A pointer to the HOSPITAL LOCATION (#44) file.

 This API returns field (#.22) - HOSPITAL LOCATION, of the VISIT (#9000010) file. A pointer to the HOSPITAL

 LOCATION (#44) file.

 COMPONENT: $$CREABYUS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$CREABYUS Type: Output

 A pointer to the NEW PERSON (#200) file.

 This API returns field (#.23) - CREATED BY USER, of the VISIT (#9000010) file. A pointer to the NEW PERSON

 (#200) file, indicating the name of the user who created this visit entry.

 COMPONENT: $$OPTUSTOC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$OPTUSTOC Type: Output

 A pointer to the OPTION (#19) file.

 This API returns field (#.24) - OPTION USED TO CREATE, of the VISIT (#9000010) file. A pointer to the OPTION

 (#19) file, indicating the option which was used to create the visit.

 COMPONENT: $$PROTOCOL(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$PROTOCOL Type: Output

 A pointer to the PROTOCOL (#101) file.

 This API returns field (#.25) - PROTOCOL, of the VISIT (#9000010) file. A pointer to the PROTOCOL (#101) file,

 indicating the protocol which was used to create the visit.

 COMPONENT: $$OUTSLOCA(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$OUTSLOCA Type: Output

 Free text indicating the location of service.

 This API returns field (#2101) - OUTSIDE LOCATION, of the VISIT (#9000010) file.

 COMPONENT: $$VISITID(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$VISITID Type: Output

 Visit ID.

 This API returns field (#15001) - VISIT ID, of the VISIT (#9000010) file. A unique visit id and is set by

 Visit Tracking and cannot be changed.

 COMPONENT: $$PATSTINO(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$PATSTINO Type: Output

 Returns; '1' - IN or '0' - OUT.

 This API returns field (#15002) - PATIENT STATUS IN/OUT, of the VISIT (#9000010) file. An indicator of the

 patient's status at the time of the visit.

 COMPONENT: $$ENCOTYPE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$ENCOTYPE Type: Output

 Returns; 'P' - PRIMARY, 'O' - OCCASION OF SERVICE, 'S' - STOP CODE, 'A' - ANCILLARY, 'C' -

 CREDIT STOP

 This API returns field (#15003) - ENCOUNTER TYPE, of the VISIT (#9000010) file.

 COMPONENT: $$SERVCONN(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$SERVCONN Type: Output

 Returns; 1 - YES or 0 - NO.

 This API returns field (#80001) - SERVICE CONNECTED, of the VISIT (#9000010) file. This field indicates

 whether the problem treated was service connected.

 COMPONENT: $$AGEORAEX(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$AGEORAEX Type: Output

 Returns; 1 - YES or 0 - NO.

 This API returns field (#80002) - AGENT ORANGE EXPOSURE, of the VISIT (#9000010) file. This field indicates if

 the problem treated is related to Agent Orange exposure.

 COMPONENT: $$IONRADEX(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$IONRADEX Type: Output

 Returns; 1 - YES or 0 - NO.

 This API returns field (#80003) - IONIZING RADIATION EXPOSURE, of the VISIT (#9000010) file. This field

 indicates if the problem treated is related to Ionizing Radiation Exposure.

 COMPONENT: $$PERGULEX(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$PERGULEX Type: Output

 Returns; 1 - YES or 0 - NO.

 This API returns field (#80003) - PERSIAN GULF EXPOSURE, of the VISIT (#9000010) file. This field indicates if

 the problem treated is related to Persian Gulf Exposure.

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the purpose of visit.

 This API returns field (#81101) - COMMENTS, of the VISIT (#9000010) file. Any comments related to the purpose

 of visit.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the VISIT (#9000010) file. A pointer to the PCE Data Source

 (#839.7) file.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the VISIT (#9000010) file. A pointer to the Package (#9.4) file.

 COMPONENT: $$MLTYSXTR(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the VISIT

 (#9000010) file.

 $$MLTYSXTR Type: Output

 Returns; 1 - YES or 0 - NO

 This API returns field (#80005) - MILITARY SEXUAL TRAUMA, of the VISIT (#9000010) file. This field indicates

 if the problem treated is related to Military Sexual Trauma.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3049

 NAME: DBIA3035-I

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V SKIN TEST (#9000010.12) file. The V SKIN TEST (#9000010.12)

 file stores record details for each type of skin test given to a patient on a given visit.

 ROUTINE: PXAAVSK

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V SKIN TEST (#9000010.12) file with the patient visit

 IEN.

 $$GETIENS Type: Output

 Returns 0 if no record was found in the V SKIN TEST (#9000010.12) file for the given visit

 IEN. Returns 1 if one or more records were found in the V SKIN TEST (#9000010.12) file for

 the given visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V SKIN TEST (#9000010.12) file associated

 with the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 ARRAY Type: Input

 (required) All the field values of the V SKIN TEST (#9000010.12) file for the given record

 IEN such as; Patient Name, Skin Test, Readings, etc

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the V SKIN TEST (#9000010.12) file for the given patient

 IEN. Returns 1 if the API has successfully loaded all the field values into the ARRAY

 variable.

 This API loads all the field values for a given record IEN in the V SKIN TEST (#9000010.12) file.

 COMPONENT: $$SKINTEST(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$SKINTEST Type: Output

 A pointer to the SKIN TEST (#9999999.28) file.

 This API returns field (#.01) - SKIN TEST, of the V SKIN TEST (#9000010.12) file. A pointer to the SKIN TEST

 (#9999999.28) file which indicates the type of Skin Test that was given to the patient at the encounter.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V SKIN TEST (#9000010.12) file. A pointer to the

 PATIENT/IHS (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file.

 This API returns field (#.03) - VISIT, of the V SKIN TEST (#9000010.12) file. A pointer to the VISIT

 (#9000010) file, indicating the date and time when the immunization was given.

 COMPONENT: $$RESULTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$RESULTS Type: Output

 Returns; 'P' - POSITIVE, 'N' - NEGATIVE, 'D' - DOUBTFUL, 'O' - NO TAKE

 This API returns field (#.04) - RESULTS, of the V SKIN TEST (#9000010.12) file. A numeric value indicating if

 the test results were positive, negative, doubtful or no take, if known.

 COMPONENT: $$READING(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$READING Type: Output

 A numeric value representing the reading of the skin test.

 This API returns field (#.05) - READING, of the V SKIN TEST (#9000010.12) file. A value representing the

 reading of the skin test.

 COMPONENT: $$DATEREAD(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$DATEREAD Type: Output

 Date of the Reading.

 This API returns field (#.06) - DATE READ, of the V SKIN TEST (#9000010.12) file. The Date of the Reading.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$EVENTDT Type: Output

 The date and time the skin test was performed.

 This API returns field (#1201) - EVENT DATE AND TIME, of the V SKIN TEST (#9000010.12) file. The date and time

 the skin test was performed.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file.

 This API returns field (#1202) - ORDERING PROVIDER, of the V SKIN TEST (#9000010.12) file. A pointer to the

 NEW PERSON (#200) file identifying the provider who ordered the skin test.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200) file.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V SKIN TEST (#9000010.12) file. A pointer to the

 NEW (#200) file identifying the provider who performed the skin test.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original skin test data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V SKIN TEST (#9000010.12) file. This field indicates if

 PCE detects that any original skin test data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V SKIN TEST (#9000010.12) file. This field is populated

 automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data source

 file_"-"_A for Add or E for Edit_" "_DUZ of the person who entered the data_";"

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the skin test.

 This API returns field (#81101) - COMMENTS, of the V SKIN TEST (#9000010.12) file. Any comments related to the

 skin test.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$VERIFIED Type: Output

 Returns; 1 - Electronically Signed or 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V SKIN TEST (#9000010.12) file. This field indicates

 whether the record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V SKIN TEST (#9000010.12) file. A pointer to the Package

 (#9.4) file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V SKIN TEST

 (#9000010.12) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V SKIN TEST (#9000010.12) file. A pointer to the PCE

 Data Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3050

 NAME: DBIA3035-J

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V TREATMENT (#9000010.15) file. The V TREATMENT (#9000010.15)

 file stores a record for each treatment provided to a patient on a given patient visit.

 ROUTINE: PXAAVTRT

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V TREATMENT (#9000010.15) file with the patient visit

 IEN.

 $$GETIENS Type: Output

 Returns 0 if no record was found in the V TREATMENT (#9000010.15) file for the given visit

 IEN. Returns 1 if one or more records were found in the V TREATMENT (#9000010.15) file for

 the given visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V TREATMENT (#9000010.15) file associated

 with the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the V TREATMENT (#9000010.15) file for the given patient

 IEN. Returns 1 if the API has successfully loaded all the field values into the ARRAY

 variable.

 ARRAY Type: Input

 (required) All the field values of the V TREATMENT (#9000010.15) file for the given record

 IEN such as; Patient Name, Provider Narrative, Treatment type, etc.

 This API loads all the field values for a given record IEN in the V TREATMENT (#9000010.15) file.

 COMPONENT: $$TREATMEN(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$TREATMEN Type: Output

 A pointer to the TREATMENT (#9999999.17) file.

 This API returns field (#.01) - TREATMENT, of the V TREATMENT (#9000010.15) file. A pointer to the TREATMENT

 (#9999999.17) file.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V TREATMENT (#9000010.15) file. A pointer to the

 PATIENT/IHS (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file.

 This API returns field (#.03) - VISIT, of the V TREATMENT (#9000010.15) file. A pointer to the VISIT

 (#9000010) file indicating the date and time for the encounter when the treatment was given.

 COMPONENT: $$HOWMANY(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$HOWMANY Type: Output

 A numeric value indicating how many times the treatment was administered.

 This API returns field (#.04) - HOW MANY, of the V TREATMENT (#9000010.15) file. A numeric value indicating

 how many times the treatment was provided.

 COMPONENT: $$PROVNARR(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$PROVNARR Type: Output

 A pointer to the PROVIDER NARRATIVE (#9999999.27) file.

 This API returns field (#.06 - PROVIDER NARRATIVE, of the V TREATMENT (#9000010.15) file. A pointer to the

 PROVIDER NARRATIVE (#9999999.27) file indicating the provider's preferred text used to represent the treatment

 provided.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$EVENTDT Type: Output

 The date and time the treatment was provided.

 This API returns field (#1201) - EVENT DATE AND TIME, of the V TREATMENT (#9000010.15) file. Date and time the

 treatment was provided.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file.

 This API returns field (#1202) - ORDERING PROVIDER, of the V TREATMENT (#9000010.15) file. A pointer to the

 NEW PERSON (#200) file identifying the provider who ordered the treatment.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200) file identifying the provider who gave the treatment.

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V TREATMENT (#9000010.15) file. A pointer to the

 NEW (#200) file identifying the provider who gave the treatment.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original treatment data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V TREATMENT (#9000010.15) file. This field indicates if

 PCE detects that any original treatment data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V TREATMENT (#9000010.15) file. This field is populated

 automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data source

 file_"-"_A for Add or E for Edit _" "_DUZ of the person who entered the data_";"

 COMPONENT: $$PRONARCA(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$PRONARCA Type: Output

 A pointer to the PROVIDER NARRATIVE (#9999999.27) file.

 This API returns field (#80201) - PROVIDER NARRATIVE CATEGORY, of the V TREATMENT (#9000010.15) file. A

 pointer to the PROVIDER NARRATIVE (#9999999.27) file indicating the category narrative related to the

 treatment.

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the patient's treatment.

 This API returns field (#81101) - COMMENTS, of the V TREATMENT (#9000010.15) file. Any comments related to the

 patient's treatment.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$VERIFIED Type: Output

 1 - Electronically Signed, 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V TREATMENT (#9000010.15) file. This field indicates

 whether the record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V TREATMENT (#9000010.15) file. A pointer to the Package

 (#9.4) file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V TREATMENT

 (#9000010.15) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V TREATMENT (#9000010.15) file. A pointer to the PCE

 Data Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 3051

 NAME: DBIA3035-A

 USAGE: Supported ENTERED: FEB 22,2000

 STATUS: Active EXPIRES:
 DURATION: Next Version VERSION: 1.0

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The following is a description of the available APIs for the V EXAM (#9000010.13) file. The V EXAM (#9000010.13) file stores

 exam information, one record for each exam for each visit.

 ROUTINE: PXAAVXAM

 COMPONENT: $$GETIENS(VSITIEN,ARRAY)

 VARIABLES: VSITIEN Type: Input

 (required) This number represents the Internal Entry Number for a given patient visit.

 ARRAY Type: Input

 (required) This array variable is populated by the API with the Internal Entry Numbers of

 records found to be associated in the V EXAM (#9000010.13) file with the patient visit IEN.

 $$GETIENS Type: Output

 Returns 0 if no record was found in the V EXAM (#9000010.13) file for the given visit IEN.

 Returns 1 if one or more records were found in the V EXAM (#9000010.13) file for the given

 visit IEN.

 Use this API to retrieve all Internal Entry Numbers (IEN) from the V EXAM (#9000010.13) file associated with

 the given visit IEN, VSITIEN.

 COMPONENT: $$LOADFLDS(IEN,ARRAY)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$LOADFLDS Type: Output

 Returns 0 if no record was found in the V EXAM (#9000010.13) file for the given patient IEN.

 Returns 1 if the API has successfully loaded all the field values into the ARRAY variable.

 ARRAY Type: Input

 (required) All the field values of the V EXAM (#9000010.13) file for the given record IEN

 such as; Patient Name, Results, Exam type, etc.

 This API loads all the field values for a given record IEN in the V EXAM (#9000010.13) file.

 COMPONENT: $$EXAM(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$EXAM Type: Output

 A pointer to the EXAM (#9999999.15) file.

 This API returns field (#.01) - EXAM, of the V EXAM (#9000010.13) file. A pointer to the EXAM (#9999999.15)

 file.

 COMPONENT: $$PATINAME(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$PATINAME Type: Output

 A pointer to the PATIENT/IHS (#9000001) file.

 This API returns field (#.02) - PATIENT NAME, of the V EXAM (#9000010.13) file. A pointer to the PATIENT/IHS

 (#9000001) file.

 COMPONENT: $$VISIT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$VISIT Type: Output

 A pointer to the Visit (#9000010) file indicating the date and time for the encounter where

 the exam took place.

 This API returns field (#.03) - VISIT, of the V EXAM (#9000010.13) file. A pointer to the VISIT (#9000010)

 file indicating the date and time for the encounter where the exam took place.

 COMPONENT: $$RESULT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$RESULT Type: Output

 Returns; 'A' - ABNORMAL or 'N' - NORMAL

 This API returns field (#.04) - HOW MANY, of the V TREATMENT (#9000010.13) file. A value indicating the result

 of the exam.

 COMPONENT: $$EVENTDT(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$EVENTDT Type: Output

 The date and time the exam took place.

 This API returns field (#1201) - EVENT DATE AND TIME, of the V EXAM (#9000010.13) file. The date and time the

 exam took place.

 COMPONENT: $$ORDEPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$ORDEPROV Type: Output

 A pointer to the NEW PERSON (#200) file.

 This API returns field (#1202) - ORDERING PROVIDER, of the V EXAM (#9000010.13) file. A pointer to the NEW

 PERSON (#200) file identifying the provider who ordered the exam.

 COMPONENT: $$ENCOPROV(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$ENCOPROV Type: Output

 A pointer to the NEW PERSON (#200).

 This API returns field (#1204) - ENCOUNTER PROVIDER, of the V EXAM (#9000010.13) file. A pointer to the NEW

 (#200) file identifying the provider who gave the exam.

 COMPONENT: $$EDITFLAG(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$EDITFLAG Type: Output

 Returns 1 if PCE detects that any original exam data is being edited.

 This API returns field (#80101) - EDITED FLAG, of the V TREATMENT (#9000010.13) file. This field indicates if

 PCE detects that any original exam data is being edited.

 COMPONENT: $$AUDITRAI(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$AUDITRAI Type: Output

 A Free Text value in the format; Pointer to PCE data source file_"-"_A for Add or E for

 Edit_" "_DUZ of the person who entered the data_";"

 This API returns field (#80102) - AUDIT TRAIL, of the V EXAM (#9000010.13) file. This field is populated

 automatically by the PCE filing logic. The format of the field is as follows: Pointer to PCE data source

 file_"-"_A for Add or E for Edit_" "_DUZ of the person who entered the data_";"

 COMPONENT: $$COMMENTS(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$COMMENTS Type: Output

 A Free Text value indicating any comments related to the patient's exam.

 This API returns field (#81101) - COMMENTS, of the V EXAM (#9000010.13) file. Any comments related to the

 patient's exam.

 COMPONENT: $$VERIFIED(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$VERIFIED Type: Output

 1 - Electronically Signed, 2 - Verified by the Package.

 This API returns field (#81201) - VERIFIED, of the V EXAM (#9000010.13) file. This field indicates whether the

 record was Electronically Signed or Verified by the Package.

 COMPONENT: $$PACKAGE(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$PACKAGE Type: Output

 Pointer to the Package (#9.4) file.

 This API returns field (#81202) - PACKAGE, of the V EXAM (#9000010.13) file. A pointer to the Package (#9.4)

 file.

 COMPONENT: $$DATASRC(IEN)

 VARIABLES: IEN Type: Input

 (required) This number represents the Internal Entry Number for a record in the V EXAM

 (#9000010.13) file.

 $$DATASRC Type: Output

 Pointer to the PCE Data Source (#839.7) file.

 This API returns field (#81203) - DATA SOURCE, of the V EXAM (#9000010.13) file. A pointer to the PCE Data

 Source (#839.7) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PCE PATIENT CARE ENCOUNTER
 ICR#: 4424

 NAME: PCE Patient Immunization Data

 USAGE: Supported ENTERED: NOV 29,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The API was created to support a requirement for MyhealtheVet project regarding a specific patient's immunization data.

 ROUTINE: PXIMMAPI

 COMPONENT: IMMLIST

 VARIABLES: DFN Type: Input

 The IEN of VistA's Patient file (#2) of the patient whose information is requested.

 STDATE Type: Input

 The begining date of date FM INTERNAL FORMAT (optional).

 ENDATE Type: Input

 The ending date of date FM INTERNAL FORMAT (optional).

 Get all or part of patient's immunization data from VistA's V IMMUNIZATION FILE (#9000010.11) and return all

 nodes containing data.

 IMMLIST(DFN,STDATE,ENDATE) ;Get immunization data for patient

 ;

 ; DFN = Patient Identification entry number (required)

 ; STDATE = Begining date of date FM INTERNAL FORMAT (optional)

 ; ENDATE = Ending date of date FM INTERNAL FORMAT (optional)

 ;

 ; OUTPUT:

 ; 0 = No entries found_"^"_"no immunization data"

 ; 1 = Entries found and stored in ^TMP(PXIMM",$J) global

 ;

 ; ^TMP(""PXIMM"",$J,DFN,NODE)=DATA

 ; NODE = 0,12,801,811,812 of V IMMUNIZATION file

 ;

 ; Important Note: Only the nodes which contain data returned.

 ; External value for immunizationis inserted in

 ; 2nd piece of the 0th node.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 2494

 NAME: DBIA-2494 PDM-Delete bad field global

 USAGE: Supported ENTERED: AUG 11,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 50 ROOT: DD(50,0,ID

 DESCRIPTION: TYPE: File

 To resolve NOIS # EKH-0798-41058, we are inserting a line of code to delete the impartial field data found in File #50. We

 believe that the ^DD(50,0,"ID",534016) global is a local site-specific field. We do not have a zero node that identifies the

 field name. We are adding a line of code to routine PSSPCH13 that checks for the zero node. If not there, it will delete the

 data related to the field number 534016.

 Example. I '$D(^DD(50,534016)) K ^DD(50,0,"ID",534016).

 This change is included in patch PSS*1*13.

 ^DD(50,0,ID

 534016 DRUG FIL Direct Global Write &

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE:
 PHARMACY DATA MANAGEMENT

 ICR#: 4237

 NAME: DBIA4237

 USAGE: Supported ENTERED: SEP 22,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This supported reference is available to allow users to pass in a patient's internal file number (dfn) in the form of a

 function call to indicate if that patient has at least one active prescription.

 S X=$$EN^PSSRXACT(DFN). 1 is returned if the patient has at least one active Rx, else 0 (zero) is returned indicating no

 active prescriptions.

 ROUTINE: PSSRXACT

 COMPONENT: EN

 VARIABLES: Required patient's dfn.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4480

 NAME: DBIA4480

 USAGE: Supported ENTERED: FEB 6,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the PHARMACY PATIENT file (#55). This API is to used in

 the future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS781

 COMPONENT: PSS(PSSDFN,PSSNUM,LIST)

 VARIABLES: PSSDFN Type: Input

 IEN of Patient [optional]

 PSSNUM Type: Input

 Clozapine Registration Number [optional]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=1 for successful return of data or -1^NO DATA FOUND

 ^TMP($J,LIST,DFN,53)=CLOZAPINE REGISTRATION NUMBER(#53)

 ^TMP($J,LIST,DFN,54)=CLOZAPINE STATUS(54 - S)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,55)=DATE OF LAST CLOZAPINE RX(55 - D/T)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,DFN,56)=DEMOGRAPHICS SENT(56)^External Format for the Set of Codes

 ^TMP($J,LIST,DFN,57)=RESPONSIBLE PROVIDER (pointer value) (57)^NAME (200,.01)

 ^TMP($J,LIST,DFN,58)=REGISTRATION DATE(58 -D/T)^External Format (ex: Sep. 12, 1999)

 Returns Clozapine data from the Pharmacy Patient (#55) file.

 COMPONENT: WRT(PSSDFN,PSSSTAT,LIST)

 VARIABLES: PSSDFN Type: Input

 IEN of patient [REQUIRED]

 PSSSTAT Type: Input

 Clozapine Status [REQUIRED]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=-1 for failure or 1 for success

 Set Clozapine Status field for Mental Health

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4533

 NAME: DBIA4533

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the DRUG file (#50). This API is to used in the future by

 all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS50

 COMPONENT: DATA(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 VARIABLES: PSSIEN Type: Input

 PSSIEN = IEN from the DRUG file (#50) [optional]

 PSSFT Type: Input

 PSSFT = GENERIC NAME field (#.01) of the DRUG file (#50) (a value of "??" may be used)

 [optional]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = Returns only those entries containing at least one of the codes in the APPLICATION

 PACKAGES' USE (#63) field of the DRUG file (#50) (ex: PSSPK = "IU" will return all entries

 for either IV, Unit Dose, or both IV and Unit Dose) [optional]

 PSSRTOI Type: Input

 PSSRTOI = If a "1" is passed in, then only those entries matched to a Pharmacy Orderable Item

 will be returned [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,PSSIEN,2)=VA CLASSIFICATION(50,2)

 ^TMP($J,LIST,PSSIEN,2.1)=PHARMACY ORDERABLE ITEM(50,2.1)^NAME (50.7,.01)^IEN of the Dosage

 Form file (#50.606)^NAME(50.606,.01)

 ^TMP($J,LIST,PSSIEN,3)=DEA SPECIAL HDLG(50,3)

 ^TMP($J,LIST,PSSIEN,4)=MAXIMUM DOSE PER DAY(50,4)

 ^TMP($J,LIST,PSSIEN,5)=STANDARD SIG(50,5)

 ^TMP($J,LIST,PSSIEN,6)=FSN(50,6)

 ^TMP($J,LIST,PSSIEN,8)=WARNING LABEL(50,8)

 ^TMP($J,LIST,PSSIEN,12)=ORDER UNIT(50,12)^ABBREVIATION (51.5,.01)^EXPANSION(51.5,.02)

 ^TMP($J,LIST,PSSIEN,13)=PRICE PER ORDER UNIT(50,13)

 ^TMP($J,LIST,PSSIEN,14.5)=DISPENSE UNIT(50,14.5)

 ^TMP($J,LIST,PSSIEN,15)=DISPENSE UNITS PER ORDER UNIT(50,15)

 ^TMP($J,LIST,PSSIEN,16)=PRICE PER DISPENSE UNIT(50,16)

 ^TMP($J,LIST,PSSIEN,20)=NATIONAL DRUG FILE ENTRY (50,20)^NAME(50.6,.01)

 ^TMP($J,LIST,PSSIEN,21)=VA PRODUCT NAME(50,21)

 ^TMP($J,LIST,PSSIEN,22)=PSNDF VA PRODUCT NAME ENTRY(50,22)^NAME(50.68,.01)

 ^TMP($J,LIST,PSSIEN,25)=NATIONAL DRUG CLASS(50,25)^CODE(50.605,.01)^CLASSIFICATION (50.605,1)

 ^TMP($J,LIST,PSSIEN,27)=CMOP ID(50,27)

 ^TMP($J,LIST,PSSIEN,31)=NDC(50,31)

 ^TMP($J,LIST,PSSIEN,40)=ACTION PROFILE MESSAGE(50,40)

 ^TMP($J,LIST,PSSIEN,51)=LOCAL NON-FORMULARY(50,51)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,52)=VISN NON-FORMULARY(50,52)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,63)=APPLICATION PACKAGES' USE(50,63)

 ^TMP($J,LIST,PSSIEN,64)=PRIMARY DRUG(50,64)^NAME(50.3,.01)

 ^TMP($J,LIST,PSSIEN,100)=INACTIVE DATE (50,100)^External format (ex: SEP 12,1999)

 ^TMP($J,LIST,PSSIEN,101)=MESSAGE(50,101)

 ^TMP($J,LIST,PSSIEN,102)=RESTRICTION(50,102)

 ^TMP($J,LIST,PSSIEN,301)=AR/WS AMIS CATEGORY(50,301)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,302)=AR/WS AMIS CONVERSION NUMBER(50,302)

 ^TMP($J,LIST,PSSIEN,400)=SERVICE CODE(50,400)

 Note: For the SERVICE CODE field (#400)entry returned, it will be

 retrieved in one of three ways:

 1) If the DRUG entry from the DRUG file (#50) is matched to the

 VA PRODUCT file (#50.68), and there is data in the SERVICE CODE

 field (#2000) of the VA PRODUCT file (#50.68) of that match, the

 SERVICE CODE field will be retrieved from the SERVICE CODE field

 (#2000) of the VA PRODUCT file (#50.68).

 2) If no SERVICE CODE data is found in the SERVICE CODE field (#2000)

 of the VA PRODUCT file (#50.68), and there is data in the SERVICE

 CODE field (#400) of the DRUG file (#50), the SERVICE CODE field

 will be retrieved from the SERVICE CODE field (#400) of the DRUG

 file (#50).

 3) If no SERVICE CODE data is found in the SERVICE CODE field (#2000)

 of the VA PRODUCT file (#50.68), and in the SERVICE CODE field

 (#400) of the DRUG file (#50), the value 600000 will be returned as

 the SERVICE CODE.

 ^TMP($J,LIST,PSSIEN,"FRM",0)= Total entries returning for this sub-file or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,"FRM",PSS(1),2)=FORMULARY ALTERNATIVE (50.065,.01)^GENERIC NAME (50,.01)

 ^TMP($J,LIST,PSSIEN,"OLD",0)=Total entries returning for this sub-file or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,"OLD",PSS(1),.01)=OLD NAMES(50.01,.01)

 ^TMP($J,LIST,PSSIEN,"OLD",PSS(1),.02)=DATE CHANGED (50.01,.02) ^External format (ex: SEP

 12,1999)

 ^TMP($J,LIST,PSSIEN,"SYN",0)=Total entries returning for this sub-file or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,"SYN",PSS(1),.01)=SYNONYM (50.1,.01)

 ^TMP($J,LIST,PSSIEN,"SYN",PSS(1),1)=INTENDED USE(50.1,1)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,"SYN",PSS(1),2)=NDC CODE(50.1,2)

 ^TMP($J,LIST,PSSIEN,"SYN",PSS(1),403)=DISPENSE UNITS PER ORDER UNIT(50.1,403)

 ^TMP($J,LIST,"B",GENERIC NAME,PSSIEN)= ""

 Where: PSS(1) is the IEN of the multiple it referenced

 Format: D DATA^PSS50(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 COMPONENT: LAB(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 VARIABLES: PSSIEN Type: Input

 PSSIEN = IEN from the DRUG file (#50) [optional]

 PSSFT Type: Input

 PSSFT = GENERIC NAME field (#.01) of the DRUG file (#50) (a value of "??" may be used)

 [optional]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = Returns only those entries containing at least one of the codes in the APPLICATION

 PACKAGES' USE (#63) field of the DRUG file (#50) (ex: PSSPK = "IU" will return all entries

 for either IV, Unit Dose, or both IV and Unit Dose) [optional]

 PSSRTOI Type: Input

 PSSRTOI = If a "1" is passed in, then only those entries matched to a Pharmacy Orderable Item

 will be returned [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,PSSIEN,17.2)=LAB TEST MONITOR 50,17.2)^NAME 60,.01)

 ^TMP($J,LIST,PSSIEN,17.3)=MONITOR MAX DAYS(50,17.3)

 ^TMP($J,LIST,PSSIEN,17.4)=SPECIMEN TYPE(50,17.4)^NAME(61,.01)

 ^TMP($J,LIST,PSSIEN,17.5)=MONITOR ROUTINE(50,17.5)

 ^TMP($J,LIST,PSSIEN,17.6)=LAB MONITOR MARK(50,17.6)^External format for the set of codes

 ^TMP($J,LIST,"B",GENERIC NAME,PSSIEN)=""

 D LAB^PSS50(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 COMPONENT: CLOZ(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 VARIABLES: PSSIEN Type: Input

 PSSIEN = IEN from the DRUG file (#50) [optional]

 PSSFT Type: Input

 PSSFT = GENERIC NAME field (#.01) of the DRUG file (#50) (a value of "??" may be used)

 [optional]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = Returns only those entries containing at least one of the codes in the APPLICATION

 PACKAGES' USE (#63) field of the DRUG file (#50) (ex: PSSPK = "IU" will return all entries

 for either IV, Unit Dose, or both IV and Unit Dose) [optional]

 PSSRTOI Type: Input

 PSSRTOI = If a "1" is passed in, then only those entries matched to a Pharmacy Orderable Item

 will be returned [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,PSSIEN,"CLOZ",0)=Total entries returned for this sub-file or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,"CLOZ",PSS(1),.01)=LAB TEST MONITOR(50.02,.01)^NAME(60,.01)

 ^TMP($J,LIST,PSSIEN,"CLOZ",PSS(1),1)=MONITOR MAX DAYS(50.02,1)

 ^TMP($J,LIST,PSSIEN,"CLOZ",PSS(1),2)=SPECIMEN TYPE(50.02,2)^NAME(61,.01)

 ^TMP($J,LIST,PSSIEN,"CLOZ",PSS(1),3)=TYPE OF TEST(50.02,3)^External format for the set of

 codes

 ^TMP($J,LIST,"B",GENERIC NAME,PSSIEN)=""

 Where: PSS(1) is the IEN of entry in the CLOZAPINE LAB TEST multiple

 Format: D CLOZ^PSS50(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 COMPONENT: NDC(PSSVAL,PSSFL,PSSPK,LIST)

 VARIABLES: PSSVAL Type: Input

 PSSVAL = NDC field (#31) of the DRUG file (#50) (ex: "053905099101" (without dashes) as being

 used in the "NDC" cross-reference) [required]

 Note: Use quotes around the PSSVAL value, or use quotes around the value if setting a

 variable to this value to be used as the parameter, to prevent leading zeros from being

 truncated.

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = Returns only those entries containing at least one of the codes in the APPLICATION

 PACKAGES' USE (#63) field of the DRUG file (#50) (ex: PSSPK = "IU" will return all entries

 for either IV, Unit Dose, or both IV and Unit Dose) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,PSSIEN,"NDC",GENERIC NAME,PSSIEN)=""

 Where: PSSIEN is IEN of entry in the DRUG file (#50)

 The "NDC" cross-reference in the format of ^PSDRUG("NDC",NDC(50,31), IEN(50)) will be used

 for the lookup.

 Format: D NDC^PSS50(PSSVAL,PSSFL,PSSPK,LIST)

 COMPONENT: ASP(PSSVAL,PSSFL,PSSPK,LIST)

 VARIABLES: PSSVAL Type: Input

 PSSVAL = PHARMACY ORDERABLE ITEM field (#2.1) of the DRUG file (#50) [required]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = Returns only those entries containing at least one of the codes in the APPLICATION

 PACKAGES' USE (#63) field of the DRUG file (#50) (ex: PSSPK = "IU" will return all entries

 for either IV, Unit Dose, or both IV and Unit Dose) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,"ASP",GENERIC NAME,PSSIEN)=""

 Where: PSSIEN is IEN of entry in the DRUG file(#50)

 The "ASP" cross-reference in the format of ^PSDRUG("ASP",PHARMACY ORDERABLE

 ITEM(50,2.1),IEN(50)) will be used for the lookup.

 Format: D ASP^PSS50(PSSVAL,PSSFL,PSSPK,LIST)

 COMPONENT: AND(PSSVAL,PSSFL,PSSPK,LIST)

 VARIABLES: PSSVAL Type: Input

 PSSVAL = NATIONAL DRUG FILE ENTRY field (#20) of the DRUG file (#50) [required]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = Returns only those entries containing at least one of the codes in the APPLICATION

 PACKAGES' USE (#63) field of the DRUG file (#50) (ex: PSSPK = "IU" will return all entries

 for either IV, Unit Dose, or both IV and Unit Dose) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,"AND",GENERIC NAME,PSSIEN)=""

 Where: PSSIEN is IEN of entry in the DRUG file(#50)

 The "AND" cross-reference in the format of ^PSDRUG("AND",NATIONAL DRUG FILE

 ENTRY(50,20),IEN(50)) will be used for the lookup.

 Format: D AND^PSS50(PSSVAL,PSSFL,PSSPK,LIST)

 COMPONENT: VAC(PSSVAL,PSSFL,PSSPK,LIST)

 VARIABLES: PSSVAL Type: Input

 PSSVAL = the NATIONAL DRUG CLASS field (#25) of the DRUG file (#50) [required]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = Returns only those entries containing at least one of the codes in the APPLICATION

 PACKAGES' USE (#63) field of the DRUG file (#50) (ex: PSSPK = "IU" will return all entries

 for either IV, Unit Dose, or both IV and Unit Dose) [optional]

 LIST Type: Input

 LIST = the array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,"VAC",GENERIC NAME,PSSIEN)=""

 Note: The "VAC" cross-reference in the format of ^PSDRUG("VAC",NATIONAL DRUG

 CLASS(50,25),IEN(50) will be used for the lookup.

 Where: PSSIEN is IEN of entry in the DRUG file(#50)

 Format: D VAC^PSS50(PSSVAL,PSSFL,PSSPK,LIST)

 COMPONENT: ZERO(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 VARIABLES: PSSIEN Type: Input

 This is the internal entry number from the DRUG file (#50). [optional]

 PSSFT Type: Input

 This is the GENERIC NAME field (#.01) from the DRUG file (#50). A value of "??" may be used

 for a complete list of entries. [optional]

 PSSFL Type: Input

 This parameter represents the inactive date, in FileMan format. If no date is passed in, all

 possible entries will be returned. If a date is passed in, only entries without an inactive

 date and entries with an inactive date later than this date will be returned. [optional]

 PSSPK Type: Input

 This parameter represents the APPLICATION PACKAGES' USE field (#63) of the DRUG file (#50),

 and the entries returned will be based on this value. For example, if "IU" is passed in,

 then the call will return only those entries marked for Unit Dose or IV. [optional]

 PSSRTOI Type: Input

 If a 1 is passed in this parameter, only those entries matched to a Pharmacy Orderable Item,

 will be returned. If a 1 is not passed in, all possible entries will be returned.

 LIST Type: Input

 This will be the name subscript in the return ^TMP global. [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)= Total entries returned. If there are no entries being returned, then this

 will be equal to "-1^NO DATA FOUND".

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,PSSIEN,2)=VA CLASSIFICATION(50,2)

 ^TMP($J,LIST,PSSIEN,3)=DEA, SPECIAL HDLG(50,3)

 ^TMP($J,LIST,PSSIEN,4)=MAXIMUM DOSE PER DAY(50,4)

 ^TMP($J,LIST,PSSIEN,5)=STANDARD SIG(50,5)

 ^TMP($J,LIST,PSSIEN,6)=FSN(50,6)

 ^TMP($J,LIST,PSSIEN,8)=WARNING LABEL(50,8)

 ^TMP($J,LIST,PSSIEN,51)=LOCAL NON-FORMULARY(50,51)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,52)=VISN NON-FORMULARY(50,52)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,101)=MESSAGE(50,101)

 ^TMP($J,LIST,"B",GENERIC NAME,PSSIEN)=""

 This API will return information from the DRUG file (#50), primarily from the zero node.

 COMPONENT: ARWS(PSSIEN,PSSFT,LIST)

 VARIABLES: PSSIEN Type: Input

 This is the internal entry number from the DRUG file (#50). [optional]

 PSSFT Type: Input

 This is the GENERIC NAME field (#.01) from the DRUG file (#50). A value of "??" may be used

 for a complete list of entries. [optional]

 LIST Type: Input

 This will be the name subscript in the return ^TMP global. [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)= Total entries returned. If there are no entries being returned, then this

 will be equal to "-1^NO DATA FOUND".

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01)

 ^TMP($J,LIST,PSSIEN,2)=VA CLASSIFICATION(50,2)

 ^TMP($J,LIST,PSSIEN,3)=DEA, SPECIAL HDLG(50,3)

 ^TMP($J,LIST,PSSIEN,12)=ORDER UNIT(50,12)^ABBREVIATION(51.5,.01)^EXPANSION(51.5,.02)

 ^TMP($J,LIST,PSSIEN,13)=PRICE PER ORDER UNIT(50,13)

 ^TMP($J,LIST,PSSIEN,14.5)=DISPENSE UNIT(50,14.5)

 ^TMP($J,LIST,PSSIEN,15)=DISPENSE UNITS PER ORDER UNIT(50,15)

 ^TMP($J,LIST,PSSIEN,16)=PRICE PER DISPENSE UNIT(50,16)

 ^TMP($J,LIST,PSSIEN,20)=NATIONAL DRUG FILE ENTRY(50,20)^NAME(50.6,.01)

 ^TMP($J,LIST,PSSIEN,21)=VA PRODUCT NAME(50,12)

 ^TMP($J,LIST,PSSIEN,22)=PSNDF VA PRODUCT NAME ENTRY(50,22)^NAME(50.68,.01)

 ^TMP($J,LIST,PSSIEN,23)=PACKAGE SIZE(50,23)^NAME(50.609,.01)

 ^TMP($J,LIST,PSSIEN,25)=NATIONAL DRUG CLASS(50.25)^CODE(50.605,.01)^CLASSIFICATION(50.605,1)

 ^TMP($J,LIST,PSSIEN,31)=NDC(50,31)

 ^TMP($J,LIST,PSSIEN,51)=LOCAL NON-FORMULARY(50,51)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,52)=VISN NON-FORMULARY(50,52)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,301)=AR/WS AMIS CATEGORY(50,301)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,302)=AR/WS AMIS CONVERSION NUMBER(50,302)

 ^TMP($J,LIST,"B",GENERIC NAME,PSSIEN)=""

 This API will return information from the DRUG file (#50).

 COMPONENT: NDF(PSSIEN,PSSFT,PSSFL,PSSPK,PSSRTOI,LIST)

 VARIABLES: PSSIEN Type: Input

 This is the internal entry number from the DRUG file (#50). [optional]

 PSSFT Type: Input

 This is the GENERIC NAME field (#.01) from the DRUG file (#50). A value of "??" may be used

 for a complete list of entries. [optional]

 PSSFL Type: Input

 This parameter represents the inactive date, in FileMan format. If no date is passed in, all

 possible entries will be returned. If a date is passed in, only entries without an inactive

 date and entries with an inactive date later than this date will be returned. [optional]

 PSSPK Type: Input

 This parameter represents the APPLICATION PACKAGES' USE field (#63) of the DRUG file (#50),

 and the entries returned will be based on this value. For example, if "IU" is passed in,

 then the call will return only those entries marked for Unit Dose or IV. [optional]

 PSSRTOI Type: Input

 If a 1 is passed in this parameter, only those entries matched to a Pharmacy Orderable Item,

 will be returned. If a 1 is not passed in, all possible entries will be returned.

 LIST Type: Input

 This will be the name subscript in the return ^TMP global. [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)= Total entries returned. If there are no entries being returned, then this

 will be equal to "-1^NO DATA FOUND".

 ^TMP($J,LIST,PSSIEN,.01)=GENERIC NAME(50,.01) ^TMP($J,LIST,PSSIEN,20)=NATIONAL DRUG FILE

 ENTRY(50,20)^NAME (50.6,.01) ^TMP($J,LIST,PSSIEN,21)=VA PRODUCT NAME(50,21)

 ^TMP($J,LIST,PSSIEN,22)=PSNDF VA PRODUCT NAME ENTRY(50,22)^NAME(50.68,.01)

 ^TMP($J,LIST,PSSIEN,23)=PACKAGE SIZE(50,23)^NAME(50.609,.01) ^TMP($J,LIST,PSSIEN,24)=PACKAGE

 TYPE(50,24)^NAME(50.608,.01) ^TMP($J,LIST,PSSIEN,25)=NATIONAL DRUG

 CLASS(50,25)^CODE(50.605,.01)^CLASSIFICATION(50.605,1) ^TMP($J,LIST,PSSIEN,27)=CMOP ID(50,27)

 ^TMP($J,LIST,PSSIEN,29)=NATIONAL FORMULARY INDICATOR (50,29)^External format for the set of

 codes ^TMP($J,LIST,"B",GENERIC NAME,PSSIEN)=""

 This API returns National Drug Information from the DRUG file (#50).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4546

 NAME: ADMINISTRATION SCHEDULE

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the ADMINISTRATION SCHEDULE file (#51.1). This API must

 be used by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS51P1

 COMPONENT: ZERO(PSSIEN,PSSFT,PSSPP,PSSTSCH,LIST)

 VARIABLES: PSSIEN Type: Input

 PSSIEN = IEN of entry in ADMINISTRATION SCHEDULE file (#51.1) [optional]

 PSSFT Type: Input

 PSSFT = NAME field in ADMINISTRATION SCHEDULE file (#51.1) (a value of "??" may be used)

 [optional]

 PSSPP Type: Input

 PSSPP = the PACKAGE PREFIX field (#4) of the ADMINISTRATION SCHEDULE file (#51.1) (screening

 for the Package Prefix if this field is passed in (ex: PSJ, LR)) [optional]

 PSSTSCH Type: Input

 PSSTSCH = TYPE OF SCHEDULE field (#5) of ADMINISTRATION SCHEDULE file (#51.1) (screening for

 One-time "O" if PSSTSCH passed in) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=NAME (51.1,.01)

 ^TMP($J,LIST,PSSIEN,1)=STANDARD ADMINISTRATION TIMES(51.1,1)

 ^TMP($J,LIST,PSSIEN,2)=FREQUENCY (IN MINUTES)(51.1,2)

 ^TMP($J,LIST,PSSIEN,2.5)=MAX DAYS FOR ORDERS(51.1,2.5)

 ^TMP($J,LIST,PSSIEN,4)=PACKAGE PREFIX(51.1,4)

 ^TMP($J,LIST,PSSIEN,5)=TYPE OF SCHEDULE(51.1,5)^External format for the set of code

 ^TMP($J,LIST,PSSIEN,6)=STANDARD SHIFTS(51.1,6)

 ^TMP($J,LIST,PSSIEN,8)=OUTPATIENT EXPANSION(51.1,8)

 ^TMP($J,LIST,PSSIEN,8.1)=OTHER LANGUAGE EXPANSION(51.1,8.1)

 ^TMP($J,LIST,"B",NAME,PSSIEN)= ""

 Format: D ZERO^PSS51P1(PSSIEN,PSSFT,PSSPP,PSSTSCH,LIST)

 COMPONENT: AP(PSSPP,PSSFT,PSSWDIEN,PSSSTPY,LIST,PSSFREQ)

 VARIABLES: PSSPP Type: Input

 PSSPP = PACKAGE PREFIX field (#4) of the ADMINISTRATION SCHEDULE file (#51.1) [required]

 PSSFT Type: Input

 PSSFT = NAME field (#.01) of the ADMINISTRATION SCHEDULE file (#51.1) (a value of "??" may

 be used) [optional]

 PSSWDIEN Type: Input

 PSSWDIEN = IEN of entry of WARD multiple in ADMINISTRATION SCHEDULE file (#51.1) [optional]

 PSSSTPY Type: Input

 PSSSTPY = TYPE OF SCHEDULE field (#5) OF ADMINISTRATION SCHEDULE file (#51.1) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=NAME(51.1,.01)

 ^TMP($J,LIST,PSSIEN,1)=STANDARD ADMINISTRATION TIMES(51.1,1)

 ^TMP($J,LIST,PSSIEN,2)=FREQUENCY (IN MINUTES) (51.1,2)

 ^TMP($J,LIST,PSSIEN,2.5)=MAX DAYS FOR ORDERS(51.1,2.5)

 ^TMP($J,LIST,PSSIEN,4)=PACKAGE PREFIX(51.1,4)

 ^TMP($J,LIST,PSSIEN,5)=TYPE OF SCHEDULE(51.1,5)^External format for the set of code

 ^TMP($J,LIST,PSSIEN,8)=OUTPATIENT EXPANSION(51.1,8)

 ^TMP($J,LIST,PSSIEN,"WARD",0)=Total entries returning for this sub-file or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,"WARD",PSSWDIEN,.01)=WARD (51.11,.01)^NAME(42,.01)

 ^TMP($J,LIST,PSSIEN,"WARD",PSSWDIEN,1)=WARD ADMINISTRATION TIMES(51.11,1)

 ^TMP($J,LIST,"AP"_PACKAGE PREFIX,NAME,PSSIEN)=""

 Note: If PSSSTYP is passed in the API will screening on this value:

 1. If PSSPP is passed in, PSSFT = "" or PSSFT = "??", PSSWDIEN = "" and PSSTYP = "", then all

 schedules associated with the PSSPP and Ward will be returned.

 2. If PSSPP is passed in, PSSFT = "" or PSSFT = "??", PSSWDIEN is passed in and PSSTYP = "",

 then all schedules associated with the PSSPP will be returned and only Ward matched the

 PSSWDIEN will be included.

 3. If PSSPP = "", PSSFT = "QID", PSSWDIEN = "" and PSSTYP = "", then QID data and associated

 Wards will be returned.

 4. If PSSPP = "", PSSFT = "QID", PSSWDIEN is passed in and PSSTYP = "", then QID data will be

 returned and only matched Ward will be included.

 PSSFREQ Type: Input

 Filter for FREQUENCY field (#2) of the OF ADMINISTRATION SCHEDULE file (#51.1). [optional]

 NOTE: If the frequency in the FREQUENCY field (#2) is greater than a value passed in as

 PSSFREQ, then the entry will not be returned. Additionally, a PSSFREQ value less than 1 or

 null will be ignored.

 Format: D AP^PSS51P1(PSSPP,PSSFT,PSSWDIEN,PSSSTPY,LIST,PSSFREQ)

 COMPONENT: PSSDQ

 VARIABLES: Displays all the entries in the ADMINISTRATION SCHEDULE file (#51.1).

 COMPONENT: SCHED

 VARIABLES: PSSWIEN Type: Input

 IEN of the ward location for the patient. If this value is null, it will be set to 0.

 PSSARRY Type: Both

 Array of schedules to be returned to CPRS. The structure is:

 PSSARRY(n) = IEN^NAME^OUTPATIENT EXPANSION^SCHEDULE TYPE^ADMIN TIME

 IEN = Ward location (File #42) of the patient.

 NAME = Schedule Name

 OUTPATIENT EXPANSION = Display name of the schedule for Outpatient Pharmacy.

 SCHEDULE TYPE = Schedule type of the schedule

 ADMIN TIME = Either the Standard Administration Times for the schedule or the Ward-Specific

 Administration Times for the schedule, if defined.

 Calls new routine PSSSCHED to return a new filtered array of Administration Schedules to CPRS for selection

 from the list of schedules presented to the user.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4548

 NAME: MEDICATION ROUTES APIs

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the MEDICATION ROUTES file (#51.2). This API is to used

 in the future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS51P2

 COMPONENT: ALL(PSSIEN,PSSFT,PSSFL,PSSPK,LIST)

 VARIABLES: PSSIEN Type: Input

 PSSIEN = IEN of entry in MEDICATION ROUTES file (#51.2) [optional]

 PSSFT Type: Input

 PSSFT = NAME field (#.01) of the MEDICATION ROUTES file (#51.2) (a value of "??" may be

 used) [optional]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 PSSPK Type: Input

 PSSPK = PACKAGE USE field (#3) of the MEDICATION ROUTES file (#51.2) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=NAME(51.2,.01)

 ^TMP($J,LIST,PSSIEN,1)=ABBREVIATION(51.2,1)

 ^TMP($J,LIST,PSSIEN,3)=PACKAGE USE(51.2,3)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,4)=OUTPATIENT EXPANSION (51.2,4)

 ^TMP($J,LIST,PSSIEN,4.1)=OTHER LANGUAGE EXPANSION (51.2,4.1)

 ^TMP($J,LIST,PSSIEN,5)=INACTIVATION DATE (51.2,5)^External format (ex: SEP 12,1999)

 ^TMP($J,LIST,PSSIEN,6)=IV FLAG (51.2,6)^External format for the set of codes (ex: YES if

 flagged for IV)

 ^TMP($J,LIST,PSSIEN,7) = PROMPT FOR INJ. SITE IN BCMA (51.2,8) ^ External format for the set

 of codes (ex: YES if BCMA should prompt for Injection Site)

 ^TMP($J,LIST,PSSIEN,8) = DSPLY ON IVP/IVPB TAB IN BCMA? (51.2,9) ^ External format for the

 set of codes (ex: YES if BCMA should display this order on the IVP/IVPB tab)

 ^TMP($J,LIST,"B",NAME,PSSIEN)=""

 Format: D ALL^PSS51P2(PSSIEN,PSSFT,PSSFL,PSSPK,LIST)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4549

 NAME: DBIA4549

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the IV ADDITIVES file (#52.6). This API is to used in the

 future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS52P6

 COMPONENT: ZERO(PSSIEN,PSSFT,PSSFL,LIST)

 VARIABLES: PSSIEN Type: Input

 PSSIEN = IEN of entry in IV ADDITIVES file (#52.6) [optional]

 PSSFT Type: Input

 PSSFT = PRINT NAME field (#.01) of IV ADDITIVES file (#52.6) (a value of "??" may be used)

 [optional]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=PRINT NAME (52.6,.01)

 ^TMP($J,LIST,PSSIEN,1)=GENERIC DRUG (52.6,1)^GENERIC NAME (50,.01)

 ^TMP($J,LIST,PSSIEN,2)=DRUG UNIT(52.6,2)^Drug Unit external format (ex: MG, ML)

 ^TMP($J,LIST,PSSIEN,3)=NUMBER OF DAYS FOR IV ORDER(52.6,3)

 ^TMP($J,LIST,PSSIEN,4)=USUAL IV SCHEDULE(52.6,4)

 ^TMP($J,LIST,PSSIEN,5)=ADMINISTRATION TIMES(52.6,5)

 ^TMP($J,LIST,PSSIEN,7)=AVERAGE DRUG COST PER UNIT(52.6,7)

 ^TMP($J,LIST,PSSIEN,12)=INACTIVATION DATE(52.6,12)^External format (ex: SEP 12,1999)

 ^TMP($J,LIST,PSSIEN,13)=CONCENTRATION(52.6,13)

 TMP($J,LIST,PSSIEN,14)=MESSAGE(52.6,14)

 ^TMP($J,LIST,PSSIEN,15)=PHARMACY ORDERABLE ITEM(52.6,15)^NAME(50.7,.01)

 ^TMP($J,LIST,PSSIEN,17)=USED IN IV FLUID ORDER ENTRY (52.6,17)^External format (ex: "YES" for

 1 otherwise it is null)

 ^TMP($J,LIST,"B",PRINT NAME,PSSIEN)= ""

 Format: D ZERO^PSS52P6(PSSIEN,PSSFT,PSSFL,LIST)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4550

 NAME: DBIA4550

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the IV SOLUTIONS file (#52.7). This API is to used in the

 future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS52P7

 COMPONENT: ZERO(PSSIEN,PSSFT,PSSFL,LIST)

 VARIABLES: PSSIEN Type: Input

 PSSIEN = IEN of entry in IV SOLUTIONS file (#52.7) [optional]

 PSSFT Type: Input

 PSSFT = PRINT NAME in IV SOLUTIONS file (#52.7) (a value of "??" may be used) [optional]

 PSSFL Type: Input

 PSSFL = Inactive date: A null value will return all entries (entry of a FileMan format date

 (ex: 3030917) will return active entries after this date) [optional]

 LIST Type: Input

 LIST = array defined by the calling application [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returning or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01)=PRINT NAME(52.7,.01)

 ^TMP($J,LIST,PSSIEN,.02)=PRINT NAME {2}(52.7,.02)

 ^TMP($J,LIST,PSSIEN,1)=GENERIC DRUG(52.7,1)^GENERIC NAME (50,.01)

 ^TMP($J,LIST,PSSIEN,2)=VOLUME(52.7,2)

 ^TMP($J,LIST,PSSIEN,7)=AVERAGE DRUG COST (52.7,7)

 ^TMP($J,LIST,PSSIEN,8)=INACTIVATION DATE(52.7,8)^External format (ex: SEP 12, 1999)

 ^TMP($J,LIST,PSSIEN,9)=PHARMACY ORDERABLE ITEM(52.7,9)^ NAME(50.7,.01)

 ^TMP($J,LIST,PSSIEN,17)=USED IN IV FLUID ORDER ENTRY (52.7,17)^External format (ex: "YES" for

 1 otherwise it is null)

 ^TMP($J,LIST,PSSIEN,"ELYTES",0)=Total entries returning for this sub-file or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,"ELYTES",PSS(1),.01)=ELECTROLYTES(52.702,.01)^NAME(50.4,.01) (external

 format)

 ^TMP($J,LIST,PSSIEN,"ELYTES",PSS(1),1)=CONCENTRATION(52.702,1)

 ^TMP($J,LIST,"B",PRINT NAME,PSSIEN)= ""

 Where: PSS(1) is the IEN of entry in the ELECTROLYTES multiple

 Format: D ZERO^PSS52P7(PSSIEN,PSSFT,PSSFL,LIST)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4551

 NAME: DBIA4551

 USAGE: Supported ENTERED: DEC 14,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to do simulated VA FileMan calls. This API is to be used in

 the future by all packages needing to use FileMan to look at PDM files as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSSDI

 COMPONENT: DIC(PSSFILE,PSSAPP,.DIC,.X,DLAYGO,PSSSCRDT,PSSSCRUS,PSSVACL)

 VARIABLES: PSSFILE Type: Input

 PSSFILE = File number used for validation of access [required]

 PSSAPP Type: Input

 PSSAPP = Name space of the calling application (ex: PSJ for Inpatient Meds, PSO for

 Outpatient; PSSAPP is used to check if write access is allowed) [optional]

 .DIC Type: Input

 See VA FileMan Programmer Manual for ^DIC call, for DIC, X, and DLAYGO input definitions

 PSSSCRDT Type: Input

 PSSSCRDT = Inactivation Date. If the file has an Inactivation Date, then any entry with an

 Inactivation Date on or before PSNDATE will not be returned [optional]

 PSSSCRUS Type: Input

 PSSSCRUS = APPLICATION PACKAGES' USE. This parameter only applies when the file is the DRUG

 File (#50). PSSSCRUS should be passed in the form of a String. If any of the characters in

 the PSSSCRUS String is contained in the APPLICATION PACKAGES' USE Field (#63), then the entry

 will be returned [optional]

 PSSDIY Type: Output

 PSSDIY will return null if the values for PSSFILE and PSSAPP are valid (it will return -1 if

 conditions were not met)

 See VA FileMan Programmer Manual for DIC output definition

 DLAYGO should only be passed in if the calling application has this type of access through

 another Integration Agreement

 PSSVACL Type: Input

 PSSVACL = An array containing VA CLASSES that the user wants either included or excluded for

 the Drug lookup.

 For example, if only drugs with a VA Class of DX201 & DX202 were to be available for

 selection, the local variable array would look like this:

 PSSVACL("DX201")="" PSSVACL("DX202")="" PSSVACL("R")="" - The "R" means only drugs with these

 classes will be available for selection. If these classes were to be excluded, the letter "P"

 would be used instead.

 COMPONENT: DO(PSSFILE,PSSAPP,.DIC)

 VARIABLES: PSSFILE Type: Input

 PSSFILE = File number used for validation of access [required]

 PSSAPP Type: Input

 PSSAPP = Name space of the calling application (ex: PSJ for Inpatient Meds, PSO for

 Outpatient; PSSAPP is used to check if write access is allowed) [optional]

 .DIC Type: Input

 See VA FileMan Programmer Manual for DIC input definition

 PSSDIY Type: Output

 PSSDIY will return null if the values for PSSFILE and PSSAPP are valid (it will return -1 if

 conditions were not met)

 See VA FileMan Programmer Manual for DO^DIC1 output definition

 Format: D DO^PSSDI(PSSFILE,PSSAPP,.DIC)

 COMPONENT: MIX(PSSFILE,PSSAPP,.DIC,D,.X,DLAYGO,PSSDATE,PSSUSAGE,PSSVACL)

 VARIABLES: PSSFILE Type: Input

 PSSFILE = File number used for validation of access [required]

 PSSAPP Type: Input

 PSSAPP = Name space of the calling application (ex: PSJ for Inpatient Meds, PSO for

 Outpatient; PSSAPP is used to check if write access is allowed) [optional]

 .DIC Type: Input

 See VA FileMan Programmer Manual for MIX^DIC1 call, for DIC, D, X, and DLAYGO input

 definitions

 PSSDATE Type: Input

 PSSDATE = Inactivation Date. If the file has an Inactivation Date, then any entry with an

 Inactivation Date on or before PSNDATE will not be returned [optional]

 PSSUSAGE Type: Input

 PSSUSAGE = APPLICATION PACKAGES' USE. This parameter only applies when the file is the DRUG

 File (#50). PSSUSAGE should be passed in the form of a String. If any of the characters in

 the PSSUSAGE String is contained in the APPLICATION PACKAGES' USE Field (#63), then the entry

 will be returned [optional]

 PSSDIY Type: Output

 PSSDIY will return null if the values for PSSFILE and PSSAPP are valid (it will return -1 if

 conditions were not met)

 See VA FileMan Programmer Manual for MIX^DIC1 output definition

 DLAYGO should only be passed in if the calling application has this type of access through

 another Integration Agreement

 PSSVACL Type: Input

 PSSVACL = An array containing VA CLASSES that the user wants either included or excluded for

 the Drug lookup.

 For example, if only drugs with a VA Class of DX201 & DX202 were to be available for

 selection, the local variable array would look like this:

 PSSVACL("DX201")="" PSSVACL("DX202")="" PSSVACL("R")="" - The "R" means only drugs with these

 classes will be available for selection. If these classes were to be excluded, the letter "P"

 would be used instead.

 COMPONENT: EN(PSSFILE,PSSAPP,DIC,.DR,.DA,.DIQ)

 VARIABLES: PSSFILE Type: Input

 PSSFILE = File number used for validation of access [required]

 PSSAPP Type: Input

 PSSAPP = Name space of the calling application (ex: PSJ for Inpatient Meds, PSO for

 Outpatient; PSSAPP is used to check if write access is allowed) [optional]

 DIC Type: Input

 See VA FileMan Programmer Manual for EN^DIQ1 call, for DIC, DR, DA, and DIQ input definitions

 PSSDIY Type: Output

 PSSDIY will return null if the values for PSSFILE and PSSAPP are valid (it will return -1 if

 conditions were not met)

 See VA FileMan Programmer Manual for EN^DIQ1 output definition

 Format: D EN^PSSDI(PSSFILE,PSSAPP,DIC,.DR,.DA,.DIQ)

 COMPONENT: $$FNAME(PSSFNO,PSSFILE)

 VARIABLES: PSSFNO Type: Input

 Field number [required]

 PSSFILE Type: Input

 File number or sub-file number. This file must be a file that is owned by a Pharmacy

 application [required]

 $$FNAME Type: Output

 $$FNAME = the field name. If an invalid field number or invalid file number is passed in, or

 the file number passed in is not a file owned by a pharmacy application, null will be

 returned.

 This component returns the field name of the specified Pharmacy file for the field number and file number

 passed in.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4662

 NAME: DBIA4662

 USAGE: Supported ENTERED: APR 26,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API will return information from the PHARMACY ORDERABLE ITEM file (#50.7).

 ROUTINE: PSS50P7

 COMPONENT: DRGIEN(PSSIEN,PSSFL,LIST)

 VARIABLES: PSSIEN Type: Input

 This is the internal entry number from the PHARMACY ORDERABLE ITEM file (#50.7). [required]

 PSSFL Type: Input

 This parameter represents the inactive date, in FileMan format. If no date is passed in, all

 entries matched to the Pharmacy Orderable Item will be returned. If a date is passed in, only

 entries without an inactive date and entries with an inactive date later than this date will

 be returned. [optional]

 LIST Type: Input

 This will be the name subscript in the return ^TMP global. [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0)= Total entries returned. If there are no entries being returned, then this

 will be equal to "-1^NO DATA FOUND".

 ^TMP($J,LIST,PSS50)=""

 Where PSS50 is the internal entry number from the DRUG file (#50).

 This API will return a list of drugs from the DRUG file (#50) that are matched to an entry in the PHARMACY

 ORDERABLE ITEM file (#50.7).

 COMPONENT: ZERO(PSSIEN,PSSFT,PSSFL,LIST)

 VARIABLES: PSSIEN Type: Input

 IEN of entry in the PHARMACY ORDERABLE ITEM file (#50.7) [optional]

 PSSFT Type: Input

 NAME field (#.01) of the PHARMACY ORDERABLE ITEM file (#50.7) (a value of "??" may be used)

 [optional]

 PSSFL Type: Input

 Inactive date: A null value will return all entries (entry of a FileMan format date (ex:

 3030917) will return active entries after this date) [optional]

 LIST Type: Input

 Subscript value in ^TMP($J,LISTvalue, [required]

 ~TMP Type: Output

 ^TMP($J,LIST,0) = Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,PSSIEN,.01) = NAME (50.7,.01)

 ^TMP($J,LIST,PSSIEN,.02) = DOSAGE FORM(50.7,.02)^NAME (50.606,.01)

 ^TMP($J,LIST,PSSIEN,.03) = IV FLAG (50.7,.03)^External format for the set of codes (ex: 1 if

 flagged for IV)

 ^TMP($J,LIST,PSSIEN,.04) = INACTIVE DATE (50.7,.04)^External format (ex: SEP 12,1999)

 ^TMP($J,LIST,PSSIEN,.05) = DAY (nD) or DOSE (nL) LIMIT (50.7,.05)

 ^TMP($J,LIST,PSSIEN,.06) = MED ROUTE (50.7,.06)^NAME (51.2,.01)

 ^TMP($J,LIST,PSSIEN,.07) = SCHEDULE TYPE (50.7,.07)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,.08) = SCHEDULE (50.7,.08)

 ^TMP($J,LIST,PSSIEN,.09) = SUPPLY (50.7,.09)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,5) = FORMULARY STATUS (50.7,5)^External format for the set of codes

 ^TMP($J,LIST,PSSIEN,8) = NON-VA MED (50.7,8)^External format for the set of codes (ex: 1

 flagged the med as Non-VA)

 ^TMP($J,LIST,"B",NAME,PSSIEN) = ""

 Returns the zero node of the PHARMACY ORDERABLE ITEM file (#50.7) in the ^TMP array. A check for the existence

 of the zero node will be performed. External format will be included if applicable.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4826

 NAME: DBIA4826

 USAGE: Supported ENTERED: NOV 15,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the PHARMACY PATIENT file (#55). This API is to used in

 the future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS55

 COMPONENT: PSS431(DFN,PO,PSDATE,PODATE,LIST)

 VARIABLES: DFN Type: Input

 IEN of Patient [REQUIRED]

 PO Type: Input

 Order # [optional]

 PSDATE Type: Input

 Start Date [optional]

 PEDATE Type: Input

 End Date [optional]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST ,PO,.01)=ORDER NUMBER(55.06,.01)

 ^TMP($J,LIST,PO,.5)=PATIENT NAME (DFN) (55.06,.5)^NAME (2,.01)

 ^TMP($J,LIST,PO,1)=PROVIDER (pointer value) (55.06,1)^NAME (200,.01)

 ^TMP($J,LIST,PO,3)=MED ROUTE (pointer value) (55.06,3) ^NAME (51.2,.01)

 ^TMP($J,LIST,PO,4)=TYPE (55.06,4)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,5)=SELF MED (55.06,5)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,6)=HOSPITAL SUPPLIED SELF MED (55.06,6)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,7)=SCHEDULE TYPE (55.06,7)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,11)=DAY LIMIT(55.06,11)

 ^TMP($J,LIST,PO,12)=DOSE LIMIT(55.06,12)

 ^TMP($J,LIST,PO,27)=ORDER DATE(55.06,27)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,27.1)=LOG-IN DATE(55.06,27.1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,28)=STATUS (55.06,28)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,"DDRUG",0)= Total entries returned or -1 ^NO DATA FOUND

 ^TMP($J,LIST,PO,"DDRUG",n,.01)=DISPENSE DRUG (55.07,.01)^GENERIC NAME (50,.01)

 ^TMP($J,LIST,PO,"DDRUG",n,.02)=UNITS PER DOSE(55.07,.02)

 ^TMP($J,LIST,PO,"DDRUG",n,.03)=INACTIVE DATE(55.07,.03)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,"DDRUG",n,.04)=TOTALS UNITS DISPENSED(55.07,.04)

 ^TMP($J,LIST,PO,"DDRUG",n,.05)=UNITS CALLED FOR(55.07,.05)

 ^TMP($J,LIST,PO,"DDRUG",n,.06)=UNITS ACTUALLY DISPENSED(55.07,.06)

 ^TMP($J,LIST,PO,"DDRUG",n,.07)=TOTAL RETURNS(55.07,.07)

 ^TMP($J,LIST,PO,"DDRUG",n,.08)=RETURNS(55.07,.08)

 ^TMP($J,LIST,PO,"DDRUG",n,.09)=PRE-EXCHANGE UNITS(55.07,.09)

 ^TMP($J,LIST,PO,"DDRUG",n,.1)=TOTALS EXTRA UNITS DISPENSED(55.07,.1)

 ^TMP($J,LIST,PO,"DDRUG",n,.11)=EXTRA UNITS DISPENSED(55.07,.11)

 ^TMP($J,LIST,PO,"DDRUG",n,.12)=TOTAL PRE-EXCHANGE UNITS(55.07,.12)

 ^TMP($J,LIST,"B",ORDER NUMBER)=""

 COMPONENT: PSS432(DFN,PO,LIST)

 VARIABLES: DFN Type: Input

 IEN of Patient [REQUIRED]

 PO Type: Input

 Order # [optional] If left blank, all active orders will be returned

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,PO,.01)=ORDER NUMBER(55.06,.01)

 ^TMP($J,LIST,PO,.5)=PATIENT NAME (DFN) (55.06,.5)^NAME (2,.01)

 ^TMP($J,LIST,PO,1)=PROVIDER (55.06,1) ^NAME (200,.01)

 ^TMP($J,LIST,PO,3)=MED ROUTE (55.06,3) ^NAME (51.2,.01)

 ^TMP($J,LIST,PO,4)=TYPE (55.06,4)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,5)=SELF MED (55.06,5)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,6)=HOSPITAL SUPPLIED SELF MED (55.06,6)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,7)=SCHEDULE TYPE (55.06,7)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,11)=DAY LIMIT(55.06,11)

 ^TMP($J,LIST,PO,12)=DOSE LIMIT(55.06,12)

 ^TMP($J,LIST,PO,26)=SCHEDULE (55.06,26)

 ^TMP($J,LIST,PO,27)=ORDER DATE(55.06,27)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,27.1)=LOG-IN DATE(55.06,27.1)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,28)=STATUS (55.06,28)^External Format for the Set of Codes

 ^TMP($J,LIST,"B",ORDER NUMBER)=""

 COMPONENT: PSS433(DFN,LIST)

 VARIABLES: DFN Type: Input

 IEN of Patient [REQUIRED]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,PO,.5)=PATIENT NAME (DFN) (55.06,.5)^NAME (2,.01)

 ^TMP($J,LIST,PO,9)=ORIGINAL WARD (55.06,9) ^NAME (42,.01)

 ^TMP($J,LIST,PO,25)=PREVIOUS STOP DATE/TIME(55.06,25)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,26)=SCHEDULE(55.06,26)

 ^TMP($J,LIST,PO,34)=STOP DATE/TIME(55.06,34)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,41)=ADMIN TIMES(55.06,41)

 ^TMP($J,LIST,PO,42)=FREQUENCY (in minutes)(55.06,42)

 ^TMP($J,LIST,PO,70)=ORIGINAL START DATE/TIME(55.06,70)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,"B",ORDER NUMBER)=""

 COMPONENT: PSS435(DFN,PO,LIST)

 VARIABLES: DFN Type: Input

 IEN of Patient [REQUIRED]

 PO Type: Input

 Order # [optional] If left blank, all active orders will be returned.

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,PO,.01)=ORDER NUMBER(55.01,.01)

 ^TMP($J,LIST,PO,.02)=START DATE/TIME(55.01,.02)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,.03)=STOP DATE/TIME(55.01,.03)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,PO,.04)=TYPE (55.01,.04)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,.06)=PROVIDER (55.01,.06)^NAME (200,.01)

 ^TMP($J,LIST,PO,.08)=INFUSION RATE(55.01,.08)

 ^TMP($J,LIST,PO,.09)=SCHEDULE(55.01,.09)

 ^TMP($J,LIST,PO,.12)=ADMINISTRATION TIMES(55.01,.12)

 ^TMP($J,LIST,PO,.17)=SCHEDULE INTERVAL(55.01,.17)

 ^TMP($J,LIST,PO,.24)=CUMULATIVE DOSES(55.01,.24)

 ^TMP($J,LIST,PO,9)=ORIGINAL WARD (55.01,9)^NAME (42,.01)

 ^TMP($J,LIST,PO,31)=OTHER PRINT INFO (55.01,31)

 ^TMP($J,LIST,PO,100)=STATUS (55.01,100)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,104)=WARD(55.01,104)

 ^TMP($J,LIST,PO,106)=CHEMOTHERAPY TYPE (55.01,106)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,108)=INTERMITTENT SYRINGE(55.01,108)

 ^TMP($J,LIST,PO,110)=ORDERS FILE ENTRY(55.01,110)

 ^TMP($J,LIST,PO,112)=ATZERO (55.01,112)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,120)=OERR HOLD FLAG (55.01,120)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,121)=AUTO DC (55.01,121)^External Format for the Set of Codes

 ^TMP($J,LIST,PO,132)=MED ROUTE (55.01,132)^NAME (51.2,.01)

 ^TMP($J,LIST,"B",ORDER NUMBER)=""

 COMPONENT: PSS436(DFN,ORDER,LIST)

 VARIABLES: DFN Type: Input

 Internal Entry Number of patient in PHARMACY PATIENT file [REQUIRED]

 Type:

 ORDER Type: Input

 ORDER NUMBER [REQUIRED]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,0)=Total entries returned by patient or -1^NO DATA FOUND

 ^TMP($J,LIST,ORDER,.01)=ORDER NUMBER(55.01,.01)

 ^TMP($J,LIST,ORDER,.02)=START DATE/TIME(55.01,.02)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,ORDER,.03)=STOP DATE/TIME (55.01,.03)^External Format (ex: Sep. 12, 1999)

 ^TMP($J,LIST,ORDER,.04)=TYPE (55.01,.04)^External Format for the Set of Codes

 ^TMP($J,LIST,ORDER,.06)=PROVIDER(55.01,.06)^NAME (200,.01)

 ^TMP($J,LIST,ORDER,.08)=INFUSION RATE(55.01,.08)

 ^TMP($J,LIST,ORDER,.09)=SCHEDULE(55.01,.09)

 ^TMP($J,LIST,ORDER,.12)=ADMINISTRATION TIMES(55.01,.12)

 ^TMP($J,LIST,ORDER,.17)=SCHEDULE INTERVAL(55.01,.17)

 ^TMP($J,LIST,ORDER,.24)=CUMULATIVE DOSES(55.01,.24)

 ^TMP($J,LIST,ORDER,9)=ORIGINAL WARD (55.01,9)^NAME (42,.01)

 ^TMP($J,LIST,ORDER,31)=OTHER PRINT INFO (55.01,31)

 ^TMP($J,LIST,ORDER,100)=STATUS (55.01,100)^External Format for the Set of Codes

 ^TMP($J,LIST,ORDER,104)=WARD(55.01,104)

 ^TMP($J,LIST,ORDER,106)=CHEMOTHERAPY TYPE (55.01,106)^External Format for the Set of Codes

 ^TMP($J,LIST,ORDER,108)=INTERMITTENT SYRINGE (55.01,108)^External Format for the Set of Codes

 ^TMP($J,LIST,ORDER,110)=ORDERS FILE ENTRY(55.01,110)

 ^TMP($J,LIST,ORDER,112)=ATZERO (55.01,112)^External Format for the Set of Codes

 ^TMP($J,LIST,ORDER,120)=OERR HOLD FLAG (55.01,120)^External Format for the Set of Codes

 ^TMP($J,LIST,ORDER,121)=AUTO DC (55.01,121)^External Format for the Set of Codes

 ^TMP($J,LIST,ORDER,132)=MED ROUTE (55.01,132)^NAME (51.2,.01)

 ^TMP($J,LIST,ORDER,147)=BCMA EXPIRED FLAG (55.01,147)^External Format for the Set of Codes

 ^TMP($J,LIST,IEN,"ADD",0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,ORDER,"ADD",n1,.01)=ADDITIVE (55.02,.01)^PRINT NAME (52.6,.01)

 ^TMP($J,LIST,ORDER,"ADD",n1,.02)=STRENGTH(55.02,.02)

 ^TMP($J,LIST,ORDER,"ADD",n1,.03)=BOTTLE(55.02,.03)

 ^TMP($J,LIST,IEN,"SOL",0)=Total entries returned or -1^NO DATA FOUND

 ^TMP($J,LIST,ORDER,"SOL",n2,.01)=SOLUTION (55.11,.01)^PRINT NAME (52.7,.01)

 ^TMP($J,LIST,ORDER,"SOL",n2,1)=VOLUME(55.11,1)

 ^TMP($J,LIST,"B",ORDER NUMBER)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4828

 NAME: DBIA4828

 USAGE: Supported ENTERED: NOV 15,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by PDM (Pharmacy Data Management) as an API to the PHARMACY SYSTEM file (#59.7). This API is to used in

 the future by all packages accessing this file as all the Pharmacy packages are being re-engineered.

 ROUTINE: PSS59P7

 COMPONENT: PSS(PSSIEN,PSSTXT,LIST)

 VARIABLES: PSSIEN Type: Input

 Internal Entry Number from PHARMACY SYSTEM file [optional]

 PSSTXT Type: Input

 Free text entry [optional]

 LIST Type: Input

 Subscript name used in ^TMP global [REQUIRED]

 TMP Type: Output

 ^TMP($J,LIST,PSOIEN,40.1)=ADMISSION CANCEL OF RXS (59.7,40.1 - S)^External Format for the Set

 of Codes

 ^TMP($J,LIST,PSOIEN,49.99)=OUTPATIENT VERSION(59.7,49.99)

 ^TMP($J,LIST,PSSIEN,81)=ORDERABLE ITEM STATUS TRACKER (59.7,81)^External Format for the Set

 of Codes

 ^TMP($J,LIST,"B",SITE NAME,PSOIEN)=""

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4846

 NAME: DBIA4846

 USAGE: Supported ENTERED: APR 13,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 50 ROOT: PSDRUG(

 DESCRIPTION: TYPE: File

 This DBIA allows for subscribing packages to store a pointer to the Vista DRUG (#50) file. This number can be used as an

 Identification Number to retrieve data.

 ^PSDRUG(

 .O1 GENERIC NAME 0;1 Pointed to

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: PHARMACY DATA MANAGEMENT
 ICR#: 4928

 NAME: DATA RETRIEVAL FROM FILE 55

 USAGE: Supported ENTERED: NOV 24,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA is provided by Pharmacy Data Management (PSS) as an API to do data retrieval from File 55 using various methods.

 ROUTINE: PSS55MIS

 COMPONENT: STATUS(PSSFILE,PSSFIELD,LIST)

 VARIABLES: PSSFILE Type: Input

 Subfile number from the PHARMACY PATIENT file (#55) [required]

 PSSFIELD Type: Input

 Field number from the specified file associated with the value in PSSFILE

 LIST Type: Input

 Array name defined by the calling application [required]

 PSSDIY Type: Output

 PSODIY will return null if the value for PSOFILE is valid (it will return -1 if conditions

 were not met)

 See VA FileMan Programmer Manual for DIC output definition

 This API simulates fileman DIC calls and is to be used by packages seeking access to the STATUS (#28) field of

 the UNIT DOSE (55.06) subfile, STATUS (#100) field of the IV (55.01) subfile, or STATUS (#5) field of the

 NON-VA MEDS (55.05) subfile from the PHARMACY PATIENT (#55) file.

 FORMAT: D STATUS^PSS55MIS(PSSFILE,PSSFIELD,LIST)

 COMPONENT: CLINIC(PSSORD,PSSDFN,PSSMED)

 VARIABLES: PSSORD Type: Input

 Order Number from either the IV sub-file (#55.01) or UNIT DOSE sub-file (#55.06) of the

 PHARMACY PATIENT file (#55) [required]

 PSSDFN Type: Input

 IEN from the PATIENT file (#2) [required]

 PSSMED Type: Input

 "I" to return entries from the IV sub-file (#55.01) or "U" for entries from the UNIT DOSE

 sub-file (#55.06) [required]

 $$CLINIC Type: Output

 $$CLINIC = clinic number^clinic name WHERE: clinic number = IEN from the HOSPITAL LOCATION

 file (#44) clinic name = NAME field (# .01) from the HOSPTIAL LOCATION file (#44)

 Returns a clinic from the HOSPITAL LOCATION file (#44) based on a provided order number and patient DFN.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: QUASAR
 ICR#: 5494

 NAME: ACKQ A&SP STAFF CONVERSION

 USAGE: Supported ENTERED: AUG 3,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These API's facilitate retrieving A&SP Staff file (#509850.3) information that corelates to the NEW PERSON file (#200).

 ROUTINE: ACKQUTL4

 COMPONENT: $$CONVERT(ACKQPRV)

 VARIABLES: ACKQPRV Type: Input

 IEN of the A&SP Staff file (#509850.3).

 $$CONVERT Type: Output

 The function returns the corresponding IEN from file 200. Returns 0 if IEN not found.

 Converts IEN from file 509850.3 to Name String from file 200.

 COMPONENT: $$CONVERT1(ACKQPRV)

 VARIABLES: ACKQPRV Type: Input

 IEN of the A&SP Staff file (#509850.3).

 $$CONVERT1 Type: Output

 The function returns the corresponding IEN from file 200. Returns 0 if IEN not found.

 Converts IEN from file 509850.3 to file 200 IEN.

 COMPONENT: $$CONVERT2(ACKQPRV)

 VARIABLES: ACKQPRV Type: Input

 IEN of the A&SP Staff file (#509850.3).

 $$CONVERT2 Type: Output

 The function returns the corresponding IEN from file 200. Returns 0 if IEN not found.

 Converts IEN from file 509850.3 to file 200 IEN

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RADIOLOGY/NUCLEAR MEDICINE
 ICR#: 2043

 NAME: DBIA2043

 USAGE: Supported ENTERED: JUN 27,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 EN1^RAO7PC1 can be used to return a list of a patient's Rad/Nuc Med procedures and related information. Cancelled exams may

 be included, depending upon the RACINC input parameter. Exam ID output can be used as input to another API to retrieve result

 reports. (See DBIA #2265) Report ien output can also be used to retrieve a report. (See DBIA #1177)

 ROUTINE: RAO7PC1

 COMPONENT: EN1(RADFN,RABDT,RAEDT,RAEXN,RACINC)

 VARIABLES: RADFN Type: Input

 Internal entry number (ien) of the patient in the Rad/Nuc Med Patient file #70. (Note: this

 ien is the same ien used in the Patient file #2. File 70 is DINUMED to file 2. RADFN is

 also known as the patient ien.

 RABDT Type: Input

 Beginning date used to extract exam data for a specific time frame.

 RAEDT Type: Input

 Ending date used to extract exam data for a specific time frame.

 RAEXN Type: Input

 Maximum number of exams to extract within a time frame. If RAEXN is numeric, then each case

 within a parent procedure is counted separately. However, if RAEXN has a trailing "P", then

 all cases within a parent procedure are counted together as 1.

 RACINC Type: Input

 Include cancelled exams flag (1 if yes, default is no). This input parameter was added in

 RA*5.0*26. A later patch, RA*5.0*36, further restricts when cancelled cases would be

 returned: (1) case's division's ALLOW RPTS ON CANCELLED CASES? is "Y" and (2) case has a

 report.

 TMP($J,'RA Type: Output

 ^TMP($J,"RAE1",patient ien,exam id)= procedure name^case number^report status^ abnormal

 alert flag^report ien^exam status order #~exam status name^imaging location name^ imaging

 type abbr~imaging type name^ abnormal results flag^CPT Code^CPRS Order ien^ Images exist flag

 subscripts

 Patient ien: Internal entry number of the patient in both the Rad/Nuc Med Patient file #70

 and the Patient file #2.

 Exam Id: Reverse exam date/time of the exam concatenated to the ien of the case. Example:

 7019698.9093-1 (where the exam date/time is 03/01/1998@9:06am and the case ien is 1.

 '70119689.9093' is derived from: 9999999.9999-2980301.0906)

 array value (in ascending piece position)

 Procedure Name: Name of the procedure in the Rad/Nuc Med Procedure file #71. It is possible

 for users to change the procedure prior to the exam reaching a 'COMPLETE' status.

 Case Number: Identifying external case number for an exam. Can be a number between 1 and

 99999.

 Report Status: External name of the report status. Possible statuses include: DRAFT, PROBLEM

 DRAFT, RELEASED/NOT VERIFIED, VERIFIED and NO REPORT. It is possible for the exam to have a

 report with a 'NO REPORT' status. A 'NO REPORT' status refers to a stub report that was

 created for the Imaging package file of images, this stub report record has no data entered

 by Radiology/Nuclear Medicine staff.

 Abnormal Alert Flag: Set to 'Y' if an abnormal diagnostic code is assigned to this case,

 blank if no abnormal code. A diagnostic code is considered abnormal if its entry in the

 Diagnostics Codes file #78.3 contains a 'Y' in the 'Generate Abnormal Alert' field.

 Report ien: This is the internal entry number of a report in the Rad/Nuc Med Reports file

 #74.

 Exam Status Order Number: A number between 0 and 9 where: 0=cancelled, 1=waiting for exam &

 9=complete. All other order numbers are site configurable.

 Exam Status Name: External representation of exam status. Examples: WAITING FOR EXAM,

 EXAMINED, CANCELLED and COMPLETE.

 Imaging Location Name: Name of the imaging location in the Imaging Location file #79.1. This

 file points to the Hospital Location file #44. These files are not DINUMED.

 Imaging Type Abbreviation: This is a 1-4 character abbreviation of the imaging type of the

 exam. Examples: ANI, CARD, CT, MAM, MRI, NM, RAD, US and VAS.

 Imaging Type Name: External representation of the imaging type name. Examples:

 ANGIO/NEURO/INTERVENTIONAL, CARDIOLOGY STUDIES (NUC MED), CT SCAN, GENERAL RADIOLOGY,

 MAGNETIC RESONANCE IMAGING, MAMMOGRAPHY, NUCLEAR MEDICINE, ULTRASOUND and VASCULAR LAB.

 Abnormal Results Flag: Set to 'Y' if our primary diagnostic code has the field, PRINT ON

 ABNORMAL REPORT set to 'Yes'. If the field is set to any other value than 'Yes', our flag

 value is blank (null).

 CPT Code: This is the Current Procedural Terminology (CPT) code assigned to the registered

 procedure. Detailed and Series procedure types have CPT codes. Broad and Parent procedure

 types do not have CPT codes.

 CPRS Order ien: This is a pointer data type that indicates the record number of the order in

 the Order Entry/Results Reporting (OE/RR) package. This piece will be non-null if the OE/RR

 package is running and the Radiology/Nuclear Medicine package is available through OE/RR.

 Images exist flag: Set to 'Y' if images are associated with the report identified by Report

 ien above. If no images exist this flag will be set to 'N'. This flag was introduced in

 RA*5.0*26.

 Patch RA*5.0*10 provides additional ^TMP nodes for optional retrieval:

 Output: ^TMP($J,"RAE1",patient ien, exam id,"CMOD",n)= CPT modifier^CPT modifier name

 where n=1,2,3...total number of CPT modifiers for the exam

 Patch RA*5.0*36 provides additional ^TMP nodes for optional retrieval:

 Output: ^TMP($J,"RAE1",patient ien, exam id,"CPRS")= member of set^parent procedure name

 where member of set is the value of MEMBER OF SET in subfile 70.03

 If the name of the Parent Procedure cannot be found, then "PARENT PROCEDURE" will be put into

 the second piece.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RADIOLOGY/NUCLEAR MEDICINE
 ICR#: 2266

 NAME: Rad/Nuc Med return report narrative text (order)

 USAGE: Supported ENTERED: JAN 20,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION: SEE ALERT

 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 EN30^RAO7PC1 can be used to return report narrative text associated with a patient's order.

************** END OF ICR RECORD ***************
************** END OF ICR RECORD ***************
************** END OF ICR RECORD ************** END OF ICR RECORD *************************

 ***************** REASON FOR STUDY data will NOT be available until AFTER

 ***************** the release of patch RA*5.0*75 by the RADIOLOGY product.

************** END OF ICR RECORD ***************
************** END OF ICR RECORD ***************
************** END OF ICR RECORD ************** END OF ICR RECORD ***********************

 ROUTINE: RAO7PC1

 COMPONENT: EN30(RAOIFN)

 VARIABLES: ** Please note that REASON FOR STUDY data will not be captured until the release of RA*5.0*75 **

 EN30^RAO7PC1(RAOIFN)

 Input: RAOIFN = Internal entry number (IEN) of the order requested.

 Output: ^TMP($J,"RAE2",patient IEN,case IEN,procedure name)=report

 status^abnormal flag^CPRS Order IEN

 subscripts

 Patient IEN: IEN of the patient in both the Rad/Nuc Med

 Patient file #70 and the Patient file #2.

 Case IEN: IEN of the exam this data is extracted from.

 Procedure Name: Name of the procedure in the Rad/Nuc Med

 Procedure file #71. It is possible for users to change

 the procedure prior to the exam reaching a 'COMPLETE'

 status.

 array value (in ascending piece position)

 Report Status: External name of the report status.

 Possible statuses include: DRAFT, PROBLEM DRAFT,

 RELEASED/NOT VERIFIED, VERIFIED and NO REPORT. It

 is possible for the exam to have a report ien with a

 'NO REPORT' status. A 'NO REPORT' status refers to a

 stub report that was created for the Imaging package

 file of images, this stub report record has no data

 entered by Radiology/Nuclear Medicine staff.

 Abnormal Alert Flag: Will be set to "Y" if the Primary Dx

 Code or Secondary Dx Code (if any) associated with this

 exam specifies that an Abnormal Alert be generated. Will

 be null if present Dx Codes do not specify Abnormal Alert

 generation.

 CPRS Order IEN: This is a pointer data type that

 indicates the record number of the order in the Order

 Entry/Results Reporting (OE/RR) package. This piece

 will be non-null if the OE/RR package is running and

 the Radiology/Nuclear Medicine package is available

 through OE/RR.

 Additional output

 Note: The subscripts used in these data arrays are used in

 the data globals listed below. For subscript definitions,

 check section called 'subscripts' listed above.

 ^TMP($J,"RAE2",patient IEN,case IEN,procedure name,"D",n)

 Array Value

 Diagnostic code (n=1, this is the primary Dx returned in a

 brief text format)

 ^TMP($J,"RAE2",patient IEN,case IEN,procedure name,"H",n)

 Array Value

 Clinical History (a line of text)

 ^TMP($J,"RAE2",patient IEN,case IEN,procedure name,"I",n)

 Array Value

 Impression Text (a line of text)

 ^TMP($J,"RAE2",patient IEN,case IEN,procedure name,"M",n)

 Array Value

 Modifier(s) (external format)

 ^TMP($J,"RAE2",patient IEN,case IEN,procedure name,"R",n)

 Array Value

 Report Text (a line of text)

 ^TMP($J,"RAE2",Patient IEN,case IEN,procedure name,"RFS")

 Array Value

 Reason for Study (a line of text)

 ^TMP($J,"RAE2",Patient IEN,case IEN,procedure name,"CM",n)

 Array Value

 If applicable, the contrast media used during exam.

 Format: internal value^external value

 ^TMP($J,"RAE2",patient IEN,case IEN,procedure name,"V")

 Array Value (in ascending piece position)

 Verifier IEN: IEN of the physician verifying the report.

 Signature Block Name: The name of the user as they wish it

 to appear with the notation that they signed the document

 electronically.

 ^TMP($J,"RAE2",patient IEN,"PRINT_SET")

 Array Value

 Null (exists iff this is a printset)

 ^TMP($J,"RAE2",patient IEN,"ORD")

 Array Value

 Name of ordered parent procedure for examsets and printsets.

 ^TMP($J,"RAE2",patient IEN,"ORD",case IEN)

 Array Value

 Name of orderer procedure, this may differ from the procedure

 registered. This global will be defined when the ordered

 procedure is not a parent procedure. (Not an examset or

 printset)

 ^TMP($J,"RAE2",patient IEN,case IEN,procedure name,"TCOM",1)

 Array value

 most recent technologist comment for this case

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RADIOLOGY/NUCLEAR MEDICINE
 ICR#: 2267

 NAME: Rad/Nuc Med return imaging location information

 USAGE: Supported ENTERED: JAN 20,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 EN4^RAO7PC1 can be used to return a list of valid, active imaging locations within a particular imaging type.

 ROUTINE: RAO7PC1

 COMPONENT: EN4(RABBRV,RAARY)

 VARIABLES: EN4^RAO7PC1(RABBRV,RAARY)

 Input: RABBRV = The abbreviation of the imaging type as it appears in

 the Imaging Type file #79.2. (Examples: ANI, CARD, CT, MAM, MRI,

 NM, RAD US and VAS)

 RAARY = This is the local array name in which the subscribing

 package would like the data returned. Returns a list of valid,

 active imaging locations associated with a specific imaging

 type.

 Output: local_array_name(file #79.1 ien)=ien Imaging Locations file

 #79.1^Hospital Location Name^ien Rad/Nuc Med Division file #79^

 Division Name (from file #4)

 subscripts

 file #79.1 ien: The internal entry number of the record in the

 Imaging Locations file.

 array value (in ascending order)

 ien Imaging Locations file #79.1: The internal entry number of

 the record in the Imaging Locations file.

 Hospital Location Name: The name of the Hospital Location.

 This is derived from the Imaging Locations file #79.1 entry.

 The Imaging Locations file #79.1 points to the Hospital

 Location file #44.

 ien Rad/Nuc Med Division file #79: The internal entry number of

 the record in the Rad/Nuc Med Division file.

 Division Name: The name of the Rad/Nuc Med Division. The

 Rad/Nuc Med Division file points to the Institution file #4.

 The division name is taken from the Institution file. The

 Rad/Nuc Med Division file #79 is DINUMED to the Institution

 file #4.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RADIOLOGY/NUCLEAR MEDICINE
 ICR#: 2268

 NAME: Rad/Nuc Med exam case numbers linked to an order

SUBSCRIBING PACKAGE: ORDER ENTRY/RESULTS REPORTING

 USAGE: Supported ENTERED: JAN 20,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 CASE^RAO7PC1 is an extrinsic function that can be used to retrieve the exam case numbers associated with an order. It returns

 the case numbers, the total number of exams linked to the order, and a flag indicating whether these exams are linked to a

 single report.

 ROUTINE: RAO7PC1

 COMPONENT: CASE(RAOIFN,RARRAY)

 VARIABLES: CASE^RAO7PC1(RAOIFN,RARRAY)

 Input: RAOIFN = Internal entry number of the order requested.

 RARRAY = This is the local array name in which the subscribing

 package would like data returned. Returns an array subscripted

 by case number(s) for non-cancelled exam(s) associated with the

 order. It also returns a string in which the first piece is

 the number of exam(s) linked to the order. The second piece

 indicates whether or not the exam(s) are part of a printset.

 Output: local_array_name(case number)=total number of exams

 -or- error code^printset -or- error code text

 subscripts

 Case Number: This is the case number of the non-cancelled exam

 linked to an order. All registered exams have case numbers.

 array value (in ascending order)

 First Piece: This can be a positive number indicating

 the number of exam(s) registered for a single order. It also

 may be an error code. For example, if an order is requested

 for an exam set, and we register three exams, the first piece

 would be a three. An error code of '-1' will exist if the

 order number is invalid. An error code of '-2' will exist

 if all the exams for this order are cancelled, or if we have

 not registered exams for the order at the time of the data

 extract.

 Second Piece: If the second piece equals the string,

 'PRINTSET', the exams are part of a special exam set. The

 PRINTSET links all the exams of an exam set to a single report.

 If the first piece is a negative number, then the second piece

 defines the error code. Examples: 'cases cancelled', 'no case

 registered to date' or 'invalid order ien' are valid error code

 descriptors.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RADIOLOGY/NUCLEAR MEDICINE
 ICR#: 2877

 NAME: DBIA2877

 USAGE: Supported ENTERED: DEC 6,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Either EN3^RAO7PC3 or EN30^RAO7PC3 can be used to return an entire Radiology/NM report, the same report that is automatically

 e-mailed to the requesting physician when a report has been verified.

 ROUTINE: RAO7PC3

 COMPONENT: EN3(X)

 VARIABLES: X Type: Input

 X can be either: Patient's DFN^inverse exam date^Case IEN -or-

 Patient's DFN^inverse exam date^

 The first will retrieve a single report for a single exam. The second will retrieve all

 reports for a set of exams that were ordered on the same order.

 Returns: ^TMP($J,"RAE3",Patient IEN,Case IEN,Procedure Name,n)=line n of report

 The first line of the report passes the patient name (truncated to 20 chars max), the SSN, and the age of the

 patient (at the time the software is executed).

 Example:

 ^TMP(539390038,"RAE3",21,1,"CHEST 2 VIEWS PA&LAT",1) = OUTPATIENT,SIXTEEN B 000-00-0000 72 yr. old male

 Subscripts

 Patient ien: Internal entry number of the patient in both the

 Rad/Nuc Med Patient file #70 and the Patient file #2.

 Case IEN: Internal entry number of the exam that this date is

 extracted from.

 Procedure Name: Name of the procedure in the Rad/Nuc Med

 Procedure file #71. It is possible for users to change

 the procedure prior to the exam reaching a 'COMPLETE'

 status.

 n: sequential number that corresponds to the nth line of the

 report from Radiology/NM.

 Additional output

 For subscript definitions, check the section called 'subscripts' listed above.

 ^TMP($J,"RAE3",Patient IEN,"PRINT_SET") Array Value

 Null (exists if and only if this is a printset).

 ^TMP($J,"RAE3",Patient IEN,"ORD") Array Value

 Name of ordered procedure for examsets and printsets.

 ^TMP($J,"RAE3",Patient IEN,"ORD",Case IEN) Array Value

 Name of ordered procedure, this may differ from the procedure registered. This global will be defined when the

 ordered procedure is not a parent procedure. (Not an examset or printset).

 COMPONENT: EN30(X)

 VARIABLES: X Type: Input

 X is the internal entry number (ien) of the record in the RAD/NUC MED REPORTS (#74) file.

 Returns: ^TMP($J,"RAE3",Patient IEN,Case IEN,Procedure Name,n)=line n of report

 Subscripts

 Patient ien: Internal entry number of the patient in both the

 Rad/Nuc Med Patient file #70 and the Patient file #2.

 Case IEN: Internal entry number of the exam that this date is

 extracted from.

 Procedure Name: Name of the procedure in the Rad/Nuc Med

 Procedure file #71. It is possible for users to change

 the procedure prior to the exam reaching a 'COMPLETE'

 status.

 n: sequential number that corresponds to the nth line of the

 report from Radiology/NM.

 Additional output

 For subscript definitions, check the section called 'subscripts' listed above.

 ^TMP($J,"RAE3",Patient IEN,"PRINT_SET") Array Value

 Null (exists if and only if this is a printset).

 ^TMP($J,"RAE3",Patient IEN,"ORD") Array Value

 Name of ordered procedure for examsets and printsets.

 ^TMP($J,"RAE3",Patient IEN,"ORD",Case IEN) Array Value

 Name of ordered procedure, this may differ from the procedure registered. This global will be defined when the

 ordered procedure is not a parent procedure. (Not an examset or printset).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 263

 NAME: DBIA263-A

 USAGE: Supported ENTERED: AUG 10,1993

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VAFHLPID

 COMPONENT: $$EN(DFN,VAFSTR,VAFNUM,PTID)

 VARIABLES: DFN Type: Input

 Pointer to entry in PATIENT file (#2)

 VAFSTR Type: Input

 String of requested fields separated by commas (ex: 1,2,3)

 VAFNUM Type: Input

 Sequential number for SET ID (sequence 1). Default value is '1'.

 PTID Type: Input

 Flag denoting which Patient ID (sequence 3) to use

 0 - Use DFN formatted as data type CK (default)

 1 - Use ICN

 2 - Use DFN formatted as data type CX

 3 - Use SSN (with dashes)

 VAFPID(1) Type: Output

 If the returned string is longer than 245 characters, the remaining characters will be

 returned in VAFPID(1). VAFPID(1) will not be set if the returned string is less than 245

 characters.

 Assumed Va Type: Input

 Call assumes that all HL7 variables returned from INIT^HLTRANS are defined

 Function call returns the standard HL7 PID segment for a given patient

 ** Warning ** This function makes external calls to VADPT. Non-namespaced variables may be altered.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 1154

 NAME: DIC(45.7,

 USAGE: Supported ENTERED: MAR 2,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 45.7 ROOT: DIC(45.7,

 DESCRIPTION: TYPE: File

 The integration agreement allows reading (with FileMan only) the SPECIALTY field (#1) of the FACILITY TREATING SPECIALTY file

 (#45.7).

 ^DIC(45.7,D0,0)

 1 SPECIALTY 0;2 Read w/Fileman

 Pointer to Specialty File.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 1246

 NAME: DGPMDDCF CALLS

 USAGE: Supported ENTERED: JUL 20,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This agreement allows other packages to call the following tags in the routine DGPMDDCF: WIN, RIN, BOS, AUTH, and OPER.

 These calls return info on whether wards and beds are in service and the number of beds in service, authorized, and operating

 for a given ward.

 ROUTINE: DGPMDDCF

 COMPONENT: WIN

 VARIABLES: D0 Type: Input

 IEN of WARD LOCATION file.

 DGPMOS Type: Input

 Date to determine if ward is out of service as of.

 X Type: Output

 1 if ward out of service, 0 if in service, or -1 if input variables not defined properly.

 Requires D0 to be passed as the IEN of the WARD LOCATION (file #42) which you'd like to know is active or not.

 DGPMOS can be passed as a date to compute whether the ward is in service (it assumes DT if not defined).

 Returns a 1 if ward is inactive as of date or 0 if it's active. -1 returned if D0 not defined or date not

 valid.

 COMPONENT: RIN

 VARIABLES: D0 Type: Input

 IEN of ROOM-BED file

 DGPMOS Type: Input

 Date for which you'd like to know if room-bed is in service. Optional: assumes DT if left

 undefined.

 X Type: Output

 Returned as 1 if bed is out of service, 0 if it's in service, or -1 if the input variables

 are not defined properly.

 Requires D0 to be passed as the IEN of the ROOM-BED (file #405.4) which you'd like to know is active or not.

 DGPMOS can be passed as a date to compute whether the bed is in service (it assumes DT if not defined).

 Returns a 1 if bed is inactive as of date or 0 if it's active. -1 returned if D0 not defined or date not

 valid.

 COMPONENT: BOS

 VARIABLES: D0 Type: Input

 IEN of WARD LOCATION file

 DGPMOS Type: Input

 Date for which to return calculation. Assumes DT if undefined.

 X Type: Output

 Number of beds out of service on ward as of date in question.

 Computes number of beds out of service for a given ward. D0 defines the WARD LOCATION IEN and DGPMOS can be

 passed as the date on which to make the computation (assumes DT if undefined).

 COMPONENT: AUTH

 VARIABLES: D0 Type: Input

 IEN of WARD LOCATION file

 DGPMOS Type: Input

 Optional variable defining date for which to return calculation. Assumes DT if left

 undefined.

 X Type: Output

 Number of authorized beds for ward requested as of date selected.

 Returns number of authorized beds for WARD LOCATION defined by D0 as of date defined in DGPMOS (assumes DT if

 not defined).

 COMPONENT: OPER

 VARIABLES: D0 Type: Input

 IEN of WARD LOCATION file

 DGPMOS Type: Input

 Optional variable to define date for which you'd like number of operating beds returned.

 Assumes DT if left undefined.

 X Type: Output

 Number of operating beds for ward requested on date input.

 Computes the number of operating beds for a WARD LOCATION defined in the variable D0 on a date defined by

 DGPMOS (assumes DT if left undefined).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 2664

 NAME: OBSERVATION API

 USAGE: Supported ENTERED: DEC 24,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Routine DGPMOBS provides three entry points (MVT, PT, and SPEC) to determine if a patient's treating specialty for a specified

 movement or date/time is or was an observation specialty.

 ROUTINE: DGPMOBS

 COMPONENT: $$MVT

 VARIABLES: IFN Type: Input

 IFN = PATIENT MOVEMENT (#405) file internal entry number. (Required)

 OBS Type: Output

 If specialty associated with the specified PATIENT MOVEMENT (#405) entry is an observation

 treating specialty, function call returns:

 1^FACILITY TREATING SPECIALTY (#45.7) file IEN^FACILITY TREATING SPECIALTY (#45.7) file

 name^SPECIALTY (#42.4) file IEN^SPECIALTY (#42.4) file name

 If specialty associated with the specified PATIENT MOVEMENT (#405) entry is not an

 observation treating specialty, function call returns:

 0^FACILITY TREATING SPECIALTY (#45.7) file IEN^FACILITY TREATING SPECIALTY (#45.7) file

 name^SPECIALTY (#42.4) file IEN^SPECIALTY (#42.4) file name

 If PATIENT MOVEMENT (#405) file internal entry number not defined or invalid, function call

 returns:

 -1^Error condition

 $$MVT^DGPMOBS(IFN) returns the observation status based on the treating specialty associated with a specified

 PATIENT MOVEMENT (#405) file entry.

 COMPONENT: $$PT

 VARIABLES: DFN Type: Input

 DFN = PATIENT (#2) file DFN (Required)

 MVTDT Type: Input

 MVTDT = File Manager date/time (Optional) If date/time not defined, the current date/time

 will be used.

 OBS Type: Output

 If patient was in an observation treating specialty on the designated date/time, function

 call returns:

 1^FACILITY TREATING SPECIALTY (#45.7) file IEN^FACILITY TREATING SPECIALTY (#45.7) file

 name^SPECIALTY (#42.4) file IEN^SPECIALTY (#42.4) file name

 If patient was not in an observation treating specialty on the designated date/time, function

 call returns:

 0^FACILITY TREATING SPECIALTY (#45.7) file IEN^FACILITY TREATING SPECIALTY (#45.7) file

 name^SPECIALTY (#42.4) file IEN^SPECIALTY (#42.4) file name

 If PATIENT (#2) file internal entry number not defined or invalid, function call returns:

 -1^Error condition

 $$PT^DGPMOBS(DFN,MVTDT) returns the observation status for a patient based on the treating specialty on a

 designated date/time. If no date/time is specified, the current date/time is used.

 COMPONENT: $$SPEC

 VARIABLES: SPIFN Type: Input

 SPIFN = SPECIALTY (#42.4) file internal entry number. (Required)

 TX Type: Output

 1 = Is an observation specialty

 0 = Not an observation specialty

 -1^Error condition

 $$SPEC^DGPMOBS(SPIFN) determines if a SPECIALTY (#42.4) file entry is an observation treating specialty.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 2716

 NAME: DG MST STATUS API'S

 USAGE: Supported ENTERED: JAN 19,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The purpose of these API's is to facilitate the entry and retrieval of Military Sexual Trauma status information on veterans.

 The primary mechanism is within the Registration package, but data will be requested from, and eventually updated from

 Scheduling and Patient Care Encounters. VAH Directive 98-058 "Sexual Trauma Counseling Care and Services", provides the

 guidance on this data collection.

 ROUTINE: DGMSTAPI

 COMPONENT: $$NEWSTAT(DFN,DGSTAT,DGDATE,DGPROV,DGSITE,DGXMIT)

 VARIABLES: DFN Type: Input

 Internal entry number for patient in the PATIENT File (#2)

 DGSTAT Type: Input

 MST Status code, "Y,N,D,U"

 Y - Yes, Screened reports MST

 N - No, Screened does not report MST

 D - Screened, declines to answer

 U - Unknown, not screened

 DGDATE Type: Input

 Date of MST status change [Optional]. Defaults to NOW if parameter is NULL.

 DGPROV Type: Input

 Provider making MST status determiniation, pointer to ^VA(200)

 $$NEWSTAT Type: Output

 Returns either the IEN of the new file entry, or -1^error message if file update fails.

 DGXMIT Type: Input

 HL7 trasmit flag [Optonal].

 0 = don't queue a Z07 message.

 1 = queue a Z07 message [Default].

 DGSITE Type: Input

 Site Determining MST Status [Optional]. IEN pointer of the INSTITUTION file (#4) for a

 Station number. If this parameter is NULL, the current Primary Station number pointer to the

 INSTITUTION file (#4) will be filed.

 Will enter new or edited Military Sexual Trauma (MST) status data for a veteran into the MST HISTORY File

 (#29.11). This is an historical entry and will be added in addition to any previous entries.

 A verification check is made on the new or edited MST status entry before allowing any data to be filed

 to file (#29.11).

 If the verification check is successful and the DGXMIT variable equals a value of 1, an Enrollment Full

 Data Transmission (ORF/ORU~Z07) HL7 message will be triggered to the VistA Enrollment module for transmission

 to the Health Eligibility Center (HEC).

 The Internal Entry Number (IEN) of the new entry in File (#29.11) is returned if the entry was

 successful, else an error message is returned in the format: -1^error message.

 The HEC will transmit the new MST Status data to all sites of record for the patient via an

 Enrollment/Eligibility (ORF/ORU~Z11) HL7 message.

 No HL7 Z07 message will be triggered if the MST Status change event is the result of an update received

 from the HEC via an HL7 Z11 message.

 COMPONENT: $$GETSTAT(DFN,DGDATE)

 VARIABLES: DFN Type: Input

 IEN of patient in the PATIENT File (#2)

 DGDATE Type: Input

 Date to check MST status on, [Optional]. If not passed in, default of TODAY is used.

 $$GETSTAT Type: Output

 Piece 1 - IEN of entry in MST HISTORY File (#29.11) Piece 2 - Internal value of MST Staus

 ("Y,N,D,U") Piece 3 - Date of status change Piece 4 - IEN of provider making determination,

 NEW USER File (#200) Piece 5 - IEN of user who entered status, NEW USER File (#200) Piece 6

 - External format of MST Status Piece 7 - IEN pointer of the INSTITUTION file (#4).

 If no MST history entry is found for the patient, a

 "0^U" will be returned.

 If an error occurred while retrieving the MST status, a

 "-1^^Error msg" will be returned.

 Entry point $$GETSTAT^DGMSTAPI(DFN,DGDATE) will return the current MST status for a patient from the MST

 HISTORY File (#29.11) AS OF THE DATE passed in as DGDATE. Any MST status entries after the date in DGDATE will

 be ignored. DGDATE is optional, if it is not passed in, a date of TODAY will be used. To return the most

 recent MST status for a patient, call GETSTAT^DGMSTAPI(DFN) only.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 2919

 NAME: Patients enrolled/preferred facility

 USAGE: Supported ENTERED: AUG 25,2006

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Looks up a patients enrolled/preferred faility:

 ROUTINE: DGENPTA

 COMPONENT: $$PREF(DFN,FACNAME)

 VARIABLES: DFN Type: Input

 IEN of a record in the PATIENT file.

 FACNAME Type: Both

 Optional parameter, pass by refernce - returns institution name.

 $$PREF Type: Output

 IEN for the record in the INSTITUTION file that is the patient's preferred facility, NULL if

 the prefereed facility cannot be determined.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 2990

 NAME: Treating Facility List

 USAGE: Supported ENTERED: NOV 23,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 As part of the initative to share clinical information among VA facilities, a VA facility will have information about patients

 that were seen at other locations for health care.

 This routine will return (given an Integration Control Number or a DFN) a list of facilities the patient was seen for care.

 ROUTINE: VAFCTFU1

 COMPONENT: $$QUERYTF(ICN,.ARRAY,INDX)

 VARIABLES: ICN Type: Input

 Patient Integration Control Number.

 ARRAY Type: Both

 This variable is an array variable that the function uses to store the results of the

 treating facility list.

 It will be in the structure of x(1), x(2), etc.

 E.g., X(1)=500^2960101

 Where the first peice is the IEN of the institution and the second piece is the current date

 on record for that institution.

 INDX Type: Input

 The cross-reference to $O through. 'APAT' for patient information linked to treating

 facilities, 'AEVN' for patient info linked with an event reason. INDX will equal one if

 'AEVN' is used, else 'APAT' is used.

 $$QUERYTF Type: Output

 0 - If no error

 1^error description - If error or no data in the array

 COMPONENT: TFL(.LIST,DFN)

 VARIABLES: LIST Type: Both

 LIST(1)=-1^error message Example error messages: parameter missing, no treating facility,

 missing DFN, missing ICN, etc. The only time LIST(1) will always be defined is if there is

 an error; the first piece will be a -1.

 OR an array of treating facilities; they may or may not be VAMCs:

 LIST(1)=500^ALBANY^3020513.092^3^VAMC LIST(2)=662^SAN FRANCISCO^3020311.14^3^VAMC

 LIST(3)=200^AUSTIN^^^DPC

 OR an array of treating facilities; may or may not be sequential:

 LIST(2)=500^ALBANY^3020513.092^3^VAMC LIST(3)=662^SAN FRANCISCO^3020311.14^3^VAMC

 DFN Type: Input

 DFN - required second input parameter equals the IEN in the PATIENT (#2) file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3017

 NAME: PD1 segment generator

 USAGE: Supported ENTERED: JAN 12,2000

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Supported call for building of HL7 PD1 segment (Patient Additional Demographics).

 ROUTINE: VAFHLPD1

 COMPONENT: $$EN(DFN,VAFSTR)

 VARIABLES: DFN Type: Input

 Pointer to PATIENT file (#2)

 VAFSTR Type: Input

 String of fields requested seperated by commas

 HL7 variab Type: Input

 Call assumes that all HL7 variables returned from INIT^HLFNC2 are defined

 Result of Type: Output

 String of data forming the PD1 segment

 Main entry point for building of PD1 segment

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3018

 NAME: PV1 segment generator

SUBSCRIBING PACKAGE: CLINICAL INFO RESOURCE NETWORK

 LAB SERVICE

 USAGE: Supported ENTERED: JAN 12,2000

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Supported calls for building of HL7 PV1 segment (Patient Visit)

 ROUTINE: VAFHLPV1

 COMPONENT: $$EN(VAFENC,VAFDENC,VAFSTR,VAFNUM,VAFHLQ,VAFHLFS)

 VARIABLES: VAFENC Type: Input

 Pointer to Outpatient Encounter file (#409.68)

 VAFDENC Type: Input

 Pointer to Deleted Outpatient Encounter file (#409.74)

 VAFSTR Type: Input

 String of fields requested separated by commas

 VAFNUM Type: Input

 Value to use for Set ID (sequence #1). Defaults to 1.

 VAFHLQ Type: Input

 Optional HL7 null variable. (Default value is value of HLQ)

 VAFHLFS Type: Input

 Optional HL7 field separator. (Default value is value of HLFS)

 Result of Type: Output

 String of data forming the PV1 segment

 Entry point to build PV1 segment for [Deleted] Outpatient Encounter

 NOTE: Data for the PV1 segment will be retrieved from either the Outpatient Encounter file (#409.68) or Deleted

 Outpatient Encounter (#409.74) based on the pointer parameter passed in.

 COMPONENT: $$IN(DFN,VAFHDT,VAFSTR,IEN,PIVOT,SETID,.VAFDIAG)

 VARIABLES: DFN Type: Input

 Pointer to Patient file (#2)

 VAFHDT Type: Input

 Date/Time of movement

 VAFSTR Type: Input

 String of fields requested seperated by commas

 IEN Type: Input

 Pointer to Patient Movement file (#405). Optional - used for discharge movements since VADPT

 doesn't return enough information if only date/time (VAFHDT) is passed.

 ALTVISID Type: Input

 Value to use for Alternate Visit ID (sequence 50). Optional.

 SETID Type: Input

 Value to use for Set ID (sequence #1). Defaults to 1.

 VAFDIAG Type: Output

 Inpatient diagnosis returned in this variable.

 Result of Type: Output

 String of data forming the PV1 segment

 Entry point to build PV1 segment for inpatient movement.

 COMPONENT: $$OUT(DFN,EVT,EVDTS,VPTR,STRP,NUMP)

 VARIABLES: DFN Type: Input

 Pointer to Patient file (#2)

 EVT Type: Input

 Pivot number to build segment for. Value comes from the Pivot Number field (#.02) of ADT/HL7

 Pivot file (#391.71). If passed, this value will also be used as the Alternate Visit ID

 (sequence #50).

 EVDTS Type: Input

 Event date/time in FileMan format. Only used if input parameter EVT is not passed/valid.

 VPTR Type: Input

 Variable pointer (FileMan format) to Patient file (#2), Patient Movement file (#405), or

 Outpatient Encounter file (#409.68). Only used if input parameter EVT is not passed/valid.

 STRP Type: Input

 String of fields requested seperated by commas. If value is "A" or null then all supported

 fields are returned.

 NUMP Type: Input

 Value to use for Set ID (sequence #1). Defaults to 1.

 Entry point to build PV1 segment for patient

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3019

 NAME: DG CHK BS5 XREF Y/N

 USAGE: Supported ENTERED: JAN 20,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 CHECKS IF OTHER PATIENTS ON "BS5" XREF WITH SAME LAST NAME

 RETURNS 1 OR 0 IN 1ST STRING (OR -1 IF BAD DFN OR NO ZERO NODE)

 IF 1 RETURNS TEXT TO BE DISPLAYED

 ROUTINE: GUIBS5 DPTLK6

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3020

 NAME: DG CHK BS5 XREF ARRAY

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 CHECKS IF OTHER PATIENTS ON 'BS5' XREF WITH SAME LAST NAME

 RETURN 1 OR 0 IN 1ST STRING (-1 IF BAD DFN OR NO ZERO NODE).

 RETURNS ARRAY NODES WHERE TEXT IS PRECEEDED BY 0 AND PATIENT DATA

 IS PRECEEDED BY 1. PATIENT DATA WILL BE IN FOLLOWING FORMAT:

 1^DFN^PATIENT NAME^DOB^SSN

 ROUTINE: GUIBS5A DPTLK6

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3021

 NAME: DG CHK MEANS TEST DIV DISPLAY

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 CHECKS DIVISION FILE FOR DIV USER IS IN

 IF MEANS TEST REQUIRED IS SET TO YES

 RETURNS 1 IN 1ST STRING AND MEANS TEST TEXT

 IN 2ND AND 3RD STRING (IF ANY) OTHERWISE RETURNS 0 IN 1ST STRING

 ROUTINE: GUIDMT DPTLK6

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3022

 NAME: DG CHK PAT MEANS TEST REQUIRED

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 CHECKS WHETHER MEANS TEST IS REQUIRED FOR PATIENT

 RETURNS 1 OR 0

 ROUTINE: GUIMT DPTLK6

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3023

 NAME: DG CHK PAT/DIV MEANS TEST

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 CHECKS IF MEANS TEST REQUIRED FOR PATIENT AND

 CHECKS IF MEANS TEST DISPLAY REQUIRED FOR USER'S DIVISION

 RETURNS 1 IN 1ST STRING IF BOTH TRUE OTHERWISE 0

 IF BOTH TRUE RETURNS TEXT IN 2ND AND 3RD STRING (IF ANY)

 ROUTINE: GUIMTD DPTLK6

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3027

 NAME: Security/Sensitive Record access

 USAGE: Supported ENTERED: JAN 31,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This integration agreement provides 2 entry points in DGSEC4:

 PTSEC^DGSEC4 determines if patient's record is sensitive or if user is accessing his/her own Patient (#2) file record.

 NOTICE^DGSEC4 adds or updated the DG Security Log (#38.1) file and optionally generates the Sensitive Record Access mail

 message.

 ROUTINE: DGSEC4

 COMPONENT: PTSEC

 VARIABLES: RESULT Type: Output

 The first parameter contains the name of the output array.

 DFN Type: Input

 DFN = Patient (#2) file IEN

 DGMSG Type: Input

 DGMSG = 1 - if message should be generated when a user's SSN is undefined.

 0 - message will not be generated

 If not defined, defaults to 1.

 DGOPT Type: Input

 DGOPT is an optional variable containing the option name ^ menu text. If not defined,

 OP^XQCHK attempts to identify the option name. UNKNOWN will be entered in the DG Security

 Log file if option name not passed to call or not identified by OP^XQCHK.

 This entry point will:

 - verify user is not accessing his/her own PATIENT (#2) file record if Restrict Patient Record Access

 parameter in the MAS Parameter (#43) file is yes.

 - determine if record is sensitive

 - determine if patient's primary eligibility code is Employee.

 The following array is returned:

 RESULT(1)= -1 API failed

 Required variable not defined

 0 No display and no action required

 Not an employee, not a sensitive record and user is not

 accessing his/her own Patient (#2) file record.

 1 Display warning message

 Sensitive-inpatient or a DG SENSITIVITY key holder

 or an Employee and a DG SECURITY OFFICER key holder

 2 Display warning message and require OK to continue

 Sensitive-not an inpatient and not a DG SENSITIVITY key

 holder or not an employee and not a DG SECURITY OFFICER key

 holder

 3 Access to record denied

 Accessing own Patient (#2) file record

 4 Access to Patient (#2) file records denied

 User's SSN not defined in New Person (#200) file RESULT(2-10)=error message or warning/Privacy

 Act message

 If RESULT(1)=1, an entry is added or updated to the DG SECURITY LOG (#38.1) file.

 If RESULT(1)=2 and user acknowledges they wish to access the restricted record, the calling application should

 call NOTICE^DGSEC4 to update DG Security Log (#38.1) file and generate the Sensitive Record Access mail

 message.

 COMPONENT: NOTICE

 VARIABLES: RESULT Type: Output

 RESULT=1 - Added/updated entry and generated sensitive record access msg

 0 - unsuccessful

 DFN Type: Input

 DFN is a required parameter containing the Patient (#2) file IEN.

 DGOPT Type: Input

 DGOPT is an optional parameter containing the Option Name^Menu Text. If not defined,

 OP^XQCHK attempts to identify the option name. UNKNOWN will be entered in the DG SECURITY

 LOG file if option name not passed to call or not identified by OP^XQCHK.

 ACTION Type: Input

 ACTION = 1 - Set DG Security Log entry

 2 - Generate Sensitive Record Access bulletin

 3 - Both

 This is an optional parameter. If not defined, defaults to 3.

 This entry point adds or updates an entry to the DG SECURITY LOG (#38.1) file and optionally generate the

 sensitive record access bulletin depending on the value in the ACTION input parameter. If ACTION parameter is

 not defined, defaults to update DG Security Log file and generate Sensitive Record Access mail message.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3157

 NAME: PATIENT TREATMENT FILE DATA

SUBSCRIBING PACKAGE: CLINICAL CASE REGISTRIES

 USAGE: Supported ENTERED: AUG 7,2000

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This call will return data from the Patient Treatment file, initially the type of disposition, place of disposition (name) and

 the ICD9 codes, but more data may be returned later.

 ROUTINE: DGPTFAPI

 COMPONENT: RPC(.RESULTS,PTFNUMBR)

 VARIABLES: RESULTS Type: Output

 An array with following nodes: (0)=1 or -1 if error (1)=type of disposition^place of

 disposition^1st ICD9 code (2)=2nd thru 10th ICD9 codes

 ptfnumbr Type: Input

 the Patient Treatment file IFN (.001 field of file #45)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3164

 NAME: DG PATIENT TREATMENT DATA

 USAGE: Supported ENTERED: AUG 14,2000

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This call will return data from the Patient Treatment file, initially the place of disposition (name) and the ICD9 codes, but

 more data may be returned later. (This IA# is for the RPC; IA#3157 is for the API)

 Returns data from Patient Treatment file (#45).

 Results(0)=1 (-1 if error)

 (1)=type of disposition^place of disposition^primary ICD9 code

 (2)=2nd thru 10th ICD9 codes (uses "^" as delimiter)

 (more data may be added later)

 ROUTINE: RPC DGPTFAPI

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3402

 NAME: DG SENSITIVE RECORD ACCESS

 USAGE: Supported ENTERED: MAY 15,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This Remote Procedure Call (RPC) will:

 - Verify user is not accessing his/her own Patient file record if

 the Restrict Patient Record Access (#1201) field in the MAS parameters

 (#43) file is set to yes and the user does not hold the DG RECORD ACCESS

 security key. If parameter set to yes and user is not a key holder , a

 social security number must be defined in the New Person file for the

 user to access any Patient file record.

 - Determine if user accessing a sensitive record or an employee's

 record.

 This Remote Procedure Call (RPC) will:

 - Verify user is not accessing his/her own Patient file record if

 the Restrict Patient Record Access (#1201) field in the MAS parameters

 (#43) file is set to yes and the user does not hold the DG RECORD ACCESS

 security key. If parameter set to yes and user is not a key holder , a

 social security number must be defined in the New Person file for the user

 to access any Patient file record.

 - Determine if user accessing a sensitive record or an employee's

 record.

 ROUTINE: PTSEC DGSEC4

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3403

 NAME: DG SENSITIVE RECORD BULLETIN

 USAGE: Supported ENTERED: MAY 15,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This Remote Procedure Call (RPC) will add an entry to the DG SECURITY LOG

 (#38.1) file and/or generate the sensitive record access bulletin

 depending on the value in ACTION input parameter. If ACTION parameter

 not defined, defaults to update DG Security Log file and generate

 Sensitive Record Access mail message.

 This Remote Procedure Call (RPC) will add an entry to the DG SECURITY LOG

 (#38.1) file and/or generate the sensitive record access bulletin

 depending on the value in ACTION input parameter. If ACTION parameter not

 defined, defaults to update DG Security Log file and generate Sensitive

 Record Access mail message.

 ROUTINE: NOTICE DGSEC4

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3457

 NAME: DBIA3457

 USAGE: Supported ENTERED: SEP 18,2001

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The purpose of this API is to facilitate the retrieval of veterans' Nose/Throat Radium (NTR) Treatment information from the

 NOSE AND THROAT RADIUM HISTORY (#28.11) file. The primary mechanism is within the Registration package.

 ROUTINE: DGNTAPI

 COMPONENT: $$GETCUR(DFN,TARGET_ROOT)

 VARIABLES: DFN Type: Input

 IEN of patient in the PATIENT File (#2)

 $$GETCUR Type: Output

 IEN of primary entry in NOSE AND THROAT RADIUM HISTORY File (#28.11)

 "0"- If no NTR history entry is found for the patient.

 TARGET_ROO Type: Both

 Input: (Optional) Target Array name that should be passed as a closed root reference. If the

 parameter is not passed, then the default TARGET_ROOT is set equal to "DGNTAPI".

 Output: The output array is in the format of TARGET_ROOT(subscript) with subscript being

 derived from the following table:

 subscript field name field val

 --------- -------------- ---------

 "DFN" Patient internal "IND" NTR Indicator int^ext "STAT"

 Screening Status int^ext "NTR" NTR Treatment int^ext "AVI" Aviator Pre

 1/31/55 int^ext "SUB" Submarin Pre 1/1/65 int^ext "EDT" Date/Time NTR Enter

 internal "EUSR" NTR Entered By internal "PRIM" NTR Primary Entry internal

 "SUPER" Date/Time Supersede internal "VER" Verification Method int^ext "VDT"

 Date/Time Verified internal "VUSR" Verified By internal "VSIT" Site

 Verifying Doc internal "HNC" Head/Neck CA DX int^ext "HDT" Date/Time DX

 Verif internal "HUSR" DX Verified By internal "HSIT" Site Verifying DX

 internal

 The $$GETCUR^DGNTAPI(DFN,TARGET_ROOT) entry point will be used to obtain a patient's primary/current record

 from the NOSE AND THROAT RADIUM HISTORY (#28.11) file and place it in the local target array, TARGET_ROOT,

 passed as a closed root reference.

 Example of use:

 I $$GETCUR^DGNTAPI(DFN,"DGNT") D

 . W !,"DGNT array now contains patient's primary NTR record."

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3523

 NAME: DBIA3523

 USAGE: Supported ENTERED: FEB 20,2002

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: DGMTU

 COMPONENT: $$FUT(DFN,DGDT,DGMTYPT)

 VARIABLES: DFN Type: Input

 Contains the Internal Entry Number of the patient in the PATIENT File, #2.

 DGDT Type: Input

 Date (Optional- default to today).

 DGMTYPT Type: Input

 Type of Test (Optional - default to Means Test)

 $$FUT Type: Output

 If a future DCD test was performed it will be returned, else the earliest performed future

 test for the Income Year will be.

 Data returned: Future MT IEN^Date of Test (Future)^Status Name^Status Code^Source of Test

 Identify veteran's records with future tests.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3593

 NAME: DBIA3593

 USAGE: Supported ENTERED: JUN 3,2002

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Allow access to the Patient Lookup components for checking Means Test Requirements and the Cleveland Alert.

 ROUTINE: DPTLK6

 COMPONENT: GUIMTD

 VARIABLES: TMP Type: Both

 Passed as reference in first parameter. Returns the results array.

 DFN Type: Input

 Patients IEN passed as second parameter.

 CHECKS IF MEANS TEST REQUIRED FOR PATIENT AND

 CHECKS IF MEANS TEST DISPLAY REQUIRED FOR USER'S DIVISION

 RETURNS 1 IN 1ST STRING IF BOTH TRUE OTHERWISE 0

 IF BOTH TRUE RETURNS TEXT IN 2ND AND 3RD STRING (IF ANY)

 COMPONENT: GUIBS5A

 VARIABLES: TMP Type: Both

 Passed as reference in first parameter. Returns the results array.

 DFN Type: Input

 Patients IEN passed as second parameter.

 CHECKS IF OTHER PATIENTS ON 'BS5' XREF WITH SAME LAST NAME

 RETURN 1 OR 0 IN 1ST STRING (-1 IF BAD DFN OR NO ZERO NODE).

 RETURNS ARRAY NODES WHERE TEXT IS PRECEEDED BY 0 AND PATIENT DATA

 IS PRECEEDED BY 1. PATIENT DATA WILL BE IN FOLLOWING FORMAT:

 1^DFN^PATIENT NAME^DOB^SSN

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3744

 NAME: DBIA3744

 USAGE: Supported ENTERED: SEP 3,2002

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VADPT

 COMPONENT: $$TESTPAT

 VARIABLES: DFN Type: Input

 Pointer to PATIENT file (#2)

 Output of Type: Output

 1 = Test patient

 0 = Not a test patient

 Function call returns whether or not a given patient is a test patient. A test patient is defined as a patient

 whose SSN has five leading zeros (ex: 000001234) or whose TEST PATIENT INDICATOR field (#6) is set to 'YES'.

 Sample Use

 S DFN=xxxxx

 S X=$$TESTPAT^VADPT(DFN)

 W !,"Patient is ",$S('X:"not ",1:""),"a test patient"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 3799

 NAME: DBIA3799

 USAGE: Supported ENTERED: OCT 23,2002

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This integration agreement contains the listing of supported calls for interaction with the RACE (#10), ETHNICITY (#10.2), and

 RACE AND ETHNICITY COLLECTION METHOD (#10.3) files.

 Calls supported are:

 1) $$PTR2TEXT^DGUTL4(VALUE,TYPE)

 2) $$INACTIVE^DGUTL4(VALUE,TYPE)

 3) $$PTR2CODE^DGUTL4(VALUE,TYPE,CODE)

 4) $$CODE2PTR^DGUTL4(VALUE,TYPE,CODE)

 ROUTINE: DGUTL4

 COMPONENT: $$PTR2TEXT

 VARIABLES: VALUE Type: Input

 Pointer to RACE file (#10), ETHNICITY file (#10.2), or RACE AND ETHNICITY COLLECTION METHOD

 file (#10.3)

 TYPE Type: Input

 Flag indicating which file VALUE is for

 1 = Race (default)

 2 = Ethnicity

 3 = Collection Method

 $$PTR2TEXT Type: Output

 Text (.01 field). NULL ("") returned on bad input or if there is no code.

 Function call converts a pointer to the RACE, ETHNICITY, or RACE AND ETHNICITY COLLECTION METHOD file (numbers

 10, 10.2, and 10.3 respectively) into it's displayable name (i.e. .01 field).

 Sample Use

 S VALUE=xxxxx

 S TYPE=1

 S X=$$PTR2TEXT^DGUTL4(VALUE,TYPE)

 W !,"Entry number ",VALUE," in the RACE file is ",X

 COMPONENT: $$INACTIVE

 VARIABLES: VALUE Type: Input

 Pointer to RACE file (#10) or ETHNICITY file (#10.2)

 TYPE Type: Input

 Flag indicating which file VALUE is for

 1 = Race (default)

 2 = Ethnicity

 $$INACTIVE Type: Output

 0 - Entry not inactive

 1^Date - Entry inactive (Date in FileMan format)

 Note that 0 (zero) returned on bad input and that collection methods can not currently be

 inactivated

 Function call returns whether or not a given entry in the RACE or ETHNICITY file (numbers 10 and 10.2

 respectively) is marked as inactive.

 Sample Use

 S VALUE=xxxxx

 S TYPE=1

 S X=$$INACTIVE^DGUTL4(VALUE,TYPE)

 W:'X !,"Entry is currently active"

 W:X !,"Entry was inactived on ",$$FMTE^XLFDT($P(X,"^",2))

 COMPONENT: $$PTR2CODE

 VARIABLES: VALUE Type: Input

 Pointer to RACE file (#10), ETHNICITY file (#10.2), or RACE AND ETHNICITY COLLECTION METHOD

 file (#10.3)

 TYPE Type: Input

 TYPE - Flag indicating which file VALUE is for

 1 = Race (default)

 2 = Ethnicity

 3 = Collection Method

 CODE Type: Input

 Flag indicating which code to return

 1 = Abbreviation (default)

 2 = HL7

 3 = CDC (not applicable for Collection Method)

 4 = PTF

 $$PTR2CODE Type: Output

 Requested code. NULL ("") returned on bad input or if there is no code.

 Function call converts a pointer to the RACE, ETHNICITY, or RACE AND ETHNICITY COLLECTION METHOD file (numbers

 10, 10.2, and 10.3 respectively) into it's abbreviation, HL7, CDC, or PTF code.

 Sample Use

 S VALUE=xxxxx

 S TYPE=1

 S CODE=4

 S X=$$PTR2CODE^DGUTL4(VALUE,TYPE,CODE)

 S Y=$$PTR2TEXT^DGUTL4(VALUE,TYPE)

 W:X'="" !,"The PTF code for ",Y," is ",X

 W:X="" !,Y," does not have a PTF code"

 COMPONENT: $$CODE2PTR

 VARIABLES: VALUE Type: Input

 Code to convert

 TYPE Type: Input

 Flag indicating which file VALUE is from

 1 = Race (file #10) (default)

 2 = Ethnicity (file #10.2)

 3 = Collection Method (file #10.3)

 CODE Type: Input

 Flag indicating which code VALUE is for

 1 = Abbreviation (default)

 2 = HL7

 3 = CDC (not applicable for Collection Method)

 4 = PTF

 $$CODE2PTR Type: Output

 Pointer to file. 0 (zero) returned on bad input or if an entry can't be found.

 Function call converts an abbreviation, HL7, CDC, or PTF code into a pointer to it's entry in the RACE,

 ETHNICITY, or RACE AND ETHNICITY COLLECTION METHOD file (numbers 10, 10.2, and 10.3 respectively).

 Sample Use

 S VALUE=xxxxx

 S TYPE=1

 S CODE=4

 S X=$$CODE2PTR^DGUTL4(VALUE,TYPE,CODE)

 S Y=$$PTR2TEXT^DGUTL4(X,TYPE)

 W:X !,VALUE," is the PTF code for ",Y

 W:'X !,VALUE," is not a valid PTF code"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4080

 NAME: BAD ADDRESS INDICATOR

 USAGE: Supported ENTERED: APR 9,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA will allow applications outside of Registration to access the Bad Address Indicator field added with patch

 DG*5.3*506. This should help prevent the mailing of medication and other correspondence to known bad addresses, and will also

 prevent Bad Addresses from being shared with other facilities through the Health Eligibility Center (via Z07/Z05 messaging).

 ROUTINE: DGUTL3

 COMPONENT: $$BADADR(DFN)

 VARIABLES: DFN Type: Input

 This is the internal entry number of the patient in the Patient (#2) file.

 This extrinsic function will return the "Bad Address Indicator" for a patient. This will be a supported API for

 outside packages to call when/if they need to return the Bad Address Indicator.

 If the patient has a Bad Address Indicator set, the return value will be 1, 2, or 3. If the Indicator is not

 set, then null is returned. The following list identifies what the numeric values represent:

 1 - UNDELIVERABLE

 2 - HOMELESS

 3 - OTHER

 Please see field # .121 of the Patient file (#2) for further details.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4156

 NAME: COMBAT VETERAN STATUS

 USAGE: Supported ENTERED: JUL 21,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 As per directive 2002-049 patients who qualify as Combat Veterans will be treated for two years after separation even in the

 absence of supporting evidence that their condiditons are combat related. This supported DBIA covers an API that will be used

 during patient lookups, Registration, Billing, Outpatient Pharmacy and treatment checkout that will provide whether or not the

 veteran being processed has been assigned combat status and whether that combat status is still in effect.

 ROUTINE: DGCV

 COMPONENT: $$CVEDT(DFN,DGDT)

 VARIABLES: DFN Type: Input

 Patient file IEN

 DGDT Type: Input

 (optional) The date for which eligiblity is to be determined.

 $$CVEDT Type: Output

 This variable is a "^" delimited.

 The first piece is -1/0/1

 -1 if the determination cannot be made due to a non-valid DFN

 0 if never given combat veteran eligibility.

 1 if the veteran was ever given combat veteran eligibility.

 The second piece is the Combat Vet End Date (if ever given eligibility).

 The third piece is 1/0

 1 if still eligible on the specified date (either passed in to the API or TODAY by

 default), 0 if not. This piece will be populated only if the 1st piece is equal to 1.

 This API will take the DFN as an input parameter. If eligibility is to be determined for a date other than the

 current date it may be entered as an optional input parameter. Output is whether or not the veteran has CV

 status and if so, the end date of the eligibility.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4292

 NAME: DBIA4292

 USAGE: Supported ENTERED: NOV 6,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Supported calls for building of HL7 ZPD segment (VA Specific Patient Demographics).

 ROUTINE: VAFHLZPD

 COMPONENT: $$EN(DFN,VAFSTR)

 VARIABLES: DFN Type: Input

 Pointer to PATIENT file (#2)

 VAFSTR Type: Input

 String of fields requested seperated by commas (Defaults to all fields)

 HL7 variab Type: Input

 Call assumes that all HL7 variables returned from INIT^HLFNC2 are defined

 Result of Type: Output

 String of data forming the ZPD segment

 This generic extrinsic function was designed to return sequences 1 throught 21 of the HL7 ZPD segment. This

 segment contains VA-specific patient information that is not contained in the HL7 PID segment. This call does

 not accomodate a segment length greater than 245 and has been superceeded by EN1^VAFHLZPD. This line tag has

 been left for backwards compatability.

 COMPONENT: $$EN1(DFN,VAFSTR)

 VARIABLES: DFN Type: Input

 Pointer to PATIENT file (#2)

 VAFSTR Type: Input

 String of fields requested seperated by commas (Defaults to all fields)

 HL7 variab Type: Input

 Call assumes that all HL7 variables returned from INIT^HLFNC2 are defined

 Result of Type: Output

 String of data forming the ZPD segment. If the ZPD segment becomes longer than 245

 characters, remaining fields will be placed in VAFZPD(1).

 This generic extrinsic function was designed to return the HL7 ZPD segment. This segment contains VA-specific

 patient information that is not contained in the HL7 PID segment. This call superceeds EN^VAFHLZPD because it

 accomodates a segment length greater than 245.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4346

 NAME: VAFHLU

 USAGE: Supported ENTERED: FEB 17,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Valid after patches DG*5.3*508 and SD*5.3*293 are released.

 ROUTINE: VAFHLU

 COMPONENT: MAKEIT(SEGNAME,.SEGARR,.FIRST245,.ADTLNODE)

 VARIABLES: SEGNAME Type: Input

 Name of segment being built

 SEGARR Type: Input

 Array continue segment data (pass by value)

 SEGARR(X) = Value for sequence N

 SEGARR(X,Y) = Repetition Y of sequence X

 SEGARR(X,Y,Z) = Component Z of repetition Y of sequence X

 SEGARR(X,Y,Z,A) = Subcomponent A of component Z of

 repetition Y of sequence X

 FIRST245 Type: Both

 Variable to return first 245 characters of segment in (pass by value)

 ADTLNODE Type: Both

 Array for continuation nodes (pass by value)

 ADTLNODE(1..n) = Continuation of segment

 Assumed In Type: Input

 HL7 encoding chars (output of INIT^HLFNC2 or INIT^HLTRANS)

 Builds an HL7 segment

 Notes : Validity & existance of input is assumed

 : Assumes no single element contained in SEGARR is greater

 than 245 characters

 : Continuation nodes are added at element boundaries

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4418

 NAME: ADT HL7 MSG

 USAGE: Supported ENTERED: APR 28,2004

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 The following Protocols are Supported for packages to hang their protocols on:

 VAFC ADT-A01 SERVER

 VAFC ADT-A02 SERVER

 VAFC ADT-A03 SERVER

 VAFC ADT-A04 SERVER

 VAFC ADT-A08 SERVER

 VAFC ADT-A08-SDAM SERVER

 VAFC ADT-A08-TSP SERVER

 VAFC ADT-A11 SERVER

 VAFC ADT-A12 SERVER

 VAFC ADT-A13 SERVER

 VAFC ADT-A19 SERVER

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4462

 NAME: SHAD STATUS INDICATOR

 USAGE: Supported ENTERED: DEC 13,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This supported DBIA covers an API that will return a value that indicates whether the patient has Project 112/SHAD exposure.

 ROUTINE: DGUTL3

 COMPONENT: $$GETSHAD(DFN)

 VARIABLES: DFN Type: Input

 IEN of the Patient file (#2)

 $$GETSHAD Type: Output

 The API will return the following values:

 1='YES' (SHAD exposure indicated)

 0='NO' (No SHAD exposure)

 -1=error (Input parameter missing)

 This API will take the DFN as an input parameter and return the value of the PROJ 112/SHAD field (#.3215) in

 the PATIENT file (#2).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4678

 NAME: VAFCTFU GET TREATING LIST

 USAGE: Supported ENTERED: JUN 8,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Given a patient DFN, this will return a list of treating facilities.

 ROUTINE: TFL VAFCTFU1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4679

 NAME: VAFCTFU CONVERT ICN TO DFN

 USAGE: Supported ENTERED: DEC 20,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Given a patient Integration Control Number (ICN), this will return

 the patient Internal Entry Number (IEN) from the PATIENT file (#2).

 ROUTINE: GETDFN VAFCTFU1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4680

 NAME: VAFCTFU CONVERT DFN TO ICN

 USAGE: Supported ENTERED: DEC 20,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This will return the Integration Control Number (ICN) from the

 Maser Patient Index (MPI) for a patient.

 ROUTINE: GETICN VAFCTFU1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4800

 NAME: EMERGENCY RESPONSE INDICATOR

 USAGE: Supported ENTERED: SEP 23,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: DGUTL

 COMPONENT: $$EMGRES(DFN)

 VARIABLES: DFN Type: Input

 Pointer to the Patient file 2.

 $$EMGRES Type: Output

 Returns value from the EMERGENCY RESPONSE INDICATOR field or null if blank.

 Current possible values:

 'K' for hurricane Katrina

 Returns the value of the Emergency Response Indicator (Patient file 2, field .181), or null if blank.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 4807

 NAME: API FOR RATED DISABILITIES

 USAGE: Supported ENTERED: OCT 5,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This agreement covers an API which will return, in an array, the six fields of the Rated Disabilities multiple from the

 Patient file. The multiple is 2.04, field number .372. The array will also return the disabilities in descending Service

 Connected percent.

 ROUTINE: DGRPDB

 COMPONENT: RDIS(DGDFN,.DGARR)

 VARIABLES: DGDFN Type: Input

 IEN of the Patient file.

 DGARR Type: Both

 Array name in which the disabilities information will be returned.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 10035

 NAME: PATIENT FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 2 ROOT: DPT(

 DESCRIPTION: TYPE: File

 Any nationally released cross-reference on the supported fields in this Integration Agreement are "open/supported" for direct

 global reference (as well as reference through VA FileMan).

 ^DPT(

 .01 NAME 0;1 Direct Global Read & w

 .02 SEX 0;2 Direct Global Read & w

 .03 DATE OF BIRTH 0;3 Direct Global Read & w

 .05 MARITAL STATUS 0;5 Direct Global Read & w

 .07 OCCUPATION 0;7 Direct Global Read & w

 .08 RELIGIOUS PREFERENCE 0;8 Direct Global Read & w

 .09 SOCIAL SECURITY NUMB 0;9 Direct Global Read & w

 .091 REMARKS 0;10 Direct Global Read & w

 .092 PLACE OF BIRTH [CITY 0;11 Direct Global Read & w

 .093 PLACE OF BIRTH [STAT 0;12 Direct Global Read & w

 .033 AGE COMPUTED Read w/Fileman

 Computed field

 .14 CURRENT MEANS TEST S 0;14 Direct Global Read & w

 .096 WHO ENTERED PATIENT 0;15 Direct Global Read & w

 .097 DATE ENTERED INTO FI 0;16 Direct Global Read & w

 ^DPT(D0,.1)

 .1 WARD LOCATION .1;1 Direct Global Read & w

 ^DPT(D0,.101)

 .101 ROOM-BED .101;1 Direct Global Read & w

 ^DPT(D0,'LR')

 63 LABORATORY REFERENCE 63;1 Direct Global Read & w

 ^DPT(D0,.36)

 .363 PRIMARY LONG ID .36;3 Direct Global Read & w

 .364 PRIMARY SHORT ID .36;4 Direct Global Read & w

 ^DPT(D0,.102)

 .102 CURRENT MOVEMENT .102;1 Direct Global Read & w

 ^DPT(D0,.103)

 .103 TREATING SPECIALTY .103;1 Direct Global Read & w

 ^DPT(D0,.104)

 .104 PROVIDER .104;1 Direct Global Read & w

 ^DPT(D0,.1041)

 .1041 ATTENDING PHYSICIAN .1041;1 Direct Global Read & w

 ^DPT(D0,.105)

 .105 CURRENT ADMISSION .105;1 Direct Global Read & w

 ^DPT(D0,.106)

 .106 LAST DMMS EPISODE NU .106;1 Direct Global Read & w

 ^DPT(D0,.107)

 .107 LODGER WARD LOCATION .107;1 Direct Global Read & w

 ^DPT(D0,.108)

 .108 CURRENT ROOM .108;1 Direct Global Read & w

 ^DPT(D0,.35)

 .351 DATE OF DEATH .35;1 Direct Global Read & w

 .352 DEATH ENTERED BY .35;2 Direct Global Read & w

 ^DPT(D0,.02,

 .01 RACE INFORMATION 0;1 Read w/Fileman

 ^DPT(D0,.06,

 .01 ETHNICITY INFORMATIO 0;1 Read w/Fileman

 ^DPT(D0,.13)

 .132 PHONE NUMBER [WORK] .13;2 Read w/Fileman

 .134 PHONE NUMBER [CELLUL .13;4 Read w/Fileman

 .133 EMAIL ADDRESS .13;3 Read w/Fileman

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 10036

 NAME: DGPMLOS

 USAGE: Supported ENTERED: MAR 7,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Obtain length of stay by admission.

 ROUTINE: DGPMLOS

 COMPONENT: DGPMLOS

 VARIABLES: DGPMIFN Type: Input

 IFN of admission movement for which you want LOS to be calculated.

 X Type: Output

 Total elapsed time^Time on absence^time on pass^time ASIH^Length of stay

 DGPMLOS Supported call to obtain the length of stay, leave days, pass days, and ASIH days for a

 specific admission. See documentation included in the routine.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 10037

 NAME: DGRPD

 USAGE: Supported ENTERED: NOV 16,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Patient Inquiry.

 ROUTINE: DGRPD

 COMPONENT: DGRPD

 VARIABLES: Routine to display patient inquiry screen(s).

 COMPONENT: EN

 VARIABLES: DFN Type: Input

 Internal entry number of the PATIENT file (#2) for which the patient inquiry should display.

 Called to perform patient inquiry with DFN already known.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 10039

 NAME: WARD LOCATION FILE

 USAGE: Supported ENTERED: OCT 28,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 42 ROOT: DIC(42,

 DESCRIPTION: TYPE: File

 ^DIC(42,D0,0)

 .01 NAME 0;1 Direct Global Read & w

 .015 DIVISION 0;11 Direct Global Read & w

 ^DIC(42,D0,44)

 44 HOSPITAL LOCATION FI 44;1 Direct Global Read & w

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 10061

 NAME: VADPT

 USAGE: Supported ENTERED: MAR 7,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 VADPT is a utility routine designed to provide a central point where a programmer can obtain information concerning a

 patient's record. Supported entry points are provided which will return demographics, inpatient status, eligibility

 information, etc.

 Access to patient information is not limited to using the supported entry points in VADPT. Integration agreements can be

 established through the DBA between REGISTRATION and other packages to reference information.

 ROUTINE: VADPT

 COMPONENT: DEM

 VARIABLES: Basic patient demographic information along with VA("BID") and VA("PID")

 COMPONENT: OPD

 VARIABLES: Returns other demographics not returned in DEM call.

 COMPONENT: ADD

 VARIABLES: Patient address and temp address information

 COMPONENT: ORD

 VARIABLES: Other patient variables

 COMPONENT: IN5

 VARIABLES: More extensive information related to inpatient stays.

 COMPONENT: ELIG

 VARIABLES: Patient eligibility information

 COMPONENT: MB

 VARIABLES: Monetary benefits.

 COMPONENT: SVC

 VARIABLES: VASV Type: Output

 VASV(1,1) If Vietnam Service, the VIETNAM FROM DATE in internal^external format. (e.g.,

 2680110^JAN 10,1968)

 VASV(1,2) If Vietnam Service, the VIETNAM TO DATE in internal^external format. (e.g.,

 2690315^MAR 15,1969)

 VASV(2) If the AGENT ORANGE EXPOS. INDICATED field is YES, a "1" will be returned; otherwise

 a "0" will be returned. (e.g., 0)

 VASV(2,1) If Agent Orange exposure, the AGENT ORANGE REGISTRATION DATE in internal^external

 format. (e.g., 2870513^MAY 13,1987)

 VASV(2,2) If Agent Orange exposure, the AGENT ORANGE EXAMINATION DATE in internal^external

 format. (e.g., 2871101^NOV 1,1987)

 VASV(2,3) If Agent Orange exposure, AGENT ORANGE REPORTED TO C.O. date in internal^external

 format.(e.g., 2871225^DEC 25,1987)

 VASV(2,4) If Agent Orange exposure, AGENT ORANGE REGISTRATION #. (e.g., 123456)

 VASV(2,5) If Agent Orange exposure, the AGENT ORANGE EXPOSURE LOCATION in internal^external

 format (e.g., V^VIETNAM)

 VASV(3) If the RADIATION EXPOSURE INDICATED field is YES, a "1" will be returned; otherwise a

 "0" will be returned (e.g., 0)

 VASV(3,1) If Radiation Exposure, RADIATION REGISTRATION DATE in internal^external format.

 (e.g., 2800202^FEB 02,1980)

 VASV(3,2) If Radiation Exposure, RADIATION EXPOSURE METHOD in internal^external format.

 (e.g., T^NUCLEAR TESTING)

 VASV(4) If the POW STATUS INDICATED field is YES, a "1" will be returned; otherwise a "0"

 will be returned. (e.g., 0)

 VASV(4,1) If POW status, POW FROM DATE in internal^external format. (e.g., 2450319^MAR

 19,1945)

 VASV(4,2) If POW status, POW TO DATE in internal^external format. (e.g., 2470101^JAN 1,1947)

 VASV(4,3) If POW status, POW CONFINEMENT LOCATION in internal^external format. (e.g., 2^WORLD

 WAR II - EUROPE)

 VASV(5) If the COMBAT SERVICE INDICATED field is YES, a "1" will be returned; otherwise a "0"

 will be returned. (e.g., 0)

 VASV(5,1) If combat service, COMBAT FROM DATE in internal^external format. (e.g., 2430101^JAN

 1,1943)

 VASV(5,2) If combat service, COMBAT TO DATE in internal^external format. (e.g., 2470101^JAN

 1,1947)

 VASV(5,3) If combat service, COMBAT SERVICE LOCATION in internal^external format. (e.g.,

 2^WORLD WAR II - EUROPE)

 VASV(6) If a SERVICE BRANCH [LAST] field is indicated, a "1" will be returned in the first

 piece; otherwise a "0" will be returned. (e.g., 0)

 VASV(6,1) If service branch, BRANCH OF SERVICE field in internal^external format. (e.g.,

 3^AIR FORCE)

 VASV(6,2) If service branch, SERVICE NUMBER field in internal^external format. (e.g.,

 123456789)

 VASV(6,3) If service branch, SERVICE DISCHARGE TYPE in internal^external format. (e.g.,

 1^HONORABLE)

 VASV(6,4) If service branch, SERVICE ENTRY DATE in internal^external format. (e.g.,

 2440609^JUN 9,1944)

 VASV(6,5) If service branch, SERVICE SEPARATION DATE in internal^external format. (e.g.,

 2480101^JAN 1,1948)

 VASV(6,6) SERVICE COMPONENT [LAST] internal code^external code value (e.g., R^REGULAR)

 VASV(7) If a SERVICE SECOND EPISODE field is indicated, a "1" will be returned; otherwise a

 "0" will be returned. (e.g., 0)

 VASV(7,1) If second episode, BRANCH OF SERVICE field in internal^external format. (e.g.,

 3^AIR FORCE)

 VASV(7,2) If second episode, SERVICE NUMBER field in internal^external format. (e.g.,

 123456789^123456789)

 VASV(7,3) If second episode, SERVICE DISCHARGE TYPE in internal^external format. (e.g.,

 1^HONORABLE)

 VASV(7,4) If second episode, SERVICE ENTRY DATE in internal^external format. (e.g.,

 2440609^JUN 9,1944)

 VASV(7,5) If second episode, SERVICE SEPARATION DATE in internal^external format. (e.g.,

 2480101^JAN 1,1948)

 VASV(7,6) SERVICE COMPONENT [NTL] internal code^external code value (e.g., R^REGULAR)

 VASV(8) If a SERVICE THIRD EPISODE field is indicated, a "1" will be returned; otherwise a

 "0" will be returned. (e.g., 0)

 VASV(8,1) If third episode, BRANCH OF SERVICE field in internal^external format. (e.g.,

 3^AIR FORCE)

 VASV(8,2) If third episode, SERVICE NUMBER field in internal^external format. (e.g.,

 123456789^123456789)

 VASV(8,3) If third episode, SERVICE DIS-CHARGE TYPE in internal^external format. (e.g.,

 1^HONORABLE)

 VASV(8,4) If third episode, SERVICE ENTRY DATE in internal^external format. (e.g.,

 2440609^JUN 9,1944)

 VASV(8,5) If third episode, SERVICE SEPARATION DATE in internal^external format. (e.g.,

 2480101^JAN 1,1948)

 VASV(8,6) SERVICE COMPONENT [NNTL] internal code^external code value (e.g., R^REGULAR)

 VASV(9) If the CURRENT PH INDICATOR field is YES, a "1" will be returned; otherwise a "0"

 will be returned (e.g., 0)

 VASV(9,1) If the CURRENT PH INDICATOR field is YES, CURRENT PURPLE HEART STATUS in

 internal^external format.(e.g., 2^IN PROCESS)

 VASV(9,2) If the CURRENT PH INDICATOR field is NO, CURRENT PURPLE HEART REMARKS in

 internal^external format. (e.g., 5^VAMC)

 VASV(10) is either 1 or 0, 1 if there is a value for Combat Vet End Date, 0 if not.

 VASV(10,1) internal Combat Vet End Date^external Combat Vet End Date (e.g., 3060101^JAN

 1,2006)

 VASV(11) the # of OIF conflict entries found for the veteran in the SERVICE [OEF OR OIF]

 #2.3215 SUB-FILE. [n = 1->VASV(11)]

 VASV(11,n,1) SERVICE LOCATION (#2.3215;.01) internal code=1^external (e.g., 1^OIF) 'n'-->

 This number will be used to provide a unique number for each OIF conflict being returned.

 VASV(11,n,2) OEF/OIF FROM DATE (#2.3215;.02) internal format^external format (e.g.,

 3060101^JAN 1,2006) 'n'--> This number will be used to provide a unique number for each OIF

 conflict being returned.

 VASV(11,n,3) OEF/OIF TO DATE (#2.3215;.03) internal format^external format (e.g., 3060301^MAR

 1,2006) 'n'--> This number will be used to provide a unique number for each OIF conflict

 being returned.

 VASV(12) the # of OEF conflict entries found for the veteran in the SERVICE [OEF OR OIF]

 #2.3215 SUB-FILE. [n = 1->VASV(12)]

 VASV(12,n,1) SERVICE LOCATION (#2.3215;.01) internal code=2^external (e.g., 2^OEF) 'n'-->

 This number will be used to provide a unique number for each OEF conflict being returned.

 VASV(12,n,2) OEF/OIF FROM DATE (#2.3215;.02) internal format^external format (e.g.,

 3060101^JAN 1,2006) 'n'--> This number will be used to provide a unique number for each OEF

 conflict being returned.

 VASV(12,n,3) OEF/OIF TO DATE (#2.3215;.03) internal format^external format (e.g., 3060301^MAR

 1,2006) 'n'--> This number will be used to provide a unique number for each OEF conflict

 being returned.

 VASV(13) the # of UNKNOWN OEF/OIF conflict entries found for the veteran in the SERVICE [OEF

 OR OIF] #2.3215 SUB-FILE. [n = 1->VASV(13)]

 VASV(13,n,1) SERVICE LOCATION (#2.3215;.01) internal code=3^external format (e.g., 3^UNKNOWN

 OEF/OIF) 'n'--> This number will be used to provide a unique number for each UNKNOWN OEF/OIF

 conflict being returned.

 VASV(13,n,2) OEF/OIF FROM DATE (#2.3215;.02) internal format^external format (e.g.,

 3060101^JAN 1,2006) 'n'--> This number will be used to provide a unique number for each

 UNKNOWN OEF/OIF conflict being returned.

 VASV(13,n,3) OEF/OIF TO DATE (#2.3215;.03) internal format^external format (e.g., 3060301^MAR

 1,2006) 'n'--> This number will be used to provide a unique number for each UNKNOWN OEF/OIF

 conflict being returned.

 Returns Service-related information for a patient.

 COMPONENT: REG

 VARIABLES: Patient registration/disposition information

 COMPONENT: SDE

 VARIABLES: Active clinic enrollment data

 COMPONENT: SDA

 VARIABLES: Returns appointment information for a patient.

 COMPONENT: OERR

 VARIABLES: Will return the demographic and inpatient [INP] arrays. Same as DEM and INP.

 COMPONENT: 1

 VARIABLES: Will return the demographic and inpatient [INP] arrays. Same as DEM and INP.

 COMPONENT: 2

 VARIABLES: Will return the demographic and eligibility arrays. Same as DEM and ELIG.

 COMPONENT: 3

 VARIABLES: Will return the eligibility and inpatient [INP] arrays. Same as ELIG and INP.

 COMPONENT: 4

 VARIABLES: Will return the demographic and address arrays. Same as DEM and ADD.

 COMPONENT: 5

 VARIABLES: Will return the address and inpatient [INP] arrays. Same as INP and ADD.

 COMPONENT: 6

 VARIABLES: Will return the demographic, eligibility and address arrays. Same as DEM, ELIG, and ADD.

 COMPONENT: 7

 VARIABLES: Will return the eligibility and service arrays. Same as ELIG and SVC.

 COMPONENT: 8

 VARIABLES: Will return the eligibility, service and monetary arrays. Same as ELIG, SVC, and MB.

 COMPONENT: 9

 VARIABLES: Will return the demographic, registration, clinic enrollment and appointment arrays. Same as DEM, REG, SDE,

 and SDA.

 COMPONENT: 10

 VARIABLES: Will return the enrollment and appointment arrays. Same as SDE and SDA.

 COMPONENT: 51

 VARIABLES: Will return the demographic and inpatient [IN5] arrays with version 5.0 of MAS. Same as DEM and IN5.

 COMPONENT: 52

 VARIABLES: Will return the eligibility and inpatient [IN5] arrays with version 5.0 of MAS. Same as ELIG and IN5.

 COMPONENT: 53

 VARIABLES: Will return the address and inpatient [IN5] arrays with version 5.0 of MAS. Same as IN5 and ADD.

 COMPONENT: ALL

 VARIABLES: Will return all arrays supported by this routine. Tag INP will be used to determine inpatient array. All

 calls EXCEPT IN5.

 COMPONENT: A5

 VARIABLES: Will return all arrays supported by this routine after version 5.0 of the MAS module is up and running. IN5

 will be used to determine the inpatient array. All calls EXCEPT INP.

 COMPONENT: SEL

 VARIABLES: Combination off arrays not listed. See documentation.

 COMPONENT: INP

 VARIABLES: Inpatient-related information.

 COMPONENT: OAD

 VARIABLES: Address information for next-of-kin, emergency contacts, designee, employer, or spouse's employer.

 COMPONENT: PID

 VARIABLES: Returns VA("BID") and VA("PID") variables.

 COMPONENT: KVAR

 VARIABLES: Used to clean-up variables used by VADPT utilities.

 COMPONENT: KVA

 VARIABLES: Same as KVAR^VADPT, but also kills the VA variable (and it's subcomponents VA("BID") and VA("PID")).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: REGISTRATION
 ICR#: 10112

 NAME: VASITE

 USAGE: Supported ENTERED: MAR 7,1994

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 See in routine documentation.

 ROUTINE: VASITE

 COMPONENT: $$SITE

 VARIABLES: SITE(DATE,DIV) ;

 ; -Output= Institution file pointer^Institution name^station

 ; number with suffix

 ;

 ; -Input (optional) date for division, if undefined will use DT

 ; - (optional) medical center division=pointer in 40.8

 COMPONENT: $$PRIM(DATE)

 VARIABLES: DATE Type: Input

 This is an optional variable. If date is not passed in DT will be used.

 - returns medical center division of primary medical center division

 COMPONENT: $$NAME(DATE)

 VARIABLES: DATE Type: Input

 DATE = File Manager date (Optional). If date not defined, today's date will be used.

 This entry point returns the new name of integrated medical centers found in the INTEGRATION NAME (#17000)

 FIELD in the STATION NUMBER (TIME SENSITIVE) (#389.9) file.

 COMPONENT: $$ALL(DATE)

 VARIABLES: DATE Type: Input

 Optional. If DATE is undefined, then date will be today.

 $$ALL Type: Output

 -1 if none exist from the date specified

 1 if one or more exists

 VASITE Type: Output

 VASITE(station number)=station number

 Returns all possible station numbers

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 2198

 NAME: TEST FOR BROKER CONTEXT

 USAGE: Supported ENTERED: NOV 19,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Use this function in the M code called by an RPC to determine if the current process is being executed by the Broker.

 ROUTINE: XWBLIB

 COMPONENT: $$BROKER()

 VARIABLES: Format

 $$BROKER^XWBLIB

 Input

 (none)

 Output

 Return Value 1 if the current process is being executed by the Broker; 0 if not.

 Example

 I $$BROKER^XWBLIB D .; broker-specific code

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 2238

 NAME: CHANGE RPC RETURN TYPE

 USAGE: Supported ENTERED: NOV 19,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Use this function in the M code called by an RPC to change the return value type that the RPC will return on the fly.

 ROUTINE: XWBLIB

 COMPONENT: $$RTRNFMT(TYPE,WRAP)

 VARIABLES: TYPE Type: Input

 Set this to the RETURN VALUE TYPE to change the RPC's setting to. You can set it to one of

 the following numeric or free text values:

 numeric free text

 1 SINGLE VALUE 2 ARRAY 3 WORD PROCESSING 4

 GLOBAL ARRAY 5 FOR GLOBAL INSTANCE

 WRAP Type: Input

 Set to 1 to set the RPC's WORD WRAP ON setting to True; set to 0 to set the RPC's WORD WRAP

 ON setting to False.

 Format

 $$RTRNFMT^XWBLIB(type, wrap)

 Input

 type Set this to the RETURN VALUE TYPE to change the RPC's setting to. You can set it to one of the

 following numeric or free text values:

 numeric free text

 1 SINGLE VALUE 2 ARRAY 3 WORD PROCESSING 4 GLOBAL ARRAY 5

 FOR GLOBAL INSTANCE

 wrap Set to 1 to set the RPC's WORD WRAP ON setting to True; set to 0 to set the RPC's WORD WRAP ON setting

 to False.

 Output

 Return Value 0 if the return value type could not be changed; otherwise, the numeric code representing the

 return value type that the RPC is changed to.

 Example

 I '$$RTRNFMT^XWBLIB("ARRAY",1) D .; branch to code if can't change RPC type

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 2239

 NAME: XWBAPVER -- RPC VERSION

 USAGE: Supported ENTERED: NOV 19,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 XWBAPVER is a documented variable that will contain an RPC version if one was set in the client application (using the

 RPCVersion property). Otherwise XWBAPVER defaults to 0.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 3011

 NAME: XWB IS RPC AVAILABLE

 USAGE: Supported ENTERED: DEC 8,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC allows an application to determine if a particular RPC is available on a server.

 INPUT PARAMETER: RPC PARAMETER TYPE: LITERAL

 SEQUENCE NUMBER: 1 (Required)

 DESCRIPTION: Name of the RPC to be tested. INPUT PARAMETER: RUN CONTEXT PARAMETER TYPE: LITERAL

 SEQUENCE NUMBER: 2 (Optional)

 DESCRIPTION: Specific context in which RPC will run. Possible values

 are:

 L = run Locally (on the server the user is logged on to)

 R = run Remotely (on a server the user is not logged on to)

 If this parameter is not sent, RPC is checked for both local and remote.

 The check is done against the value in the INACTIVE field in the Remote

 Procedure file. See that field's description for more details. INPUT PARAMETER: VERSION NUMBER PARAMETER TYPE:

 LITERAL

 SEQUENCE NUMBER: 3 (Optional)

 DESCRIPTION: Minimum version number of the RPC.

 This parameter is only used if the RUN CONTEXT parameter = "R". If a

 numeric value is in this parameter, the value must be less than or equal

 to the value in the VERSION field of the Remote Procedure file for the

 RPC is be marked available. Note: if the VERSION field is null, the

 check will fail for any numeric value in this parameter.

 RETURN VALUE DESCRIPTION:

 Boolean. 1 = RPC available.

 0 = RPC not available.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 3012

 NAME: XWB ARE RPCS AVAILABLE

 USAGE: Supported ENTERED: DEC 8,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC allows an application to determine if a list of RPCs are available for use on the server.

 INPUT PARAMETER: RUN CONTEXT PARAMETER TYPE: LITERAL

 SEQUENCE NUMBER: 1 (Optional)

 DESCRIPTION: Specific context in which RPCs will run. Possible values

 are:

 L = run Locally (on the server the user is logged on to)

 R = run Remotely (on a server the user is not logged on to)

 If this parameter is not sent, RPC is checked for both local and remote.

 The check is done against the value in the INACTIVE field in the Remote

 Procedure file. See that field's description for more details. INPUT PARAMETER: RPC PARAMETER TYPE:

 LIST

 SEQUENCE NUMBER: 2 (Required)

 DESCRIPTION: This 0-based array contains list of RPCs to be checked

 along with (optionally) a minimum acceptable version of the RPC. The

 format is:

 RPCName^RPCVersionNumber

 The RPCVersionNumber is only used if the RUN CONTEXT parameter = "R".

 If a numeric value is in the second ^-piece and the RUN CONTEXT ="R",

 the value must be less than or equal to the value in the VERSION field

 of the Remote Procedure file for the RPC to be marked available. Note:

 if the VERSION field is null, the check will fail for any numeric value.

 RETURN VALUE DESCRIPTION:

 A 0-based array. The index corresponds to the index of the RPC in the

 RPC Input Parameter. A value of 1 means the corresponding RPC is

 available; a value of 0 means it is not available.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 4186

 NAME: M2M BROKER - M Client/Server Connection

 USAGE: Supported ENTERED: AUG 7,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$CONNECT^XWBM2MC()- This API establishes the initial connection to the VISTA M server. It is a function call that returns a

 success/fail indicator of 1 or 0, respectively.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 4187

 NAME: M2M BROKER - Set Application Context

 USAGE: Supported ENTERED: AUG 7,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$SETCONTX^XWBM2MC() - This API sets the context. It sets up the necessary environment to run the RPCs. It is a function

 call that returns a success/fail indicator of 1 or 0, respectively.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 4188

 NAME: M2M BROKER - Build the PARAM Data Structure

 USAGE: Supported ENTERED: AUG 7,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$PARAM^XWBM2MC() - This API sets up the PARAM data structure necessary to run the RPCs. This is a function call that returns

 a success/fail indicator of 1 or 0, respectively.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 4189

 NAME: M2M BROKER - Build the Remote Procedure Data Structure

 USAGE: Supported ENTERED: AUG 7,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$CALLRPC^XWBM2MC() - This API builds the Remote Procedure Call (RPC) data structure, and then makes the call to the RPC on

 the server. The request message is transported in XML and is parsed by using the VISTA Extensible Markup Language (XML)

 Parser, introduced in Kernel Toolkit Patch XT*7.3*58.

 This API is a function call returning a success/fail indicator of 1 or 0, respectively.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 4190

 NAME: M2M BROKER - Close Connection

 USAGE: Supported ENTERED: AUG 7,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$CLOSE^XWBM2MC() - This API closes the connection between that particular instance of the "requesting" VISTA M server and the

 "receiving" VISTA M server, and does any necessary cleanup. It is a function call that returns a success/fail indicator of 1

 or 0, respectively.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: RPC BROKER
 ICR#: 4191

 NAME: M2M BROKER - Returns CURRENT Application Context

 USAGE: Supported ENTERED: AUG 7,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$GETCONTX^XWBM2MC() - This API returns the current application context so that a new context may be established, thereby

 restoring the previous application context prior to switching to the new one. It is a function call returning a success/fail

 indicator of 1 or 0, respectively.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 266

 NAME: LIST TEMPLATE FILE

 USAGE: Supported ENTERED: AUG 25,1993

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 409.61 ROOT: SD(

 DESCRIPTION: TYPE: Other

 The List Template file 409.61 may be populated with entries that are namespaced (following the same principles as with the

 Option file). Refer to List Manager documentation for current export utilities. Entries should not be made to this file

 other than through VA FileMan and the export utilities.

 ^SD(409.61,

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1252

 NAME: PRIMARY CARE INPUT AND OUTPUT API CALLS

 USAGE: Supported ENTERED: JUN 20,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 SDUTL3 contains 2 input APIs and 3 output APIs which allow enter of/return of the CURRENT PC PRACTITIONER and CURRENT PC TEAM.

 The three output APIs will continue to be supported. The two input APIs will be supported as long as the two fields exist in

 the patient file. The approximate time for deletion of these fields is March 1 2000.

 ROUTINE: SDUTL3

 COMPONENT: $$OUTPTPR(DFN[,SCDATE][,SCPCROLE])

 VARIABLES: DFN Type: Input

 Internal entry of the PATIENT file (#2)

 SCDATE Type: Input

 Relevant Date (Default=DT)

 SCPCROLE Type: Input

 Type of PC Role (Default =1 (PC Practitioner),2=Attending)

 Function: $$OUTPTPR^SDUTL3(DFN)

 Input: DFN - This is a required parameter that is the internal entry

 number of the PATIENT file.

 Output: CURRENT PC PRACTITIONER in Internal^External format

 Internal- If there is a successful lookup for the CURRENT

 PC PRACTITIONER, this is a pointer to the NEW

 PERSON file (#200). If it is not successful, a

 0 is returned.

 External- If there is a successful lookup, this is the

 practitioner's name, as entered in the NAME

 field (#.01) of file #200. If there is not a

 successful lookup, this is null.

 COMPONENT: $$OUTPTTM(DFN[,SCDATE][,ASSTYPE])

 VARIABLES: DFN Type: Input

 Internal entry of the PATIENT file (#2)

 ASSTYPE Type: Input

 Assignment Type (Default=1: PC Team)

 SCDATE Type: Input

 Date of interest (Default=DT)

 Output API for CURRENT PC TEAM field:

 =====================================

 Function: $$OUTPTTM^SDUTL3(DFN)

 Input: DFN - This is a required parameter that is the internal entry

 number of the PATIENT file.

 Output: CURRENT PC TEAM in Internal^External format

 Internal- If there is a successful lookup for the CURRENT

 PC TEAM, this is a pointer to the TEAM file

 (#404.51), which is distributed with this patch. If

 the lookup is not successful, a 0 is returned.

 External- If there is a successful lookup, this is the

 team's name, as entered in the NAME field (#.01)

 of file #404.51. If there is not a successful

 lookup, this is null.

 COMPONENT: INPTPR(DFN,PRACT)

 VARIABLES: DFN Type: Input

 Internal entry of the PATIENT file (#2)

 PRACT Type: Input

 Internal entry number of the NEW PERSON file (#200) denoting the practitioner assigned to the

 patient.

 SDOKS Type: Output

 1 if addition was successful or 0 if it was not.

 Subroutine: INPTPR^SDUTL3(DFN,PRACT)

 Input: DFN - This is a required parameter that is the internal

 entry number of the PATIENT file.

 PRACT- This is a required parameter that is a pointer to

 file #200 associated with the patient's primary care

 practitioner.

 Output: SDOKS- This is 1 if the data is stored successfully, 0

 otherwise.

 COMPONENT: INPTTM(DFN,TEAM)

 VARIABLES: DFN Type: Input

 Internal entry of the PATIENT file (#2)

 TEAM Type: Input

 Then internal entry number of the TEAM file associated with the patient.

 SDOKS Type: Output

 1 if addition was successful or 0 if it was not.

 Subroutine: INPTTM^SDUTL3(DFN,TEAM)

 Input: DFN - This is a required parameter that is the internal

 entry number of the PATIENT file.

 TEAM - This is a required parameter that is a pointer to

 the TEAM file, which associate with this patient's

 primary care team.

 Output: SDOKS- This is 1 if the data is stored successfully, 0

 otherwise.

 COMPONENT: $$OUTPTAP(DFN[,SCDATE])

 VARIABLES: DFN Type: Input

 Internal entry of the PATIENT file (#2)

 SCDATE Type: Input

 Relevant Date (Default=DT)

 Function: $$OUTPTAP^SDUTL3(DFN) Input: DFN - This is a required parameter that is the internal entry

 number of the PATIENT file. Output: CURRENT PC ASSOCIATE PROVIDER in Internal^External

 format.

 Internal - If there is a successfule lookup for the CURRENT PC

 ASSOCIATE PROVIDER, this is a pointer to the PERSON

 file (#200). If it is not successful, a 0 is

 returned.

 External - If there is a successfule lookup, this is the

 provider's name as entered in the field (#.01) of

 file #200. If there is not a successfule lookup,

 this is null.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1713

 NAME: SC LISTER

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Per LIST^DIC(), returns the starting location, number of records to retrieve, file to retrieve them from, and index to use.

 ROUTINE: LISTC SCUTBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1714

 NAME: SC FILER

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Generic call to file edits into FM file.

 ROUTINE: FILEC SCUTBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1715

 NAME: SC DELETE ENTRY

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Allows file entry deletion via FileMan ^DIK call.

 ROUTINE: DIKC SCUTBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1717

 NAME: SC FILE NUMBER

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Broker callback to get file number.

 ROUTINE: FILENOC SCUTBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1718

 NAME: SC GLOBAL NODE

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Call to pass back a global node.

 ROUTINE: NODEC SCUTBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1719

 NAME: SC GETS ENTRY DATA

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Calls database server at GETS^DIQ.

 ROUTINE: GETSC SCUTBK2

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1720

 NAME: SC LOCK/UNLOCK NODE

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Allow locking/unlocking of M global node.

 ROUTINE: LOCKC SCUTBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1721

 NAME: SC VALIDATOR

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This function allows the application to validate user input to

 a field before filing data. The call uses the database server VAL^DIE

 call.

 ROUTINE: VALC SCUTBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1722

 NAME: SC GLOBAL NODE COUNT

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns the number of entries found in the global node at the ROOT,XREF,

 VALUE. If 0 is returned, then there were no values at that node.

 Pass in ("ROOT"), ("XREF"), ("VALUE")

 ROUTINE: GLCNT SCUTBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1723

 NAME: SC PRTP

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns the currently active staff member for a position. Send in

 Position Ien and date range, returns name and ien from New Person

 file.

 SC("IEN")=ien

 SC("BEGIN")=begining date for check

 SC("END")=ending date for check

 ROUTINE: PRTP SCUTBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1724

 NAME: SC MAILMAN

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Sends Mailman message from information sent from client

 ROUTINE: MAILC SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1725

 NAME: SC NEW HISTORY OK

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This call passes back whether the date for a new history entry is valid

 or not. Primarily for files 404.52, 404.58, 404.59. Returns a

 1 if ok, or a 0 if not.

 ROUTINE: NEWHIST SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1726

 NAME: SC CHANGE HISTORY OK

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This call returns a 1 if changing an exisiting date for a History

 entry is ok, or a 0 if the date cannot be changed. Primary history

 files are 404.52, 404.58, 404.59

 ROUTINE: CHGDTC SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1727

 NAME: SC INACTIVATE ENTRY

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This call returns a 1 if the entry can be inactivated, or a 0 if the

 entry cannot. Used primarily for history files.

 ROUTINE: INACTC SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1728

 NAME: SC DELETE HISTORY

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This call returns a 1 if the entry can be deleted, a 0 if it cannot be

 deleted. Restricted to files 404.52, 404.58, 404.59 history files

 at present.

 ROUTINE: DELDTC SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1729

 NAME: SC HISTORY STATUS OK

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This call returns a 1 if the status of a new history entry is ok, a 0

 if it is not. Currently restricted to files, 404.52, 404.58, 404.59

 ROUTINE: NEWSTC SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1730

 NAME: SC MEAN TEST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns mean test data for patient from API call LST^DGMTU

 ROUTINE: MNTEST SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1731

 NAME: SC TEAM LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns a list of teams the patient is currently assigned to.

 ROUTINE: TMLST SCUTBK11

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1732

 NAME: SC PATIENT LOOKUP

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Patient lookup. This is intended as a temporary RPC until a VA or

 FileMan component is available. Does a Multiple index lookup on

 the PATIENT file (#2). This does not invoke DPTLK. Given lookup

 value, this returns a list of the form DFN^patient name^DOB^PID.

 Only the first 500 records that match the value are returned.

 ROUTINE: FINDP SCUTBK11

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1733

 NAME: SC POSITION MEMBERS

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns an array of positions. For each position, the standard role,

 team member currently filling, and the preceptor (if any) for the

 team member. Returns both Internal and external values.

 Piece 1: Team Ien

 2: Position Ien

 3: Team member Ien (File #200)

 4: Team member's name

 5: Precpetor's Ien (File #200)

 6: Preceptor's Name

 7: Primary Care role (if any) for position.

 ROUTINE: PSLST SCUTBK11

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1734

 NAME: SC FILE SINGLE VALUE

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 File a single value, similar to DIE stuff. For those instances where

 a single value needs to be filed or changed, and that value is not

 associated with a specific component on the client side. ie changing

 a flag.

 ROUTINE: VFILE SCUTBK11

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1736

 NAME: SC KEY CHECK

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Return 1 if the user is assigned the key passed in, else

 return 0

 ROUTINE: SECKEY SCUTBK11

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1760

 NAME: SC STAFF LOOKUP

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns a list of staff members.

 ROUTINE: STAFFLK SCUTBK12

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1761

 NAME: SC USER CLASS STATUS

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns a 1 if the User class is installed and in use, a 0 if the User

 Class is not installed

 ROUTINE: CHKUSR SCUTBK12

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1762

 NAME: SC PRIMARY CARE TEAM

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Returns the primary care team for a patient for the date specified.

 Pass in the DFN and Date. Returns team information.

 ROUTINE: GETPC SCUTBK12

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1765

 NAME: SC ASSIGN PATIENT LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 ROUTINE: PTASGN1 SCUTBK20

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1766

 NAME: SC FILE PATIENT LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 ROUTINE: PTASGN2 SCUTBK20

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1767

 NAME: SC BUILD PAT TM LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 ROUTINE: PTTMBLD SCUTBK20

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1768

 NAME: SC GET PAT TM LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 ROUTINE: PTTMGET SCUTBK20

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1769

 NAME: SC GET PAT BLOCK

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Retrieve a block of patients available to be assigned from the ^TMP

 holding global built by the SC BLD PAT.... remote procedure call.

 Input $J, the starting number in the block, the ending number in the

 block, and the last entry in the global.

 ROUTINE: PTGET SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1770

 NAME: SC BLD PAT LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Builds a list of patients to be assigned to either a team or position

 through the multiple assignment form. This list is called by the

 actual "filer" for either the Team or the position. The list's

 format is ^TMP($J,"SC PATIENT LIST",DFN)

 ROUTINE: PTLSTBLD SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1771

 NAME: SC FILE PAT TM ASGN

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 File patient team assignments in ^TMP("SC PATIENT LIST",DFN) global

 for later processing

 ROUTINE: PTFILE SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1772

 NAME: SC BLD PAT CLN LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC build a list of patients by assignment to a selected clinic.

 Lookup is in the Hospital location file, screening of "C" in the

 (0,3) node. List is stored in ^TMP($J,"SCCLPT",N)=DFN. List is

 alphabetized by name.

 ROUTINE: PTCLBLD SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1773

 NAME: SC FILE PAT POS ASGN

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 File patient position assignments in ^TMP("SC PATIENT LIST",DFN) global

 for later processing

 ROUTINE: POSFILE SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1774

 NAME: SC BLD PAT SCDE LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Buils a list of patients who are associated with a particular stop code.

 Only those patients within the specified date range will appear in the list.

 Screens out inactive stop codes. Format of the list is ^TMP($J,"SCSCDE",DFN)

 ROUTINE: PTSCBLD SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1775

 NAME: SC BLD PAT TM LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Builds a list of patients who are assigned to the selected team. format

 of the list is ^TMP($J,"SCTEAM",n)=DFN.

 ROUTINE: PTTMBLD SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1776

 NAME: SC BLD PAT POS LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Build a list of patients who are assigned to a selected position.

 The format of the list is ^TMP($J,"SCPOS",n)=DFN. This list is called

 the actual filer through another RPC.

 ROUTINE: PTPSBLD SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1777

 NAME: SC PAT ENROLL CLN

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Enrolls patient in the clinic that is associated with the position the

 patient is being assigned to. Pass in DFN, Clinic,

 required fields, and the date assigned.

 ROUTINE: PTCLEN SCMCBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1778

 NAME: SC CHECK FOR PC POS

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 ROUTINE: CHKPOS SCMCBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1779

 NAME: SC FILE ALL PAT TM ASGN

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 File patient - team assignments in ^TMP("SC PATIENT LIST",DFN) global

 ROUTINE: ASGNALL SCMCBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1780

 NAME: SC BLD PAT APT LIST

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Builds a list of patients for a selected clinic by appointment date range.

 This list is stored in ^TMP($J,"SCAPP",n)=DFN. List is in alphabetical

 order.

 ROUTINE: PTAPBLD SCMCBK

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1781

 NAME: SC FILE ALL PAT POS ASGN

 USAGE: Supported ENTERED: NOV 17,2006

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 ROUTINE: ASGALLP SCMCBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1797

 NAME: SC BLD NOPC TM LIST

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Builds a list of patients that have a primary care assignment, but no

 current primary care team assignment. Uses $$PTPCNTM^SCAPMC20

 ROUTINE: NOPCTM SCMCBK1

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1798

 NAME: SC PAT ASGN MAILMAN

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 Builds the before and after status for a single patient assignment to

 either a team or a position, and fires off a mailman message.

 ROUTINE: PTASGMM SCUTBK10

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 1916

 NAME: SCAPMC - SUPPORTED PCMM CALLS

 USAGE: Supported ENTERED: FEB 5,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 These are supported references in the SCAPMC routine:

 (1) $$PRTM(SCTEAM,SCDATES,SCUSRA,SCROLEA,SCLIST,SCERR) --

 (2) $$PRCL(SC44,SCDATES,SCPOSA,SCUSRA,SCROLEA,SCLIST,SCERR) --

 (3) $$PRPT(DFN,SCDATES,SCPOSA,SCUSRA,SCROLEA,SCPURPA,SCLIST,SCERR) --

 ;

 (4) $$PTTM(SCTEAM,SCDATES,SCLIST,SCERR) --

 (5) $$TMPT(DFN,SCDATES,SCPURPA,SCLIST,SCERR) --

 (6) $$INSTPCTM(DFN,SCEFF) --

 (7) $$PTPR(SC200,SCDATES,SCPURPA,SCROLEA,SCLIST,SCERR,SCYESCL)--

 ROUTINE: SCAPMC

 COMPONENT: $$PRTM

 VARIABLES: $$PRTM(SCTEAM,SCDATES,SCUSRA,SCROLEA,SCLIST,SCERR) -- Extrinsic function call to return an array of

 practitioners who are assigned to positions on a team for a time period.

 Output: @SCLIST() = array of practitioners

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of NEW PERSON file entry (#200)

 2 Name of person

 3 IEN of TEAM POSITION file (#404.57)

 4 Name of Position

 5 IEN OF USR CLASS(#8930) of POSITION (#404.57

 6 USR Class Name

 7 IEN of STANDARD POSITION (#403.46)

 8 Standard Role (Position) Name

 9 Activation Date for 404.52 (not 404.59!)

 10 Inactivation Date for 404.52

 11 IEN of Position Ass History (404.52)

 12 IEN of Preceptor Position

 13 Name of Preceptor Position

 SCERR() = Array of DIALOG file messages(errors) . @SCERR(0)= Number of error(s), UNDEFINED if no errors

 Foramt:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of DIALOG file

 Returned: 1 if ok, 0 if error

 COMPONENT: $$PRCL

 VARIABLES: $$PRCL(SC44,SCDATES,SCPOSA,SCUSRA,SCROLEA,SCLIST,SCERR) -- Extrinsic function to return a list of practitioners

 associated to a clinic in PCMM. There is an association if the practitioner is assigned to a position for the

 time period and that position has the clinic as its ASSOCIATED CLINIC. Note: Multiple positions can have the

 same clinic.

 @SCLIST() = array of practitioners

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of NEW PERSON file entry (#200)

 2 Name of person

 3 IEN of TEAM POSITION file (#404.57)

 4 Name of Position

 5 IEN OF USR CLASS(#8930) of POSITION (#404.57)

 6 USR Class Name

 7 IEN of STANDARD POSITION (#403.46)

 8 Standard Role (Position) Name

 9 Activation Date for 404.52 (not 404.59!)

 10 Inactivation Date for 404.52

 11 IEN of Position Ass History (404.52)

 12 IEN of Preceptor Position

 13 Name of Preceptor Position @sclist@('scpr',sc200,sctp,scact,scn)=""

 SCERR() = Array of DIALOG file messages(errors) .

 Foramt: @SCERR@(0) = Number of errors, undefined if none

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of DIALOG file

 Returned: 1 if ok, 0 if error

 COMPONENT: $$PRPT

 VARIABLES: $$PRPT(DFN,SCDATES,SCPOSA,SCUSRA,SCROLEA,SCPURPA,SCLIST,SCERR) -- Extrinsic function to return a list of

 practitioners assigned to a patient. The practitioner is assigned to a patient if both the patient and the

 practitioner are assigned to a position for the time period.

 SCLIST() = array of practitioners

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of NEW PERSON file entry (#200)

 2 Name of person

 3 IEN of TEAM POSITION file (#404.57)

 4 Name of Position

 5 IEN OF USR CLASS(#8930) of POSITION (#404.57)

 6 USR Class Name

 7 IEN of STANDARD POSITION (#403.46)

 8 Standard Role (Position) Name

 9 Activation Date for 404.52 (not 404.59!)

 10 Inactivation Date for 404.52

 11 IEN of Position Ass History (404.52)

 12 IEN of Preceptor Position

 13 Name of Preceptor Position

 SCERR() = Array of DIALOG file messages(errors) . @SCERR(0)= Number of error(s), UNDEFINED if no errors

 Foramt:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of DIALOG file

 Returned: 1 if ok, 0 if error

 COMPONENT: $$PTTM

 VARIABLES: $$PTTM(SCTEAM,SCDATES,SCLIST,SCERR) -- Extrinsic function to return a list of patients assigned to a team for a

 time period.

 @SCLIST() = array of patients

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of PATIENT file entry

 2 Name of patient

 3 IEN of Patient Team Assignment

 4 Activation Date

 5 Inactivation Date

 6 Patient Long ID (SSN)

 SCERR() = Array of DIALOG file messages(errors) . @SCERR@(0)=number of errors, undefined if none

 Foramt:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of DIALOG file

 Returned: 1 if ok, 0 if error

 COMPONENT: $$TMPT

 VARIABLES: $$TMPT(DFN,SCDATES,SCPURPA,SCLIST,SCERR) Extrinsic function to return a list of teams assigned to a patient fo

 time period. Output:

 @SCLIST() = array of teams (includes SCTM xref)

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of TEAM file entry

 2 Name of team

 3 IEN of file #404.42 (Pt Tm Assignment)

 4 current effective date

 5 current inactivate date (if any)

 6 pointer to 403.47 (purpose)

 7 Name of Purpose

 8 Is this the pt's PC Team?

 Subscript: "SCTM",SCTM,IEN =""

 SCERR() = Array of DIALOG file messages(errors) .

 @SCERR@(0) = number of errors, undefined if none

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of DIALOG file

 Returned: 1 if ok, 0 if error ;

 COMPONENT: $$INSTPCTM

 VARIABLES: DFN Type: Input

 DFN - - Pointer to File #2, PATIENT File

 SC44 Type: Input

 SC44 - Pointer to File #44, Hospital Location File (clinic)

 SCTEAM Type: Input

 SCTEAM - Pointer to File #404.51, TEAM File

 SCEFF Type: Input

 SCEFF - Effective Date of interest

 SCDATES Type: Input

 SCDATES - Name of date array to define time period as follows:

 @SCDATES@("BEGIN") = begin date to search (inclusive)

 [default: TODAY]

 ("END") = end date to search (inclusive)

 [default: TODAY]

 ("INCL") = 1: only use pracitioners who were on

 team for entire date range

 0: anytime in date range

 [default: 1]

 SCUSRA Type: Input

 SCUSRA = Name of array of usr classes to use/exclude

 @SCUSRA@(ptr)="", where ptr is a pointer to File #8930

 if $D(@SCUSRA@("EXCLUDE")) -> list to exclude

 SCROLEA Type: Input

 SCROLEA = Name of array of roles/standard positions to

 include/exclude

 @SCROLEA@(ptr)="" where ptr is a pointer to File #403.46

 if $D(@(SCROLEA@("EXCLUDE")) ->list to exclude

 SCPURPA Type: Input

 SCPURPA = Name of array of team purposes to include/exclude

 @SCPURPA@(ptr)="" where ptr is a pointer to File #403.47

 if $D(@SCPURPA@("EXCLUDE")) -> list to exclude

 SCLIST Type: Output

 SCLIST = Name of output array (local or ^TMP reference)

 Example using $$PRTM:

 >S SCTEAM=1 ;1 is ien of 404.51 entry >S RWD("BEGIN")=DT-30 ;Time

 period starts 30 days ago >S RWD("END")=DT+30 ;and ends 30 days from now >S

 RWD("INCL")=0 ;list if active any time in period >W

 $$PRTM^SCAPMC(SCTEAM,"RWD",,,"RWOUT","RWERR") 1 >ZW RWOUT RWOUT(0)=2

 RWOUT(1)=1212^INSLEY,MARCIA L.^1^AAA ROB 1^^^2^PHYSICIAN-PRIMARY CARE^2960627^^1

 ^^

 RWOUT(2)=10866^WHELAN,ROBERT^2^AAA ROB NURSE^^^6^NURSE (RN)^2960627^^2^1^AAA ROB

 1 RWOUT("SCPR",1212,1,2960627,1)= RWOUT("SCPR",10866,2,2960627,2)=

 $$INSTPCTM(DFN,SCEFF) -- Extrinsic function to retrun the institution and team for the patient's prinmary care

 team for a given date.

 Returned - 0 if not ok (error), otherwise:

 Piece# Description

 1 Pointer to the File #404.51

 2 Name of Team

 3 Pointer to File #4

 4 Name of Institution

 COMPONENT: $$PTPR

 VARIABLES: SC200 Type: Input

 ien of NEW PERSON file(#200) [required]

 SCDATES Type: Input

 SCDATES("BEGIN") = begin date to search (inclusive)

 [default: TODAY]

 ("END") = end date to search (inclusive)

 [default: TODAY]

 ("INCL") = 1: only use patients who were assigned to

 team for entire date range

 0: anytime in date range

 [default: 1]

 SCPURPA Type: Input

 array of pointers to team purpose file 403.47

 ; if none are defined - returns all teams

 ; if @SCPURPA@('exclude') is defined - exclude listed teams

 SCROLEA Type: Input

 array of pointer to 403.46 (per SCPURPA)

 SCLIST Type: Input

 array name to store list [ex. ^TMP("SCPT",$J)]

 SCERR Type: Input

 array NAME to store error messages.

 VARIABLES: $$PTPR(SC200,SCDATES,SCPURPA,SCROLEA,SCLIST,SCERR,SCYESCL)- Extrinsic function call to return an

 array of patients for a practitioner within a time period.

 Output:

 SCLIST() = array of patients

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of PATIENT file entry

 2 Name of patient

 3 IEN of Pt Team Posit Asment if position=source

 4 Activation Date

 5 Inactivation Date

 6 Source 1=Clinic, Null=Position

 7 IEN of Clinic if clinic=source

 SCERR() = Array of DIALOG file messages(errors) .

 @SCERR@(0) = number of errors, undefined if none

 Format:

 Subscript: Sequential # from 1 to n

 Piece Description

 1 IEN of DIALOG file

 Returned: 1 if ok, 0 if error

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2546

 NAME: ACRP INTERFACE TOOLKIT (AIT)

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The ACRP Interface Toolkit (AIT) is a set of programmer tools that

 provides access to outpatient encounter data. The toolkit contains

 Application Programmer Interfaces (APIs) and Remote Procedure Calls

 (RPCs) that provide access to procedure, diagnosis, provider, and

 general data related to an encounter.

 This AIT provides Class I packages, Class III software, and other local

 code with one highly structured interface to the encounter data.

 Note: For detail information on each specific API call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 ROUTINE: SDOE

 COMPONENT: GETDX(encounter,dx_list[,errors])

 VARIABLES: encounter Type: Input

 Encounter IEN

 dx_list Type: Output

 List of V POV Entries

 errors Type: Output

 Error Array [optional]

 Returns diagnoses for an encounter.

 COMPONENT: GETPRV(encounter,provider_list[,errors])

 VARIABLES: encounter Type: Input

 Encounter IEN

 provider_l Type: Output

 List of V PROVIDER Entries

 errors Type: Output

 Error Array [optional]

 Returns providers for an encounter.

 COMPONENT: GETCPT(encounter,cpt_list[,errors])

 VARIABLES: encounte Type: Input

 Encounter IEN

 cpt_list Type: Output

 List of V CPT Entries

 errors Type: Output

 Error Array [optional]

 Returns procedures for an encounter.

 COMPONENT: $$PRV(encounter[,errors])

 VARIABLES: $$PRV Type: Output

 1 - Yes, at least one provider is associated with encounter 0 - No, no providers are

 associated with encounter

 encounter Type: Input

 Encounter IEN

 errors Type: Output

 Error Array [optional]

 Is at least one provider assigned to an encounter?

 COMPONENT: $$CPT(encounter[,errors])

 VARIABLES: $$CPT Type: Output

 1 - Yes, at least one procedure is associated with encounter 0 - No, no procedures are

 associated with encounter

 encounter Type: Input

 Encounter IEN

 errors Type: Output

 Error Array [optional]

 Is at least one procedure assigned to an encounter?

 COMPONENT: $$DX(encounter[,errors])

 VARIABLES: $$DX Type: Output

 1 - Yes, at least one diagnosis is associated with encounter 0 - No, no diagnoses are

 associated with encounter

 encounter Type: Input

 Encounter IEN

 errors Type: Output

 Error Array [optional]

 Is at least one diagnosis assigned to an encounter?

 COMPONENT: $$FINDPRV(encounter,provider[,errors])

 VARIABLES: $$FINDPRV Type: Output

 1 - Yes, specific provider is associated with encounter 0 - No, provider is not associated

 with encounter

 encounter Type: Input

 Encounter IEN

 provider Type: Output

 Practitioner ID

 errors Type: Output

 Error Array [optional]

 Is a specific provider assigned to an encounter?

 COMPONENT: $$FINDDX(encounter,diagnosis[,errors])

 VARIABLES: $$FINDDX Type: Output

 1 - Yes, specific diagnosis is associated with encounter 0 - No, diagnoisis is not associated

 with encounter

 encounter Type: Input

 Encounter IEN

 diagnosis Type: Output

 Diagnosis IEN

 errors Type: Output

 Error Array [optional]

 Is a specific diagnosis assigned to an encounter?

 COMPONENT: $$FINDCPT(encounter,cpt[,errors])

 VARIABLES: $$FINDCPT Type: Output

 1 - Yes, specific procedure is associated with encounter 0 - No, procedure is not associated

 with encounter

 encounter Type: Input

 Encounter IEN

 cpt Type: Output

 CPT IEN

 errors Type: Output

 Error Array [optional]

 Is a specific procedure assigned to an encounter?

 COMPONENT: $$EXAE(dfn,begin_date,end_date[,flags][,errors])

 VARIABLES: $$EXAE Type: Output

 <pointer> Outpatient Encounter IEN for first standalone encounter

 found in date range <null> if no encounter exists

 dfn Type: Input

 Patient ID

 begin_date Type: Input

 Begin Date/Time

 end_date Type: Input

 End Date/Time

 flags Type: Input

 Search Flags

 errors Type: Output

 Error Array [optional]

 Returns the first standalone add/edit encounter for a patient in a date range.

 COMPONENT: $$GETPDX(encounter[,errors])

 VARIABLES: $$GETPDX Type: Output

 <pointer> ien to ^ICD9 for primary dx 0 no primary dx found for encounter

 encounter Type: Input

 Encounter IEN

 errors Type: Output

 Error Array [optional]

 Returns the primary diagnosis for an encounter.

 COMPONENT: $$EXOE(dfn,begin_date,end_date[,flags][,errors])

 VARIABLES: $$EXOE Type: Output

 <pointer> Outpatient Encounter ID for first encounter found in date range <null> if no

 encounter exists

 dfn Type: Input

 Patient ID

 begin_date Type: Input

 Begin Date/Time

 end_date Type: Input

 End Date/Time

 flags Type: Input

 Search Flags

 errors Type: Output

 Error Array [optional]

 Returns the first encounter for a patient in a date range.

 COMPONENT: $$GETLAST(dfn,begin_date[,flags][,errors])

 VARIABLES: $$GETLAST Type: Output

 <pointer> Outpatient Encounter ID for last standalone encounter found

 after date <null> if no encounter exists

 dfn Type: Input

 Patient ID

 begin_date Type: Input

 Begin Date/Time

 flags Type: Input

 Search Flags

 errors Type: Output

 Error Array [optional]

 Returns the last standalone add/edit encounter for a patient from a specified begin date.

 COMPONENT: GETGEN(encounter,encounter_data[,errors])

 VARIABLES: encounter Type: Input

 Encounter IEN

 encounter_ Type: Output

 Encounter Data

 errors Type: Output

 Error Array [optional]

 Returns the zeroth and other nodes of an outpatient encounter entry.

 COMPONENT: PARSE(.encounter_data,format,parsed_data[,errors])

 VARIABLES: encounter_ Type: Input

 Encounter Data

 format Type: Input

 Encounter Parse Format

 parsed_dat Type: Output

 Encounter Parsed Data

 errors Type: Output

 Error Array [optional]

 Parses the data returned from the GETGEN supported call.

 COMPONENT: $$GETOE

 VARIABLES: Returns the zeroth node of an Outpatient Encounter record.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2548

 NAME: ACRP INTERFACE TOOLKIT (AIT)

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The ACRP Interface Toolkit (AIT) is a set of programmer tools that

 provides access to outpatient encounter data. The toolkit contains

 Application Programmer Interfaces (APIs) and Remote Procedure Calls

 (RPCs) that provide access to procedure, diagnosis, provider, and

 general data related to an encounter.

 This AIT provides Class I packages, Class III software, and other local

 code with one highly structured interface to the encounter data.

 Note: For detail information on each specific API call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 ROUTINE: SDQ

 COMPONENT: OPEN(.query[,errors])

 VARIABLES: query Type: Output

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Open a Query Object instance.

 COMPONENT: CLOSE(.query[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Close a Query Object instance.

 COMPONENT: PAT(query,.dfn,action[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 dfn Type: Input

 Patient ID

 action Type: Input

 Action

 errors Type: Output

 Error Array [optional]

 Set or retrieve Patient property of a Query Object instance.

 COMPONENT: DATE(query,.begin_date,.end_date,action[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 begin_date Type: Input

 Begin Date/Time

 end-date Type: Input

 End Date/Time

 action Type: Input

 Action

 errors Type: Output

 Error Array [optional]

 Set or retrieve Date Range property of a Query Object instance.

 COMPONENT: FILTER(query,.filter,action[.errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 filter Type: Both

 Encounter Query Filter

 action Type: Input

 Action

 errors Type: Output

 Error Array [optional]

 Y Type: Output

 current encounter entry number

 Y0 Type: Output

 zeroth node of current encounter entry (only supported fields)

 Set or retrieve Filter property of a Query Object instance.

 COMPONENT: VISIT(query,.visit,action[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 visit Type: Input

 Visit IEN

 action Type: Input

 Action

 errors Type: Output

 Error Array [optional]

 Set or retrieve Visit property of a Query Object instance.

 COMPONENT: INDEX(query,.index,action[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 index Type: Input

 Encounter Query Index

 action Type: Input

 Action

 errors Type: Output

 Error Array [optional]

 Set or retrieve Index property of a Query Object instance.

 COMPONENT: $$EOF(query[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 $$EOF Type: Output

 1 - Yes, query cursor is at the last record or no records exist for query 0 - No, query

 cursor is not at last record

 Is cursor positioned on the last encounter record in the Query Object result set?

 COMPONENT: $$BOF(query[,errors])

 VARIABLES: $$BOF Type: Output

 1 - Yes, query cursor is at the first record or no records exist for query 0 - No, query

 cursor is not at first record

 query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Is cursor positioned on the first encounter record in the Query Object result set?

 COMPONENT: ACTIVE(query,.status,action[,errors]

 VARIABLES: query Type: Input

 Encounter Query Handle

 status Type: Input

 Encounter Query Active Status

 action Type: Input

 Action

 errors Type: Output

 Error Array [otional]

 Set or retrieve Active property of a Query Object instance.

 COMPONENT: $$COUNT(query[,errors])

 VARIABLES: $$COUNT Type: Output

 <number> count of records in query's result set 0 no records in the query's result

 set <null> invalid query or query not active

 query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Returns the number of encounter records in a Query Object result set.

 COMPONENT: FIRST(query[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Positions the cursor at the first encounter record in the Query Object result set.

 COMPONENT: LAST(query[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Positions the cursor at the last encounter record in the Query Object result set.

 COMPONENT: NEXT(query[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Positions the cursor at the next encounter record in the Query Object result set.

 COMPONENT: PRIOR(query[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Positions the cursor at the previous encounter record in the Query Object result set.

 COMPONENT: REFRESH(query[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optional]

 Refresh the Query Object result set.

 COMPONENT: $$GETENTRY(query[,errors])

 VARIABLES: $$GETENTRY Type: Output

 <pointer> ID for entry <null> if no entries in result set

 query Type: Input

 Encounter Query Handle

 errors Type: Output

 Error Array [optinal]

 Returns the internal entry number of the Outpatient Encounter (#409.68) file for the encounter record at the

 current cursor position of the Query Object result set.

 COMPONENT: SCAN(query[,direction][,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 scan_direc Type: Input

 Direction [optional]

 errors Type: Output

 Error Array [optional]

 Scans encounter records that meet the criteria defined by the properties of the Query Object instance.

 COMPONENT: SCANCB(query,.callback,action[,errors])

 VARIABLES: query Type: Input

 Encounter Query Handle

 callback Type: Input

 Scan Callback Logic

 action Type: Input

 Action

 errors Type: Output

 Error Array [optional]

 Set or retrieve Callback property of a Query Object instance.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2552

 NAME: ACRP INTERFACE TOOLKIT (AIT)

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The ACRP Interface Toolkit (AIT) is a set of programmer tools that

 provides access to outpatient encounter data. The toolkit contains

 Application Programmer Interfaces (APIs) and Remote Procedure Calls

 (RPCs) that provide access to procedure, diagnosis, provider, and

 general data related to an encounter.

 This AIT provides Class I packages, Class III software, and other local

 code with one highly structured interface to the encounter data.

 Note: For detail information on each specific API call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 ROUTINE: SDQUT

 COMPONENT: $$ERRCHK([errors])

 VARIABLES: $$ERRCHK Type: Output

 1 - Yes, at least one error is in the error array 0 - No, no errors are in the error array

 errors Type: Output

 Error Array [optional]

 Does current error array contain any errors?

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2553

 NAME: SDOE ASSIGNED A DIAGNOSIS

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a boolean indicator on

 whether at least one diagnosis has been associated with an encounter.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a boolean indicator on

 whether at least one diagnoses has been associated with an encounter.

 ROUTINE: DX SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2554

 NAME: SDOE ASSIGNED A PROCEDURE

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a boolean indicator on

 whether at least one procedure has been associated with an encounter.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a boolean indicator on whether at

 least one procedure has been associated with an encounter.

 ROUTINE: CPT SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2555

 NAME: SDOE ASSIGNED A PROVIDER

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a boolean indicator on

 whether at least one provider has been associated with an encounter.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a boolean indicator on whether at

 least one provider has been associated with an encounter.

 ROUTINE: PRV SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2556

 NAME: SDOE FIND DIAGNOSIS

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a boolean indicator on

 whether a specific diagnosis has been associated with an encounter.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a boolean indicator on

 whether a specific diagnosis is associated with an encounter.

 ROUTINE: FINDDX SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2557

 NAME: SDOE FIND FIRST ENCOUNTER

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns the internal entry number

 of an Outpatient Encounter file (#409.68) entry for the first encounter

 for a patient in a specified date range.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns the internal entry number

 of an OUTPATIENT ENCOUNTER file (#409.68) entry for the first encounter

 for a patient in a specified date range.

 ROUTINE: EXOE SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2558

 NAME: SDOE FIND FIRST STANDALONE

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns the internal entry number

 of an Outpatient Encounter file (#409.68) entry for the first

 standalone add/edit encounter for a patient in a specified date range.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns the internal entry

 number of an OUTPATIENT ENCOUNTER file (#409.68) entry for the

 first the first standalone add/edit for a patient in a specified date range.

 Use same date for begin and end dates for specific (single) date check.

 Standalone encounter is an encounter with no parent and the originating

 process is 'Stop Code Addition'.

 ROUTINE: EXAE SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2559

 NAME: SDOE FIND LAST STANDALONE

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns the internal entry number

 of an Outpatient Encounter file (#409.68) entry for the last

 standalone add/edit encounter for a patient in a specified date range.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns the internal entry

 number of an OUTPATIENT ENCOUNTER file (#409.68) entry for the

 last standalone add/edit for a patient in a specified date range.

 Standalone encounter is an encounter with no parent and the

 originating process is 'Stop Code Addition'.

 ROUTINE: GETLAST SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2560

 NAME: SDOE FIND PROCEDURE

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a boolean indicator on

 whether a specific procedure has been associated with an encounter.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a boolean indicator on

 whether a specific procedure is associated with an encounter.

 ROUTINE: FINDCPT SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2561

 NAME: SDOE FIND PROVIDER

 USAGE: Supported ENTERED: SEP 22,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a boolean indicator on

 whether a specific provider has been associated with an encounter.

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a boolean indicator

 on whether a specific provider is associated with an encounter.

 ROUTINE: FINDPRV SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2564

 NAME: SDOE GET DIAGNOSES

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns an array of diagnoses for

 an encounter.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns an array of diagnoses

 for an encounter.

 Note:

 For encounters before 10/1/96, only scheduling data in the

 OUTPATIENT DIAGNOSIS (#409.43) file may exist. It will only

 exist if the site required diagnoses as part of the check

 out process.

 This RPC will attempt to find this 'old' data, reformat the data

 to meet the V POV structure and return the list of diagnoses as

 described above. (Only the diagnosis code internal entry number

 is available for 'old' encounters.)

 ROUTINE: GETDX SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2565

 NAME: SDOE GET GENERAL DATA

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns the zeroth and other nodes

 of an outpatient encounter.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns the Oth and other nodes of

 an Outpatient Encounter entry.

 ROUTINE: GETGEN SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2566

 NAME: SDOE GET PRIMARY DIAGNOSIS

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns the internal entry number

 of the primary diagnosis code (^ICD9) for an encounter.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns the internal entry number

 of the primary diagnosis code (ICD9) for an encounter.

 Note: For encounters before 10/1/96, this RPC will always return 0.

 This primary diagnosis was not retrieved nor stored by the system

 for these 'old' encounters.

 ROUTINE: GETPDX SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2567

 NAME: SDOE GET PROCEDURES

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a subscripted array of

 procedures for an encounter.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a subscripted array of CPTs

 for an encounter.

 Note:

 For encounters before 10/1/96, only scheduling data in the

 SCHEDULING VISITS (#409.5) file may exist. It will only

 exist if the site required procedures as part of the check

 out process.

 This RPC will attempt to find this 'old' data, reformat the

 data to meet the V CPT structure and return the list of procedures

 as described above. (Only the CPT code internal entry number and

 count are available for 'old' encounters.)

 ROUTINE: GETCPT SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2568

 NAME: SDOE GET PROVIDERS

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a subscripted array of

 providers for an encounter.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a subscripted array of providers

 for an encounter.

 Note:

 For encounters before 10/1/96, only scheduling data in the

 OUTPATIENT PROVIDER (#409.44) file may exist. It will only

 exist if the site required provider as part of the check out process.

 This RPC will attempt to find this 'old' data, reformat the

 data to meet the V PROVIDER structure and return the list of

 providers as described above. (Only the provider internal entry

 number is available for 'old' encounters.)

 ROUTINE: GETPRV SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2569

 NAME: SDOE GET ZERO NODE

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns the zeroth node of an

 outpatient encounter.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns the zeroth node of an

 Outpatient Encounter.

 ROUTINE: GETOE SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2570

 NAME: SDOE LIST ENCOUNTERS FOR DATES

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a list of outpatient encounters

 for a date range.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a list of Outpatient

 Encounters for a specified date range.

 ROUTINE: LIST SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2571

 NAME: SDOE LIST ENCOUNTERS FOR PAT

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a list of outpatient

 encounters for a specified patient and specified date range.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a list of Outpatient

 Encounters for a specified patient and specified date range.

 ROUTINE: LISTPAT SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2572

 NAME: SDOE LIST ENCOUNTERS FOR VISIT

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) returns a list of outpatient

 encounters for a specified PCE visit.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) returns a list of Outpatient

 Encounters for a specified visit.

 ROUTINE: LISTVST SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2573

 NAME: SDOE PARSE GENERAL DATA

 USAGE: Supported ENTERED: SEP 23,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This remote procedure call (RPC) will parse the data returned by

 SDOE GET GENERAL DATA remote procedure call into individual field

 nodes.

 --

 This RPC is part of the ACRP Interface Toolkit (AIT).

 The AIT is a set of programmer tools that provides access

 to outpatient encounter data.

 Note: For detail information on this RPC call, see the following

 AIT documentation files:

 sd_53_p131_tooldoc.doc or

 sd_53_p131_tooldoc.pdf.

 Theses files are distributed as part of patch SD*5.3*131.

 Also, the documentation is available on-line at the following URL:

 http://152.127.1.95/softserv/mip/wr/acrpapi.htm

 This Remote Procedure Call (RPC) will parse the data returned by

 the 'SDOE GET GENERAL DATA' RPC into individual field nodes.

 ROUTINE: PARSE SDOERPC

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2590

 NAME: SD OUTPATIENT GAF SCORE UTILS

 USAGE: Supported ENTERED: SEP 30,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The purpose of these API's is to facilitate the entry of Global Assessment of Function (GAF) scores to the Mental Health

 package from outpatient encounters. VHA Directive, 97-059, dated November 25, 1997, "Instituting Global Assessment of

 Function (GAF) Scores in Axis V Mental Health Patients", provides guidelines for the collection of these GAF scores. These

 API's will be used to (1) return whether a new GAF score is required for an outpatient and (2) whether the outpatient

 encounter clinic is a Mental Health clinic for which GAF scores must be collected. These API's have been added to the

 routine: SDUTL2.

 ROUTINE: SDUTL2

 COMPONENT: NEWGAF(DFN)

 VARIABLES: DFN Type: Input

 Contains the Internal entry number of the patient in the PATIENT File, #2.

 SDGAF Type: Output

 Contains the results

 Entry point NEWGAF^SDUTL2(DFN) returns whether a GAF score is required for a patient, and if one is required,

 returns the date of the last score, the score, and the IEN of the provider who made the determination. The

 internal entry number is passed into the call as variable DFN. The determination and latest occurrence of the

 GAF data are then passed back in the form of a concatenated string in the following format:

 -1 : New GAF required and no previous data

 1 : New GAF required and previous data, the second piece will contain the previous GAF score, the third

 piece will contain the date of the score, and the fourth piece will contain the IEN of the provider w

 determined the GAF score.

 0 : A new GAF is not required

 COMPONENT: MHCLIN(SDCL,SDSC)

 VARIABLES: SDCL Type: Input

 Contains the internal entry number of the clinic

 SDSC Type: Input

 Contains the internal entry number of the CLINIC STOP File, #40.7

 SDMH Type: Output

 Contains the results

 Entry point MHCLIN^SDUTL2(SDCL,SDSC) returns whether the clinic for the encounter is a mental health clinic or

 not. The current criterion for this determination is a stop code that starts with a "5", excluding the

 following codes: 526, 527, 528, 530, 536, 537, 542, 546, 579. Either a pointer to the HOSPITAL LOCATION File,

 #44, or a pointer to the CLINIC STOP File, #40.7, must be passed into the call. If neither is passed in, the

 default result will be "0". If the clinic or the clinics stop match the criterion, the call will pass back a

 "1" to indicate a mental health clinic, otherwise a "0" will be passed back.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 2848

 NAME: GETALL API CALL

 USAGE: Supported ENTERED: JUN 16,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: SCAPMCA

 COMPONENT: $$GETALL(DFN[,SCDATE][,SCARR])

 VARIABLES: DFN Type: Input

 Internal entry of the PATIENT file (#2).

 SCDATE Type: Input

 Array of Dates (Default=DT)

 SCDATE("BEGIN")=beginning date

 SCDATE("END")=ending date

 SCDATE("INCL")= 1: only reference practitioners that were on

 team for entire date range.

 0: anytime in date range

 (Default = 1)

 SCARR Type: Output

 Name of array to return data. (Default is ^TMP("SC",$J)

 Function: $$GETALL^SCAPMCA(DFN) Input: DFN - This is a required parameter that is the internal

 entry number of the PATIENT file.

 Output: HIERARCHICAL FORMAT (This format will exist only if there are

 assignments that exist.)

 @SCARR@(DFN,"TM",a,b)=team data

 @SCARR@(DFN,"TM",a,b,"POS",c)=position data

 @SCARR@(DFN,"TM",a,b,"POS",c,"PROV",d)=provider data

 @SCARR@(DFN,"TM",a,b,"POS",c,"PPOS",e)=preceptor position data

 @SCARR@(DFN,"TM",a,b,"POS",c,"PPROV",f)=preceptor provider data

 where:

 a = TEAM file (#404.51) ifn

 b = PATIENT TEAM Assignment file (#404.42) ifn

 c = PATIENT TEAM POSITION Assignment file (#404.43) ifn

 d = POSITION Assignment HISTORY file (#404.52) ifn

 e = TEAM POSITION file (#404.57) ifn

 f = POSITION Assignment HISTORY file (#404.52) ifn

 Output: FLAT FORMAT (The zero nodes of this format are always

 returned. They are equal to zero if no

 assignments exist.)

 @SCARR@(DFN,"NPCPOS",0)=non-PC position count

 @SCARR@(DFN,"NPCPOS",n)=non-PC position data

 @SCARR@(DFN,"NPCPPOS",0)=non-PC preceptor position count

 @SCARR@(DFN,"NPCPPOS",n)=non-PC preceptor position data

 @SCARR@(DFN,"NPCPPR",0)=non-PC preceptor provider count

 @SCARR@(DFN,"NPCPPR",n)=non-PC preceptor provider data

 @SCARR@(DFN,"NPCPR",0)=non-PC provider count

 @SCARR@(DFN,"NPCPR",n)=non-PC provider data

 @SCARR@(DFN,"NPCTM",0)=non-PC team count

 @SCARR@(DFN,"NPCTM",n)=non-PC team data

 @SCARR@(DFN,"PCAP",0)=PC associate provider count

 @SCARR@(DFN,"PCAP",n)=PC associate provider data

 @SCARR@(DFN,"PCPOS",0)=PC position count

 @SCARR@(DFN,"PCPOS",n)=PC position data

 @SCARR@(DFN,"PCPPOS",0)=PC preceptor position count

 @SCARR@(DFN,"PCPPOS",n)=PC preceptor position data

 @SCARR@(DFN,"PCPR",0)=PC provider count

 @SCARR@(DFN,"PCPR",n)=PC provider data

 @SCARR@(DFN,"PCTM",0)=PC team count

 @SCARR@(DFN,"PCTM",n)=PC team data

 where:

 n = incrementing number from 1 to 'n'.

 Output: ARRAY DATA STRINGS (This outlines the various pieces of data

 that are returned for the Team, Position

 and Provider.)

 TEAM Information Data String:

 Piece Description

 1 IEN of TEAM file entry

 2 Name of Team

 3 IEN of file #404.42 (Patient Team Assignment)

 4 Current Effective Date

 5 Current Inactive Date (if any)

 6 Pointer to #403.47 (purpose)

 7 Name of Purpose

 8 Is this the Patient's PC Team?

 POSITION Information Data String:

 Piece Description

 1 IEN of TEAM POSITIONfile (#404.57)

 2 Name of Position

 3 IEN of Team #404.51

 4 IEN of file #404.43 (Patient/Team/Position

 Assignment)

 5 Current Effective Date

 6 Current Inactive Date (if any)

 7 Pointer to Standard Role (#403.46)

 8 Name of Standard Role

 9 Pointer to User Class (#8930)

 10 Name of User Class

 11 Pointer to Patient Team Assignment (#404.42)

 12 IEN of Preceptor Position (#404.57)

 PROVIDER Information Data String:

 Piece Description

 1 IEN of NEW PERSON file entry (#200)

 2 Name of Person

 3 IEN of Team Position file (#404.57)

 4 Name of Position

 5 IEN of User Class (#8930) of Position

 (#404.57)

 6 User Class Name

 7 IEN of Standard Position (#403.46)

 8 Standard Role (Position) Name

 9 Activation Date for #404.52 (not 404.59!)

 10 Inactivation Date for #404.52

 11 IEN of Position Assignment History (#404.52)

 12 IEN of Preceptor Position

 13 Name of Preceptor Position

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 4347

 NAME: SCMSVUT5

 USAGE: Supported ENTERED: FEB 17,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Supported calls for parsing of an HL7 segment

 Valid after patches DG*5.3*508 and SD*5.3*293 are released.

 ROUTINE: SCMSVUT5

 COMPONENT: SEGPRSE(SEGMENT,OUTARR,FS)

 VARIABLES: SEGMENT Type: Input

 Array containing HL7 segment to parse (full global ref)

 SEGMENT = First 245 characters of segment

 SEGMENT(1..n) = Continuation nodes

 OR

 SEGMENT(x) = First 245 characters of segment

 SEGMENT(x,1..n) = Continuation nodes

 OUTARR Type: Both

 Array to put parsed segment into (full global ref)

 OUTARR(0) = Segment name

 OUTARR(seq#) = Data (first 245 characters)

 OUTARR(seq#,1..n) Continuation nodes

 FS Type: Input

 HL7 field separator (defaults to ^) (1 character)

 Parse HL7 segment by field separator

 Notes : OUTARR is initialized (KILLed) on entry

 : Assumes SEGMENT and OUTARR are defined and valid

 COMPONENT: SEQPRSE(SEQDATA,OUTARR,ENCODE)

 VARIABLES: SEQDATA Type: Input

 Array containing seq to parse (full global ref)

 SEQDATA = First 245 characters of sequence

 SEQDATA(1..n) = Continuation nodes

 OR

 SEQDATA(x) = First 245 characters of sequence

 SEQDATA(x,1..n) = Continuation nodes

 OUTARR Type: Both

 Array to put parsed sequence into (full global ref)

 OUTARR(rep#,comp#) = Data (first 245 characters)

 OUTARR(rep#,comp#,1..n) = Continuation nodes

 ENCODE Type: Input

 HL7 encoding characters (defaults to ~|\&) (4 chars)|

 Parse HL7 sequence by component

 Notes : OUTARR is initialized (KILLed) on entry

 : Assumes SEQDATA and OUTARR are defined and valid

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 4433

 NAME: DBIA4433

 USAGE: Supported ENTERED: MAY 25,2004

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: SDAMA301

 COMPONENT: $$SDAPI(.ARRAY)

 VARIABLES: ARRAY(FLDS Type: Input

 Required, ARRAY("FLDS"). This is a list of the appointment field ID's requested, each ID

 separated by a semicolon.

 ARRAY(MAX) Type: Input

 Optional, ARRAY("MAX"). mAXIMUM APPOINTMENTS REQUESTED.

 ARRAY(SORT Type: Input

 Optional, ARRAY("SORT"). Allows the output to be sorted by patient DFN, instead of by Patient

 and Clinic IENs.

 $$SDAPI Type: Output

 From the extrinsic call, this API will return "-1" if an error occurred, "0" if no

 appointment is found that matches the filter criteria, or a count of the returned

 appointments.

 Name: SDAPI ;Retrieve Filtered Appointment Data

 Declaration: $$SDAPI^SDAMA301(.ARRAY)

 Description: This API returns filtered appointment information and should be called using an EXTRINSIC call.

 This will be a SUPPORTED IA.

 Argument ARRAY - An array, passed by value, that is defined and

 name-spaced by the calling application, containing the

 following parameters:

 Field List Required, ARRAY("FLDS"). List of appointment field IDs

 requested, each ID separated by a semicolon. See Appendix

 A for a complete list of available appointment fields and

 their associated IDs.

 Filters Optional. See Appendix B for a complete list of

 available appointment filters and their input array

 format.

 Max Appts Optional, ARRAY("MAX"). Maximum appointments requested.

 See Appendix B for a description and valid values of this

 array entry.

 Sort Optional, ARRAY("SORT"). Allows the output to be sorted by

 patient DFN, instead of by Patient and Clinic IENs. See

 Appendix B for a description and valid values of this

 array entry.

 Return Values

 From the extrinsic call, this API will return "-1" if an error occurred, "0" if no appointment is found that

 matches the filter criteria, or a count of the returned appointments.

 If no appointment is found that matches the filter criteria, the ^TMP($J,"SDAMA301") global will not be

 generated.

 If appointments are found that match the filter criteria, the appointments will be returned in

 ^TMP($J,"SDAMA301",SORT1,SORT2,APPT DATE/TIME) = field1^field2^field3^ where SORT1 and SORT2 are driven by the

 patient filter and defined in the table below, and field1 is appointment data ID 1 (appt date/time) if

 requested, field2 is appointment data ID 2 (clinic IEN and name) if requested, etc. Note: Field 6 will always

 be null, because if field 6 (Appointment comments) is requested, the comments will appear on the next subscript

 ("C") of the global reference. IE. ^TMP($J,"SDAMA301",SORT1, SORT2,APPT DATE/TIME,"C")=field 6.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 4652

 NAME: CLNCHK - SDUTL2 (RESTRICTING STOP CODE)

SUBSCRIBING PACKAGE: EVENT CAPTURE

 DSS EXTRACTS

 PCE PATIENT CARE ENCOUNTER

 USAGE: Supported ENTERED: APR 1,2005

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The purpose of API CLNCK^SDUTL2 is to determine whether a Clinic entry in the HOSPITAL LOCATION File #44 has conforming stop

 codes. Stop codes are stored in the CLINIC STOP File #40.7 and are used in accordance to their assigned restriction types.

 Stops codes with restriction type 'P' can only be used in the primary stop code position. Stop codes with restriction type 'S'

 can only be used in the secondary stop code position. Stop codes with restriction type 'E' can be used in either the primary

 or secondary stop code position

 ROUTINE: SDUTL2

 COMPONENT: $$CLNCK(CLN,DSP)

 VARIABLES: CLN Type: Input

 Clinic IEN in HOSPITAL LOCATION File #44.

 DSP Type: Input

 Interactive display of error message, 1 - Display or 0 No Display.

 $$CLNCK Type: Output

 1 if clinic has conforming stop code, or 0^error message (if clinic has non-conforming stop

 codes)

 Checks a clinic for valid stop code restriction. Returns 1 if stop code conforms or 0 and error message.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 4990

 NAME: SERVICE CONNECTED AUTOMATION

 USAGE: Supported ENTERED: MAY 10,2007

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine supports the Automated Service Connected Designation (ASCD) project. It automates the service connected (SC)

 value for outpatient encounters. It also determines whether an encounter should be sent to the ASCD file #409.48 for

 additional review. The evaluation of the SC value is based on the mapping of the patient rated disability codes and ICD9-CM

 codes.

 ROUTINE: SDSCAPI

 COMPONENT: $$SC(SDFN,SDXS,SDENC,SDVST)

 VARIABLES: SDFN Type: Input

 IEN of PATIENT file (#2). [Required, if SDENC or SDVST undefined].

 SDXS Type: Input

 Diagnosis code array (passed by reference) - array format: SDXS(ICD9 ien) = "" [Optional, if

 SDENC defined]

 SDENC Type: Input

 IEN of OUTPATIENT ENCOUNTER file (#409.68) [Optional]

 SDVST Type: Input

 IEN of VISIT file (#9000010 [Optional]

 $$SDFILEOK Type: Output

 SC flag^SC description^VBA/ICD9 match^Review

 SC flag: 1 = Service Connected (SC)

 0 = Non-Service Connected (NSC)

 "" = (null) - could not be determined

 SC description: SC = Service Connected

 NSC = Non-Service Connected

 VBA/ICD9 match: 1 = yes

 0 = no

 Review: 1 = send to review

 0 = don't send to review

 This entry point determines whether a specific diagnosis code or codes is service connected (SC) or non-service

 connected (NSC). This determination is based on the mapping of the patient's rated disability and ICD-9-CM

 codes.

 COMPONENT: $$ST(SDENC,SDXS)

 VARIABLES: SDENC Type: Input

 IEN of OUTPATIENT ENCOUNTER (#409.68) file [Required]

 SDXS Type: Input

 Diagnosis code array (passed by reference)

 - array format: SDXS(ICD9 ien) = "" (null) [Optional]

 $$ST Type: Output

 0 = not filed for additional review

 1 = filed for additional review

 2 = deleted from SDSC SERVICE CONNECTED CHANGES (#409.48) file

 This entry point screens each diagnosis code for an outpatient encounter to determine if additional review for

 the service connected (SC) value is needed. The SDSC SERVICE CONNECTED CHANGES (#409.48) file is used to queue

 encounters needing further review.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 10040

 NAME: HOSPITAL LOCATION FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 44 ROOT: SC(

 DESCRIPTION: TYPE: File

 ^SC(D0,0)

 .01 NAME 0;1 Direct Global Read & w

 The "B" x-ref may also be accessed through direct global read.

 1 ABBREVIATION 0;2 Direct Global Read & w

 2 TYPE 0;3 Direct Global Read & w

 3 INSTITUTION 0;4 Direct Global Read & w

 2.1 TYPE EXTENSION 0;22 Direct Global Read & w

 3.5 DIVISION 0;15 Direct Global Read & w

 ^SC(D0,42)

 42 WARD LOCATION FILE P 42;1 Direct Global Read & w

 ^SC(D0,'OOS')

 50.01 OCCASION OF SERVICE OOS;1 Direct Global Read & w

 50.02 OOS CALLING PACKAGE OOS;2 Direct Global Read & w

 ^SC(D0,'I')

 2505 INACTIVATE DATE I;1 Direct Global Read & w

 2506 REACTIVATE DATE I;2 Direct Global Read & w

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SCHEDULING
 ICR#: 10042

 NAME: SDM

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: SDM

 COMPONENT: OERR

 VARIABLES:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: SPINAL CORD DYSFUNCTION
 ICR#: 1517

 NAME: SCD API

SUBSCRIBING PACKAGE: HEALTH SUMMARY

 USAGE: Supported ENTERED: MAR 19,1996

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Permission to call the routine EN^SPNHS0(SPNDFN,SPNBEG,SPNEND,SPNMAX) to get Spinal Cord Dysfunction data. Parameter passing

 is being used for Input variables and data will be returned in ^TMP array.

 ROUTINE: SPNHS0

 COMPONENT: EN

 VARIABLES: SPNDFN Type: Input

 Patient file pointer

 SPNBEG Type: Input

 Beginning date in internal fileman format

 SPNEND Type: Input

 Ending date in internal fileman format

 SPNMAX Type: Input

 Maximum number of occurrences (optional)

 TMP("SPN", Type: Output

 ^TMP("SPN",$J,154,0)= REGISTRATION STATUS^HIGHEST LEVEL OF INJURY^INFORMATION SOURCE FOR SCD

 ^COMPLETENESS OF INJURY^EXTENT OF PARALYSIS^PRIMARY CARE PROVIDER^SCI/SCD COORDINATOR

 ^TMP("SPN",$J,154,INVERSE ONSET DATE)= ONSET DATE (internal FM format)^ETIOLOGY^ONSET OF SCD

 CAUSED BY TRAUMA

 ^TMP("SPN",$J,154.1,INVERSE DATE RECORDED, IEN)= DATE RECORDED (internal FM format)^MOTOR

 SCORE^COGNITIVE SCORE^ TOTAL SCORE ^RECORD TYPE

 Type:

 API to allow retrieval of SCD data for a patient for a date range and set number of occurrences.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TEXT INTEGRATION UTILITIES
 ICR#: 10123

 NAME: CWAD

 USAGE: Supported ENTERED: MAY 10,1994

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 The following information is from patch GMRP*2.5*22, which describes how this supported reference is used.

 A letter from the Regional Director, Western Region, dated January 25, 1994, subject: Use of Electronic Mail for Patient

 Flagging System Among VA Facilities, requested a utility for flagging and disseminating critical patient information. This

 patch is to inform all sites that such a mechanism is available within DHCP. This patch corrects the problem of the (A)llergy

 warning being indicated in the CWAD display when the patient has 'No Known Allergies'. The variable GMRPHOLD (Supported

 Reference #10123) will now be supported by Progress Notes. If set, this variable will force the user to enter a carriage

 return after the CWAD display. This is designed to be used when an application clears the screen after a patient lookup.

 In response to: E3R #3056 dtd Oct 5, 1993

 NOIS: PROG DEN CWAD dtd Mar 3, 1994

 Through the Progress Notes Application, sites are able to implement a warning system which notifies users of specific patient

 conditions. The system is called CWAD. The acronym stands for:

 "C" RISIS NOTES

 CLINICAL "W"ARNINGS

 "A"LLERGIES

 ADVANCED "D"IRECTIVES

 To Implement the CWAD Warning System:

************** END OF ICR RECORD ************** END OF ICR RECORD **************************

 To implement the CWAD alert system, the variable "GMRPEN" must be set as an Entry Action for a particular option. It may not

 be appropriate for the CWAD alerts to be displayed for certain applications. Which options the CWAD is implemented with is

 entirely at the sites' discretion. The following example uses the MAS Registration Menu. This is not to say your site must

 implement the CWAD for this option; this is for demonstration purposes only. It will work with any menu or option your site

 deems appropriate.

 D P^DI

 Select OPTION: 1 ENTER OR EDIT FILE ENTRIES

 INPUT TO WHAT FILE: OPTION// EDIT WHICH FIELD:ALL//ENTRY ACTION THEN EDIT FIELD:EXIT ACTION

 Select OPTION NAME: DG REGISTRATION MENU Registration Menu ENTRY ACTION: S (GMRPEN,GMRPHOLD)=1 EXIT ACTION: K

 GMRPEN,GMRPHOLD Select OPTION NAME: Select OPTION:

 >

 Once the variable is initialized the Warnings will be displayed upon patient look-up.

 Select PATIENT NAME: HOOD,ROBIN 03-04-33 112233444 ACTIVE DUTY

 C: 07/01/93 11:53

 W: 07/11/93 10:57

 A: Known allergies

 D: 10/09/93 10:18

 Types of Warnings:

 The following are for illustration purposes only.

 CRISIS CAUTION: Patient may be homicidal.

 CLINICAL WARNING Patient is HIV positive.

 ALLERGY/ADVERSE REACTION Allergy/Reaction: Ampicillin

 ADVANCE DIRECTIVE DO NOT RESUSCITATE: Patient has

 Advanced Directive filed in Volume

 6 of his medical record.

 To Enter Warnings into the CWAD System:

************** END OF ICR RECORD ************** END OF ICR RECORD ****************************

 With the exception of Allergies, Warnings are entered directly through the Progress Notes application.

 1. In order for a progress note to be recognized as a Warning, the TITLE of a note must be linked to one of the following

 notes types.

 a. CRISIS

 b. CLINICAL WARNING

 c. ADVANCED DIRECTIVES (IMPLEMENTATION OF)

 The TITLE narrative is at the discretion of the site. The important thing to understand is that the TITLE must be tied to one

 of the above TYPES. TITLES with the same name as the above TYPES were exported with Progress Notes 2.5 already linked

 together but since the TITLE file is controlled by the site it is possible your site may have them configured differently.

 *NOTE: Allergy information should be entered through the Allergy Tracking System.

 2. Once the TITLE is linked with the a warning TYPE, the user may then enter the Progress Note Option. Using the Entry of

 Progress Note option, select the appropriate title and proceed to enter the warning. The note must then be signed.

 3. After signature, the note becomes active on the CWAD Warning System.

 How to Access the CWAD Warnings:

************** END OF ICR RECORD ************** END OF ICR RECORD *********************

 1. If the user is assigned the Progress Notes User Menu, the Patient Warning (CWAD) Display option [GMRPNCW] may be accessed

 from that menu. If the user is not assigned this menu it may be assigned as a secondary menu option. It would be convenient

 to the user to make the synonym CWAD.

 2. When a Warning(s) is displayed, review of the warning can be done by entering CWAD at any option select prompt. A review

 screen will be displayed from which the user can select the warning(s) they wish to view.

 After implementation of the CWAD display you may find that the display flashes by before the user can read it. This can be

 corrected by setting the variable GMRPHOLD, in addition to GMRPEN, in the entry action of the desired menu/option. GMRPHOLD

 must also be killed in the exit action. WARNING: Do not arbitrarily set the variable GMRPHOLD in the entry action without

 first checking to see if the option clears does clear the screen after the patient lookup. The user may be inconvenienced

 with an unecessary carriage return.

 ROUTINE:

 COMPONENT: GMRPNCW

 VARIABLES: GMRPHOLD Type: Input

 The GMRPHOLD variable is used in conjunction with GMRPEN (#10121), which enables the CWAD

 brief display immediately after any patient lookup. GMRPHOLD should be defined if it is

 desired to issue a carriage return after the brief CWAD display. Since one of the

 recommended uses for this variable is in an Entry Action, applications using this variable

 should take care to NEW it as not to impact the sites defined implementation.

 GMRPEN Type: Input

 This variable is used to enable the display of the presence of any patient Crises, Warnings,

 Alerts, or advanced Directives on file. The actual CWADs through an appropriately assigned

 menu option. Applications needing to display the CWAD indication on patient lookup may set

 this variable.

 GMRPNCW is a routine that is called at ENPAT from the MAS patient lookup routine ^DGSEC to allow the display of

 CWAD information.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 2075

 NAME: DBIA2075

SUBSCRIBING PACKAGE: DRUG ACCOUNTABILITY

 USAGE: Supported ENTERED: AUG 20,1997

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This agreement expands agreement 10095 for XTKERMIT. This agreement allows access to the KERMIT HOLDING file (#8980) and the

 API that adds entries to it, RFILE^XTKERM4. The "AOK" cross-reference of the KERMIT HOLDING file (#8980) may be checked to

 see if the user has an entry in the KERMIT HOLDING file (#8980). If not, RFILE^XTKERM4 may be called to add an entry to the

 file.

 ROUTINE: XTKERM4

 COMPONENT: RFILE

 VARIABLES: XTKDIC Type: Output

 This variable returns the global root and is a calling variable used by calls to

 RECEIVE^XTKERMIT or SEND^XTKERMIT.

 XTMODE Type: Output

 This variable is returned, it is used as input to calls to RECEIVE^XTKERMIT or SEND^XTKERMIT.

 A call to RFILE^XTKERM4 will allow a user to add or select an entry in the KERMIT HOLDING file (#8980).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 2263

 NAME: SUPPORTED PARAMETER TOOL ENTRY POINTS

 USAGE: Supported ENTERED: JAN 11,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Parameter Tools is a generic method of handling parameter definition, assignment, and retrieval. A parameter may be defined

 for various entities where an entity is the level at which you want to allow the parameter defined (e.g. package level, system

 level, division level, location level, user level, etc.). A developer may then determine in which order the values assigned

 to given entities are interpreted. The following are some basic definitions used by Parameter Tools:

 Entity:

 =======

 An entity is a level at which you can define a parameter. The entities

 allowed are stored in the Parameter Entity file (#8989.518). The list of

 allowable entities at the time this utility was released were:

 Prefix Message Points to File

 ------- ---------- ------------------------

 PKG Package Package (9.4)

 SYS System Domain (4.2)

 DIV Division Institution (4)

 SRV Service Service/Section (49)

 LOC Location Hospital Location (44)

 TEA Team Team (404.51)

 CLS Class Usr Class (8930)

 USR User New Person (200)

 BED Room-Bed Room-Bed (405.4)

 OTL Team (OE/RR) OE/RR List (101.21)

 (Note: entries will be maintained via ToolKit patches. Entries

 existing in the file at the time it is referenced are

 considered supported.)

 Parameter:

 ==========

 A parameter is the actual name which values are stored under. The name

 of the parameter must be namespaced and it must be unique. Parameters

 can be defined to store the typical package parameter data (e.g. the

 default add order screen in OE/RR), but they can also be used to store

 GUI application screen settings a user has selected (e.g. font or window

 width). When a parameter is defined, the entities which may set that

 parameter are also defined. The definition of parameters is stored in

 the PARAMETER DEFINITION file (#8989.51).

 Value:

 ======

 A value may be assigned to every parameter for the entities allowed in

 the parameter definition. Values are stored in the PARAMETERS file

 (#8989.5).

 Instance:

 =========

 Most parameters will set instance to 1. Instances are used when more

 than one value may be assigned to a given entity/parameter combination.

 An example of this would be lab collection times at a division. A single

 division may have multiple collection times. Each collection time would

 be assigned a unique instance.

 Parameter Template:

 ===================

 A parameter template is similar to an input template. It contains a list

 of parameters that can be entered through an input session (e.g. option).

 Templates are stored in the Parameter Template file (#8989.52). Entries

 in this file must also be namespaced.

 This integration agreement defines the callable entry points in routine XPAR.

 ROUTINE: XPAR

 COMPONENT: EN(Entity,Parameter,Instance,Value,.Error)

 VARIABLES: Entity Type: Input

 REQUIRED

 The entity may be set to:

 1) the internal variable pointer (nnn;GLO(123,)

 2) the external format of the variable pointer using the 3 character

 prefix (prefix.entryname) or 3) the prefix alone to set the parameter based on current

 entity

 selected. This will work for the following entities:

 "USR" - uses current value of DUZ

 "DIV" - uses current value of DUZ(2)

 "SYS" - uses system (domain)

 "PKG" - uses the package to which the parameter belongs

 Parameter Type: Input

 REQUIRED

 Identifies the name or internal entry number of the parameter as defined in the PARAMETER

 DEFINITION file (#8989.51).

 Instance Type: Input

 OPTIONAL (defaults to 1 if not passed in)

 May be passed in external or internal format. Internal format requires that the value be

 preceded by the ` character).

 Value Type: Input

 REQUIRED

 May be passed in external or internal format. If using internal format for a pointer type

 parameter, the value must be preceded with the ` character.).

 If the value is being assigned to a word processing parameter, the text may be passed in the

 subordinate nodes of Value (e.g. Value(1,0)=Text) and the variable Value itself may be

 defined as a title or description of the text.

 Error Type: Output

 OPTIONAL

 If used, must be passed in by reference. It will return any error condition which may occur.

 If no error occurs, the value assigned will be 0 (zero). If an error does occur, it will be

 in the format: "#^errortext".

 This entry point will:

 1) add the value as a new entry to the Parameters file if the

 Entity/Parameter/Instance combination does not already exist.

 2) change the value assigned to the parameter if the

 Entity/Parameter/Instance combination already exists. or 3) delete the parameter instance if the value

 assigned is "@".

 COMPONENT: ADD(Entity,Parameter,Instance,Value,.Error)

 VARIABLES: Entity Type: Input

 Parameter Type: Input

 Instance Type: Input

 Value Type: Input

 Error Type: Output

 This entry point can be called to add a new parameter value. For definition of input and output variables, see

 component EN description.

 COMPONENT: CHG(Entity,Parameter,Instance,Value,.Error)

 VARIABLES: Entity Type: Input

 Parameter Type: Input

 Instance Type: Input

 Value Type: Input

 Error Type: Output

 This entry point can be called to change an existing parameter value. For definition of input and output

 variables, see component EN description.

 COMPONENT: DEL(Entity,Parameter,Instance,.Error)

 VARIABLES: Entity Type: Input

 Parameter Type: Input

 Instance Type: Input

 Error Type: Output

 This entry point can be called to delete an existing parameter value. For definition of input and output

 variables, see component EN description.

 COMPONENT: NDEL(Entity,Parameter,.Error)

 VARIABLES: This entry point can be called to delete the value for all instances of a parameter for a given entity. For

 definition of input and output variables, see component EN description.

 COMPONENT: REP(Entity,Parameter,CurrentInstance,NewInstance,.Error)

 VARIABLES: Entity Type: Input

 See EN^XPAR component for description.

 Parameter Type: Input

 See EN^XPAR component for description.

 CurrentIns Type: Input

 REQUIRED:

 The instance for which the value is currently defined.

 NewInstanc Type: Input

 REQUIRED

 The instance for which you want to assign the value currently assigned to CurrentInstance.

 Error Type: Output

 See EN^XPAR component for description.

 This entry point will allow a developer to replace the value of an instance with another value.

 COMPONENT: $$GET(Entity,Parameter,Instance,Format)

 VARIABLES: Entity Type: Input

 Entity is defined as the single entity or group of entities you want to look at in order to

 retrieve the value. Entities may be passed in internal or external format (e.g.

 LOC.PULMONARY or LOC.'57 or 57;SC(). The list of entities in this variable may be defined as

 follows:

 1) a single entity to look at (e.g. LOC.PULMONARY).

 2) the word "ALL" which will tell the utility to look for values

 assigned to the parameter using the entity precedence defined in the

 PARAMETER DEFINITION file.

 3) A list of entities you want to search (e.g. "USR^LOC^SYS^PKG"). The

 list is searched from left to right with the first value found

 returned.

 4) Items 2 or 3 with specific entity values referenced such as:

 ALL^LOC.PULMONARY - to look at the defined entity precedence, but

 when looking at location, only look at the PULMONARY location.

 USR^LOC.PULMONARY^SYS^PKG - to look for values for all current

 user, PULMONARY location, system, or package).

 Parameter Type: Input

 REQUIRED

 Identifies the name or internal entry number of the parameter as defined in the PARAMETER

 DEFINITION file (#8989.51).

 Instance Type: Input

 OPTIONAL (defaults to 1 if not passed in)

 May be passed in external or internal format. Internal format requires that the value be

 preceded by the ` character).

 Format Type: Input

 OPTIONAL - defaults to "Q" if not defined

 Format determines how the value is returned. It can be set to the following:

 1) "Q" - returns the value in the quickest manner - internal format

 2) "E" - returns external value

 3) "B" - returns internal^external value

 This call will allow you to retrieve the value of a parameter. The value is returned from this extrinsic

 function in the format defined by the variable Format (see below).

 COMPONENT: GETLST(.List,Entity,Parameter,Format,.Error[,gbl])

 VARIABLES: List Type: Output

 The array passed as List will be returned with all of the possible values assigned to the

 parameter. See variable description for Format to see how this data can be returned.

 If the parameter gbl is set to one, Then this parameter becomes a input and holds the closed

 root of a global where GETLST should put the output. e.i. $NA(^TMP($J,"XPAR")).

 Entity Type: Input

 See description of this variable under $$GET component.

 Parameter Type: Input

 See description of this variable under $$GET component.

 Instance Type: Input

 See description of this variable under $$GET component.

 Error Type: Output

 Returns 0 if no error was encountered or returns an error code in the format #^errortext.

 Format Type: Input

 This variable defines how the data is returned from this call. It may be set to:

 1) "Q" for the quickest value:

 List(#)=internalinstance^internalvalue

 2) "E" for the external value:

 List(#)=externalinstance^externalvalue

 3) "B" for both internal and external values:

 List(#,"N")=internalvalue^externalinstance

 List(#,"V")="internalvalue^externalvalue or 4) "N" for external instance:

 List(#,"N")=internalvalue^externalinstance

 gbl Type: Input

 If this optional variable is set to 1. Then the parameter List must be set before the call

 to the closed global root where the return data should be put.

 e.i. GETLST^XPAR($NA(^TMP($J)),ent,par,fmt,.error,1)

 This entry point is similar to $$GET^XPAR, but this will return ALL instances of a parameter.

 COMPONENT: GETWP(.ReturnedText,Entity,Parameter,Instance,.Error)

 VARIABLES: ReturnedTe Type: Both

 This variable is defined as the name of an array in which you want the text returned.

 .ReturnedText will be set to the title, description, etc. The actual word processing text

 will be returned in ReturnedText(#,0). Example:

 ReturnedText="Select Notes Help"

 ReturnedText(1,0)="To select a progress note from the list, "

 ReturnedText(2,0)="click on the date/title of the note."

 Entity Type: Input

 See description of variable under $$GET call.

 Parameter Type: Input

 See description of variable under $$GET call.

 Instance Type: Input

 See description of variable under $$GET call.

 Error Type: Output

 See description of this variable under the GETLST component.

 This call returns word processing text in ReturnedText. ReturnedText itself contains the value field, which is

 free text that may contain a title, description, etc. The word processing text is returned in

 ReturnedText(#,0).

 COMPONENT: PUT(ENT,PAR,INST,VAL,ERR)

 VARIABLES: Entity Type: Input

 Parameter Type: Input

 Instance Type: Input

 Value Type: Input

 Error Type: Output

 VAL Type:

 INST Type:

 This entry point can be called to add or update a parameter instance and bypass the input transforms.

 COMPONENT: ENVAL(.List,Parameter,Instance,.Error[,gbl])

 VARIABLES: List Type: Output

 If the parameter gbl is set to one, Then this parameter becomes a input and holds the closed

 root of a global where GETLST should put the output. e.i. $NA(^TMP($J,"XPAR")).

 Parameter Type: Input

 Instance Type: Input

 Error Type: Output

 gbl Type: Input

 If this optional variable is set to 1. Then the parameter List must be set before the call

 to the closed global root where the return data should be put.

 e.i. S LIST=$NA(^TMP($J)) ENVAL^XPAR(LIST,par,inst,.error,1)

 This entry point will return all parameter instances. See GETLST and $$GET for a definition of input and

 output variables to this call.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 2336

 NAME: SUPPORTED CALLS TO XPAREDIT

 USAGE: Supported ENTERED: MAY 11,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This DBIA contains a list of calls which are supported for use. The calls are part of the Parameter Tools component of

 Toolkit. Parameter Tools is a generic method of handling parameter definition, assignment, and retrieval. See DBIA 2263 for

 the main entry points to this module. This DBIA contains calls to XPAREDIT which contain some additional utilities to for

 editing parameters.

 ROUTINE: XPAREDIT

 COMPONENT: EN

 VARIABLES: This entry point can be called to prompt the user for a parameter to edit. This is provided more as a tool for

 developers and not for exported calls as it allows editing of ANY parameter.

 COMPONENT: TED(Template,ReviewFlags,AllEntities)

 VARIABLES: Template Type: Input

 REQUIRED

 The IEN or NAME of an entry in the Parameter Template file (#8989.52).

 ReviewFlag Type: Input

 OPTIONAL

 There are 2 flags (A and B) that can be used individually, together, or not at all. An 'A'

 indicates that the new values for the parameters in the template are displayed AFTER the

 prompting is done. 'B' indicates that the current values of the parameters will be displayed

 BEFORE editing.

 AllEntitie Type: Input

 OPTIONAL

 This is a variable pointer that should be used as the entity for all parameters in the

 template. If left blank, prompting for the entity is done as defined in the PARAMETER

 TEMPLATE file.

 TED^XPAREDIT(Template,ReviewFlags,AllEntities) allows editing of parameters defined in a template. The

 parameters in the template are prompted in more of a FileMan style - prompt by prompt. No dashed line dividers

 are displayed between each parameter. Since the dashed line headers are suppressed, it is important to define

 the VALUE TERM for each parameter in the template, as this is what is used to prompt for the value.

 COMPONENT: TEDH(Template,ReviewFlags,AllEntities)

 VARIABLES: Template Type: Input

 ReviewFlag Type: Input

 AllEntitie Type: Input

 This is similar to the TED^XPAREDIT call, except that the dashed line headers ARE shown between each parameter.

 For input variable definitions, see TED component/entry point.

 COMPONENT: EDITPAR(Parameter)

 VARIABLES: Parameter Type: Input

 Pass as the IEN or the NAME of the entry in the PARAMETER DEFINITION file (#8989.51) which

 you want to be edited.

 This entry point can be used to edit a single parameter.

 COMPONENT: GETPAR(.Variable)

 VARIABLES: OutputValu Type: Output

 Returns the value Y in standard DIC look-up format.

 Allow user to select PARAMETER DEFINITION file entry.

 COMPONENT: GETENT(.Entity,Parameter,.OnlyOne?)

 VARIABLES: Entity Type: Output

 REQUIRED

 Returns the selected entity in variable pointer format.

 Parameter Type: Input

 REQUIRED

 Specifies the parameter for which an entity should be selected. Parameter should contain two

 pieces: IEN^DisplayNameOfParameter.

 OnlyOne? Type: Output

 OPTIONAL

 Returns "1" if there is only one possible entity for the value. For example, if the parameter

 can only be set for the system, OnlyOne?=1. If the parameter could be set for any location,

 OnlyOne?=0.

 Interactively prompts for an entity, based on the definition of a parameter.

 COMPONENT: EDIT(Entity,Parameter)

 VARIABLES: Entity Type: Input

 REQUIRED

 Identifies the specific entity for which a parameter may be edited. Entity must be in

 variable pointer format.

 Parameter Type: Input

 REQUIRED

 Identifies the parameter that should be edited. Parameter should contain two pieces:

 IEN^DisplayNameOfParameter.

 Interactively edits the instance (if multiple instances are allowed) and the value for a parameter associated

 with a given entity.

 COMPONENT: BLDLST(.List,Parameter)

 VARIABLES: List Type: Input

 Name of array to receive output.

 Parameter Type: Input

 IEN of entry in the PARAMETER DEFINITION file.

 This entry point will return, in the array List, all entities allowed for the input Parameter.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 2365

 NAME: Merge File Entries

 USAGE: Supported ENTERED: APR 27,1998

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Overview

 A file in which entries need to be merged may be entered in the DUPLICATE RESOLUTION file (file 15.1). This requires adding

 the file as one which can be selected as the variable pointer, and search criteria would usually need to be specified to

 assist in identifying potential duplicate pairs (although an option can be use by which selected pairs can be added directly

 to the DUPLICATE RECORD file as verified duplicates). Verified duplicate pairs may be approved for merging, and a merge

 process generated for those approved pairs. A DUPLICATE RECORD file entry will also have handle files which are not

 associated as normal pointers identified in the PACKAGE file under the 'AFFECTS RECORD MERGE' subfile with special processing

 routines.

 ***IF A FILE HAS RELATED FILES WHICH ARE NOT NORMAL POINTERS, THEY SHOULD BE HANDLED ONLY AS ENTRIES IN THE DUPLICATE RECORD

 FILE AND THE TOOLKIT OPTIONS USED FOR MERGES INVOLVING THE FILE.***

 The merge utility of Kernel Toolkit as revised by patch XT*7.3*23 provides an entry point which is available to developers for

 the merging of one or more pairs of records (a FROM record and a TO record) in a specified file. The merge process me rges

 the data of the FROM record into that of the TO record and deletes the FROM record, restoring by a hard set only the zero node

 with the .01 value on it until the merge process is completed (such that any references to that location via pointers will not

 error out). Any files which contain entries DINUMed with the data pairs are then also merged (and any files which are related

 to them by DINUM as well). Any pointers which can be identified rapidly by cross-references are modifie d so that references

 for the FROM entry become references to the TO entry instead. Following this, any files which contain other pointers are

 searched entry by entry to test for pointers to a FROM entry, and when found are modified to reference the TO entry. This

 search for pointer values is the most time consuming part of the entire process and may take an extended period depending upon

 the number of files that must be searched, the number of entries in those files, and how many levels of subfiles pointers may

 be located at. Since the search through these files will take the same period of time independent of the number of pairs

 which are being merged, it is suggested that as many pairs as convient be combined in one proc ess. At the end of the

 conversion of these pointers, the zero node stubs will be removed from the primary file and all related DINUMed files.

 The merge process is a single job which is tracked with frequent updates on location and status from start to finish. The job

 can be stopped at any time if necessary using Task Manager utilities (or in the event of a system crash, etc.) and restarted

 at the point of interruption at a later time.

 The manner in which data is merged.

 When a primary file or a DINUMed files entries are merged, any top level (single value) fields which are present in the FROM

 entry which are not present in the TO entry will be merged into the TO entries data. Any of these fields which contain

 cross-references will be entered using a VA File Manager utility (FILE^DIE) so that the cross-references will be fired. Other

 fields (those without cross-references) will be directly set into the data global.

 If a subfile entry exists in the FROM record which is not present in the TO record (as identified by the .01 value), that

 entry will be created with a VA File Manager utility (UPDATE^DIE) and the rest of the subfile merged over into the TO record

 and the cross-references within the subfile and any descendent subfiles run.

 If a subfile entry exists in the FROM record and an identical .01 value exists in the TO record, the subfile in the FROM

 record will be searched for any descendent subfiles which are not present in the TO record subfile. If such a subfile is

 found it will be merged into the subfile in the TO record and any cross-references in the merged subfile run.

 For fields which are simple pointers to the primary file (or any other file DINUMed to the primary file) the reference to the

 FROM record will be changed to a reference to the TO record. If the field contains a cross-reference this editing will be

 performed using a VA File Manager Utility call (FILE^DIE), otherwise it will be set directly into the global node.

 ROUTINE: XDRMERG

 COMPONENT: EN

 VARIABLES: FILE Type: Input

 Specifies the FILE NUMBER of the file in which the indcated entries are to be merged.

 ARRAYNAM Type: Input

 This variable contains the name of the array as a closed root under which the subscripts

 indicating the FROM and TO entries will be found. The data may have either two or four

 subscripts descendent from the array which is passed in. Please see the overall description

 provided for examples of its usage.

 The entry point EN^XDRMERG provides for merging of one or more pairs of records in a specified file. This

 entry point takes two (2) arguments, the file number (a numeric value) and a closed reference to the location

 where the program will find an array with subscripts indicating the record pairs to be merged (a text value).

 There can be either two or four subscripts in the data array as described below. the command

 D EN^XDRMERG(999000014,"MYLOC")

 would result in record pairs specified as subscripts in the array MYLOC to be merged in a hypotheical file

 999000014. The array MYLOC might have been set up prior to this call in the following manner (or any equivalent

 way) where the subsripts represent the internal entry numbers of the FROM and TO records, respectively.

 S MYLOC(147,286)="",MYLOC(182,347)="",MYLOC(2047,192)=""

 S MYLOC(837,492)="",MYLOC(298,299)=""

 This would result in five record pairs being merged with record 147 (the FROM record) being merged into record

 286 (the TO record), record 182 being merged into record 347, etc., to record 298 being merged into 299. Merges

 using the two subscript format will occur without a specific record of the entries prior to the merge (The

 internal entry numbers merged would be recorded under the file number in file 15.3) An alternative is a four

 subscript format for the data array which uses variable pointer formats for the FROM and TO records as the

 third and fourth subscripts. If the merge is performed with this four subscript array, then a premerge image

 of the data of both the FROM and TO records in the primary file and all other merged files (those related by

 DINUM) and information on all single value pointer values modified is stored in the MERGE IMAGE file (file

 15.4). For the above example data [assuming that the global root for the hypothetical file 999000014 is

 ^DIZ(999000014,] the four subscript array might be generated using the following code

 S MYROOT=";DIZ(99900014," <--- note the leading ^ is ommitted

 S MYLOC(147,286,147_MYROOT,286_MYROOT)=""

 S MYLOC(182,347,182_MYROOT,347_MYROOT)=""

 S MYLOC(2047,192,2047_MYROOT,192_MYROOT)=""

 S MYLOC(837,492,837_MYROOT,492_MYROOT)=""

 S MYLOC(298,299,298_MYROOT,299_MYROOT)=""

 ;

 D EN^XDRMERG(99900014,"MYLOC")

 Exclusion of Multiple Pairs For a Record

 To insure that there are no unanticipated problems due to relationships between a specific record in multiple

 merges, prior to actually merging any data the various FROM and TO records included in the process are

 examined, and if one record is involved in more than one merge, all except the first pair of records involving

 that one are excluded from the merge. If any pairs are excluded for this reason, a mail message is generated

 to the individual responsible for the merge process as indicated by the DUZ. If the following entries were

 included in the MYLOC array

 MYLOC(128,247)

 MYLOC(128,536) and

 MYLOC(247,128)

 Only the first of these entries (based on the numeric sorting of the array) would be permitted to remain in the

 merge process, while the other two pairs would be omitted). And although it may seem unlikely that someone

 would indicate that a record should be merged into two different locations, while another location should be

 merged into one that was merged away, if the pairs are selected automatically and checks aren't included to

 prohibit such behavior, they will show up. That is why the merge process won't include more than one pair with

 a specific record in it.

 Problems Related To Data Entry While Merging

 The Merge Process has been designed to combine data associated with the two records in the manner described

 above. On occasion, however, there are problems which cause VA File Manager to reject the data that is being

 entered. This may happen for a number of reasons. Some that have been observed were: Clinics which had been

 changed so they no longer were indicated as Clinics (so they wouldn't add to the number that people had to

 browse through to select a clinic), but were rejected since the input transform checked that they be clinics;

 Pointer values that no longer had a valid value in the pointed to file (dangling pointers); Fields that have

 input transforms that prohibit data entry. :-)

 It is possible to use a validity checker on your data prior to initiating the actual merge process (this is the

 action taken by merges working from the Potential Duplicate file). The data pairs are processed in a manner

 similar to the actual merge, so only that data in any of the files which would be merged and for which the data

 would be entered using VA File Manager utilities for the specific pair are checked to insure they will pass the

 input transform. Any problems noted are incorporated into a mail message for resolution prior to attempting to

 merge the pair again, and the pair is removed from the data array that was passed in. Pairs which pass through

 this checking should not encounter any data problems while being merged.

 COMPONENT: RESTART

 VARIABLES: FILE Type: Input

 Specifies the FILE NUMBER of the file in which the indcated entries are to be merged.

 ARRAYNAM Type: Input

 This variable contains the name of the array as a closed root under which the subscripts

 indicating the FROM and TO entries will be found. The data may have either two or four

 subscripts descendent from the array which is passed in. Please see the overall description

 provided for examples of its usage.

 PHASE Type: Input

 This variable indicates the phase of the merge process in which the merge should be

 restarted. The value is a number in the range of 1 to 3, with no decimal places. Phase 1 is

 usually quite short and is the merge of the specified entries in the primary file. Phase 2

 is the merging of entries in files which are DINUMed to the primary file and changing

 pointers which can be identified from cross-references. Phase 3 is finding pointer values by

 searching each entry in a file. This will usually be the longest phase of the merge process.

 CURRFILE Type: Input

 This is the current file NUMBER on which the merge process is operating.

 CURRIEN Type: Input

 This is the current internal entry number in the file on which the merge process is

 operating.

 This entry point is used to restart a merge which has been stopped. The information necessary for restarting

 may be viewed using the CHKLOCAL entry point in XDRMERG2 (see LOCAL MERGE STATUS).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 2992

 NAME: PARAMETER DEFINITIONS

 USAGE: Supported ENTERED: NOV 23,1999

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: 8989.51 ROOT: XTV(8989.51,

 DESCRIPTION: TYPE: File

 Parameter Tools is a generic method of handling parameter definition, assignment, and retrieval. A parameter may be defined

 for various entities where an entity is the level at which you want to allow the parameter defined (e.g. package level, system

 level, division level, location level, user level, etc.). A developer may then determine in which order the values assigned

 to given entities are interpreted.

 Parameter:

 ==========

 A parameter is the actual name which values are stored under. The name of the parameter must be namespaced and it must be

 unique. Parameters can be defined to store the typical package parameter data (e.g. the default add order screen in OE/RR),

 but they can also be used to store GUI application screen settings a user has selected (e.g. font or window width). When a

 parameter is defined, the entities that may set the parameter is also defined. The definition of parameters is stored in the

 PARAMETER DEFINITION file (#8989.51). KIDS exports them.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 3197

 NAME: XQALBUTL

 USAGE: Supported ENTERED: SEP 19,2000

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The DELSTAT entry point in XQALBUTL is a SUPPORTED reference for obtaining information on the recipients of the most recent

 alert with a specified alert id and the status of whether the alert has been deleted or not for those recipients.

 DELSTAT - For the most recent alert with XQAIDVAL as the PackageID passed in, on return array VALUES contains the DUZ for

 users in VALUES along with an indicator of whether the alert has been deleted or not, e.g., DUZ^0 if not deleted or DUZ^1 if

 deleted. Note that contents of VALUES will be killed prior to building the list.

 Example: D DELSTAT^XQALBUTL("OR;14765;23",.RESULTS)

 Returned: The value of RESULTS indicates the number of entries in

 the array. The entries are then ordered in numerical

 order in the RESULTS array.

 RESULTS = 3

 RESULTS(1) = "146^0" User 146 - not deleted

 RESULTS(2) = "297^1" User 297 - deleted

 RESULTS(3) = "673^0" User 673 - not deleted

 ROUTINE: XQALBUTL

 COMPONENT: DELSTAT

 VARIABLES: XQAIDVAL Type: Input

 XQAIDVAL is a value which has been used as the XQAID value for generating an alert by a

 package. This value is used to identify the most recent alert generated with this XQAID

 value and that alert is used to generate the responses in terms of recipients and deletion

 status of the alert for each of the recipients.

 VALUES Type: Output

 This variable is passed by reference and is returned as an array. This value is KILLED prior

 to generation of the results for return.

 Returned: The value of VALUES indicates the number of entries in

 the array. The entries are then ordered in numerical

 order in the VALUES array.

 VALUES = 3

 VALUES(1) = "146^0" User 146 - not deleted

 VALUES(2) = "297^1" User 297 - deleted

 VALUES(3) = "673^0" User 673 - not deleted

 DELSTAT - For the most recent alert with XQAIDVAL as the PackageID passed in, on return array VALUES contains

 the DUZ for users in VALUES along with an indicator of whether the alert has been deleted or not, e.g., DUZ^0

 if not deleted or DUZ^1 if deleted. Note that contents of VALUES will be killed prior to building the list.

 Example: D DELSTAT^XQALBUTL("OR;14765;23",.RESULTS)

 Returned: The value of RESULTS indicates the number of entries in

 the array. The entries are then ordered in numerical

 order in the RESULTS array.

 RESULTS = 3

 RESULTS(1) = "146^0" User 146 - not deleted

 RESULTS(2) = "297^1" User 297 - deleted

 RESULTS(3) = "673^0" User 673 - not deleted

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 3561

 NAME: M XML PARSER

 USAGE: Supported ENTERED: JUL 3,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This utility provides a M based XML version 1.0 parser. It supports both the SAX interface and the DOM interface.

 ROUTINE: MXMLDOM

 COMPONENT: $$EN

 VARIABLES: DOC Type: Input

 Either a closed reference to a global root containing the document or a filename and path

 reference identifying the document on the host system. If a global root is passed, the

 document must either be stored in standard FileMan word-processing format or may occur in

 sequentially numbered nodes below the root node. Thus, if the global reference is "^XYZ ,

 the global must be of one of the following formats:

 ^XYZ(1,0) = "LINE 1

 ^XYZ(2,0) = "LINE 2 ...

 or ^XYZ(1) = "LINE 1

 ^XYZ(2) = "LINE 2 ...

 OPT Type: Input

 A list of option flags that control parser behavior. Recognized option flags are:

 0 = Terminate parsing on encountering a warning. (By default, the parser terminates only

 when a conformance or validation error is encountered.)

 $$EN Type: Output

 Returns a nonzero handle to the document instance if parsing completed successfully, or zero

 otherwise. This handle is passed to all other API methods to indicate which document

 instance is being referenced. This allows for multiple document instances to be processed

 concurrently.

 This is the entry point to perform initial processing of the XML document. The client application must first

 call this entry point to build the in-memory image of the document before the remaining methods can be applied.

 The return value is a handle to the document instance that was created and is used by the remaining API calls

 to identify a specific document instance.

 COMPONENT: DELETE

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 Deletes the specified document instance. A client application should always call this entry point when

 finished with a document instance.

 COMPONENT: $$NAME

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node whose associated element name is being retrieved.

 $$NAME Type: Output

 The name of the element associated with the specified node.

 Returns the name of the element at the specified node within the document parse tree.

 COMPONENT: $$CHILD

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 PARENT Type: Input

 The node whose children are being retrieved.

 CHILD Type: Input

 If specified, this is the last child node retrieved. The function will return the next child

 in the list. If the parameter is zero or missing, the first child is returned.

 $$CHILD Type: Output

 The next child node or zero if there are none remaining.

 Returns the node of the first or next child of a given parent node, or 0 if there are none remaining.

 COMPONENT: $$SIBLING

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node in the document tree whose sibling is being retrieved.

 $$SIBLING Type: Output

 The node corresponding to the immediate sibling of the specified node, or zero if there is

 none.

 Returns the node of the specified node's immediate sibling, or 0 if there is none.

 COMPONENT: $$PARENT

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node in the document tree whose parent is being retrieved.

 $$PARENT Type: Output

 The parent node of the specified node, or zero if there is no parent.

 Returns the parent node of the specified node, or 0 if there is none.

 COMPONENT: TEXT

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node in the document tree that is being referenced by this call.

 TEXT Type: Both

 This parameter must contain a closed local or global array reference that is to receive the

 text. The specified array is deleted before being populated.

 Extracts non-markup text associated with the specified node.

 COMPONENT: $$TEXT

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node in the document tree that is being referenced by this call.

 TEXT Type: Both

 This parameter must contain a closed local or global array reference that is to receive the

 text. The specified array is deleted before being populated.

 $$TEXT Type: Output

 If called as an extrinsic function, the return value is true if text was retrieved, or false

 if not.

 Extracts non-markup text associated with the specified node.

 COMPONENT: CMNT

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node in the document tree that is being referenced by this call.

 TEXT Type: Both

 This parameter must contain a closed local or global array reference that is to receive the

 text. The specified array is deleted before being populated.

 Extracts comment text associated with the specified node.

 COMPONENT: $$CMNT

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node in the document tree that is being referenced by this call.

 TEXT Type: Both

 This parameter must contain a closed local or global array reference that is to receive the

 text. The specified array is deleted before being populated.

 $$CMNT Type: Output

 If called as an extrinsic function, the return value is true if text was retrieved, or false

 if not.

 Extracts comment text associated with the specified node.

 COMPONENT: $$ATTRIB

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node whose attribute name is being retrieved.

 ATTRIB Type: Output

 The name of the last attribute retrieved by this call. If null or missing, the first

 attribute associated with the specified node is returned. Otherwise, the next attribute in

 the list is returned.

 $$ATTRIB Type: Output

 The name of the first or next attribute associated with the specified node, or null if there

 are none remaining.

 Retrieves the first or next attribute associated with the specified node.

 COMPONENT: $$VALUE

 VARIABLES: HANDLE Type: Input

 The value returned by the $$EN^MXMLDOM call that created the in-memory document image.

 NODE Type: Input

 The node whose attribute value is being retrieved.

 ATTRIB Type: Input

 The name of the attribute whose value is being retrieved by this call.

 $$VALUE Type: Output

 The value associated with the specified attribute.

 Retrieves the value associated with the named attribute.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 4149

 NAME: M XML EVENT-DRIVEN API

 USAGE: Supported ENTERED: JUL 3,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 An event-driven interface that is modeled after the widely used SAX interface specification. In this implementation, a client

 application provides a special handler for each parsing event of interest. When the client invokes the parser, it conveys not

 only the document to be parsed, but also the entry points for each of its event handlers. As the parser progresses through

 the document, it invokes the client's handlers for each parsing event for which a handler has been registered.

 ROUTINE: MXMLPRSE

 COMPONENT: EN(DOC,CBK,OPT)

 VARIABLES: DOC Type: Input

 This is either a closed reference to a global root containing the document or a filename and

 path reference identifying the document on the host system. If a global root is passed, the

 document must either be stored in standard FileMan word-processing format or may occur in

 sequentially numbered nodes below the root node. Thus, if the global reference is "^XYZ",

 the global must be of one of the following formats:

 ^XYZ(1,0) = "LINE 1"

 ^XYZ(2,0) = "LINE 2"

 or ^XYZ(1) = "LINE 1"

 ^XYZ(2) = "LINE 2" ...

 CBK Type: Both

 This is a local array, passed by reference, that contains a list of parse events and the

 entry points for the handlers of those events. The format for each entry is:

 CBK(<event type>) = <entry point>

 The entry point must reference a valid entry point in an existing M routine and should be of

 the format tag^routine. The entry should not contain any formal parameter references. The

 application developer is responsible for ensuring that the actual entry point contains the

 appropriate number of formal parameters for the event type. For example, client application

 might register its STARTELEMENT event handler as follows:

 CBK("STARTELEMENT") = "STELE^CLNT"

 The actual entry point in the CLNT routine must include two formal parameters as in the

 example:

 STELE(ELE,ATR) <handler code>

 See full documentation for event types. Documentation at:

 http://www.va.gov/vdl/VistA_Lib/Infrastructure/Kernel_Toolkit/KTK7_3p58.p df

 OPT Type: Input

 This is a list of option flags that control parser behavior. Recognized option flags are:

 W = Do not report warnings to the client.

 V = Validate the document. If not specified, the parser only checks for conformance.

 0 = Terminate parsing on encountering a warning.

 1 = Terminate parsing on encountering a validation error. (By default, the parser

 terminates only when a conformance error is encountered.)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 4153

 NAME: MXMLUTL

 USAGE: Supported ENTERED: JUL 15,2003

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Utility API's to help when building XML messages.

 ROUTINE: MXMLUTL

 COMPONENT: $$XMLHDR

 VARIABLES: This extrinsic function returns a standard extensible markup language (XML) header for encoding XML messages.

 Example:

 >S X=$$XMLHDR^MXMLUTL

 >W X

 <?xml version="1.0" encoding="utf-8" ?>

 COMPONENT: $$SYMENC(str)

 VARIABLES: str Type: Input

 String to be encoded for an XML message.

 This extrinsic function replaces reserved XML symbols in a string with their XML encoding for strings used in

 an extensible markup language (XML) message.

 Output: Returns the input string with XML encoding replacing reserved XML symbols.

 Example:

 >S X=$$SYMENC^MXMLUTL("This line isn't &""<XML>"" safe as is.")

 >W X

 This line isn't &"<XML>" safe as is.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 4631

 NAME: VHA UNIQUE ID (VUID) API

 USAGE: Supported ENTERED: MAY 6,2005

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 API to handle the storage and retrieval of VUID-assigned data for terms/concepts.

 Please consult the VistA document library online to browse examples of its use.

 ROUTINE: XTID

 COMPONENT: $$GETVUID(TFILE,TFIELD,TIREF)

 VARIABLES: TFILE Type: Input

 (required) VistA file/subfile number where term/concept is defined.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 - When not defined, TFIELD defaults to the .01 field number, and it represents terms defined

 in the file TFILE.

 - When defined, TFIELD must be of type SET OF CODES.

 TIREF Type: Input

 (required) Internal reference for term/concept.

 - For file entries this will be an IENS. For example,

 TIREF="5,"

 - For sets of codes this will be the internal value of the code. For

 example,

 TIREF=3 or

 TIREF="f" or

 TIREF="M"

 $$GETVUID Type: Output

 Returns: Success of operation as

 - The VHA unique id (VUID), when successful; or

 - "0^<error message>", when unsuccessful

 This extrinsic function retrieves the VHA unique id (VUID) for a given term/concept reference.

 Example:

 for terms defined in fields that are SET OF CODES

 >S file=2,field=.02,iref="M"

 >W $$GETVUID^XTID(file,field,iref)

 123456

 for terms defined in a single file

 >S file=16000009,field=.01,iref="3,"

 >W $$GETVUID^XTID(file,field,iref)

 123457

 COMPONENT: $$SETVUID(TFILE,TFIELD,TIREF,TVUID)

 VARIABLES: TFILE Type: Input

 (required) VistA file/subfile number where term/concept is defined.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 TIREF Type: Input

 (required) Internal reference for term/concept.

 - For file entries this will be an IENS. For example,

 TIREF="5,"

 - For sets of codes this will be the internal value of the code. For

 example,

 TIREF=3 or

 TIREF="f" or

 TIREF="M"

 TVUID Type: Input

 (required) The VHA unique id (VUID) to assign the given term/concept reference.

 $$SETVUID Type: Output

 Returns: Success of operation as

 - 1, when successful; or

 - "0^<error message>", when unsuccessful

 This extrinsic function populates the VHA unique id (VUID) for a given term/concept reference.

 Example:

 for terms defined in fields that are SET OF CODES

 >S file=2,field=.02,iref="M",vuid=123456

 >W $$SETVUID^XTID(file,field,iref,vuid)

 1

 for terms defined in a single file

 >S file=16000009,field=.01,iref="3,",vuid=123457

 >W $$SETVUID^XTID(file,field,iref,vuid)

 1

 COMPONENT: $$GETSTAT(TFILE,TFIELD,TIREF,TDATE)

 VARIABLES: TFILE Type: Input

 (required) VistA file/subfile number where term/concept is defined.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 - When not defined, TFIELD defaults to the .01 field number, and it represents terms defined

 in the file TFILE.

 - When defined, TFIELD must be of type SET OF CODES.

 TIREF Type: Input

 (required) Internal reference for term/concept.

 - For file entries this will be an IENS. For example,

 TIREF="5,"

 - For sets of codes this will be the internal value of the code. For

 example,

 TIREF=3 or

 TIREF="f" or

 TIREF="M"

 TDATE Type: Input

 (optional) FileMan date/time (defaults to NOW).

 $$GETSTAT Type: Output

 Returns: Success of operation as

 - status information, when successful, as

 "<internal value>^<FileMan effective date/time>^<external value>"

 for example,

 "0^3050220.115720^INACTIVE"

 "1^3050225.115711^ACTIVE"

 ; or

 - "^<error message>", when unsuccessful

 This extrinsic function retrieves the status information for a given term/concept reference and a specified

 date/time.

 Example:

 for terms defined in fields that are SET OF CODES

 >S file=2,field=.02,iref="M",datetime=$$NOW^XLFDT

 >W $$GETSTAT^XTID(file,field,iref,datetime)

 1^3050121.154752^ACTIVE

 for terms defined in a single file

 >S file=16000009,field=.01,iref="3,",datetime=""

 >W $$GETSTAT^XTID(file,field,iref,datetime)

 0^3050122.154755^INACTIVE

 COMPONENT: $$SETSTAT(TFILE,TFIELD,TIREF,TSTAT,TDATE)

 VARIABLES: TFILE Type: Input

 (required) VistA file/subfile number where term/concept is defined.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 - When not defined, TFIELD defaults to the .01 field number, and it represents terms defined

 in the file TFILE.

 - When defined, TFIELD must be of type SET OF CODES.

 TIREF Type: Input

 (required) Internal reference for term/concept.

 - For file entries this will be an IENS. For example,

 TIREF="5,"

 - For sets of codes this will be the internal value of the code. For

 example,

 TIREF=3 or

 TIREF="f" or

 TIREF="M"

 TSTAT Type: Input

 (required) The status internal value as

 - 0 for INACTIVE; or

 - 1 for ACTIVE

 TDATE Type: Input

 (optional) FileMan date/time (defaults to NOW).

 $$SETSTAT Type: Output

 Returns: Success of operation as

 - 1, when successful; or

 - "0^<error message>", when unsuccessful

 Extrinsic function to store the status and status date/time for the given term.

 Example:

 for terms defined in fields that are SET OF CODES

 >S file=2,field=.02,iref="M",status=1,datetime=$$NOW^XLFDT

 >W $$SETSTAT^XTID(file,field,iref,status,datetime)

 1

 for terms defined in a single file

 >S file=16000009,field=.01,iref="3,",status=1,datetime=$$NOW^XLFDT

 >W $$SETSTAT^XTID(file,field,iref,status,datetime)

 1

 COMPONENT: $$GETMASTR(TFILE,TFIELD,TIREF)

 VARIABLES: TFILE Type: Input

 (required) VistA file/subfile number where term/concept is defined.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 - When not defined, TFIELD defaults to the .01 field number, and it represents terms defined

 in the file TFILE.

 - When defined, TFIELD must be of type SET OF CODES.

 TIREF Type: Input

 (required) Internal reference for term/concept.

 - For file entries this will be an IENS. For example,

 TIREF="5,"

 - For sets of codes this will be the internal value of the code. For

 example,

 TIREF=3 or

 TIREF="f" or

 TIREF="M"

 $$GETMASTR Type: Output

 Returns: Success of operation as

 - The internal value of the MASTER ENTRY FOR VUID field, when successful,

 as

 0 for NO

 1 for YES

 ;or

 - "^<error message>", when unsuccessful

 This extrinsic function retrieves the value of the flag MASTER ENTRY FOR VUID for a given term/concept

 reference.

 Example:

 for terms defined in fields that are SET OF CODES

 >S file=2,field=.02,iref="M"

 >W $$GETMASTR^XTID(file,field,iref)

 1

 for terms defined in a single file

 >S file=16000009,field=.01,iref="3,"

 >W $$GETMASTR^XTID(file,field,iref)

 0

 COMPONENT: $$SETMASTR(TFILE,TFIELD,TIREF,TMASTER)

 VARIABLES: TFILE Type: Input

 (required) VistA file/subfile number where term/concept is defined.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 - When not defined, TFIELD defaults to the .01 field number, and it represents terms defined

 in the file TFILE.

 - When defined, TFIELD must be of type SET OF CODES.

 TIREF Type: Input

 (required) Internal reference for term/concept.

 - For file entries this will be an IENS. For example,

 TIREF="5,"

 - For sets of codes this will be the internal value of the code. For

 example,

 TIREF=3 or

 TIREF="f" or

 TIREF="M"

 TMASTER Type: Input

 (required) The internal value flag for the MASTER ENTRY FOR VUID field, as

 - 0 for NO; or

 - 1 for YES

 $$SETMASTR Type: Output

 Returns: Success of operation as

 - 1, when successful; or

 - "0^<error message>", when unsuccessful

 This extrinsic function stores the value of the flag MASTER ENTRY FOR VUID for a given term/concept reference.

 Example:

 for terms defined in fields that are SET OF CODES

 >S file=2,field=.02,iref="M",mstrflag=0

 >W $$SETMASTR^XTID(file,field,iref,mstrflag)

 1

 for terms defined in a single file

 >S file=16000009,field=.01,iref="3,",mstrflag=1

 >W $$SETMASTR^XTID(file,field,iref,mstrflag)

 1

 COMPONENT: $SCREEN(TFILE,TFIELD,TIREF,TDATE,TCACHE)

 VARIABLES: TFILE Type: Input

 (required) VistA file/subfile number where term/concept is defined.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 - When not defined, TFIELD defaults to the .01 field number, and it represents terms defined

 in the file TFILE.

 - When defined, TFIELD must be of type SET OF CODES.

 TIREF Type: Input

 (required) Internal reference for term/concept.

 - For file entries this will be an IENS. For example,

 TIREF="5,"

 - For sets of codes this will be the internal value of the code. For

 example,

 TIREF=3 or

 TIREF="f" or

 TIREF="M"

 TDATE Type: Input

 (optional) FileMan date/time (defaults to NOW) to check screening against.

 $$SCREEN Type: Output

 Returns: The screening condition as

 - 0, when term/concept is selectable (i.e. don't screen it out); or

 - 1, when term/concept is not selectable (i.e. screen it out)

 TCACHE Type: Both

 (optional and by-reference) Flag to indicate caching. Used mainly when defining the "screen"

 parameter [e.g., DIC("S")] while searching large files. This will improve the speed of the

 search.

 NOTE: It must be KILLed before initiating each search query (e.g., before calling the ^DIC).

 This Extrinsic function retrieves the screening condition for a given term/concept reference and specified

 date/time.

 Example 1 For terms defined in fields that are SET OF CODES:

 >S file=2,field=.02,iref="M",datetime=$$NOW^XLFDT

 >W $$SCREEN^XTID(file,field,iref,datetime) 0

 Example 2 For terms defined in a single file:

 >S file=16000009,field=.01,iref="3,",datetime=""

 >W $$SCREEN^XTID(file,field,iref,datetime) 0

 Example 3 When searching a large file:

 >S file=120.52,field=.01,datetime="" >S SCREEN="I '$$SCREEN^XTID(file,field,Y_"","",datetime,.cached)"

 >. . .

 >K cached >D LIST^DIC(file,,".01;99.99",,"*",,,,SCREEN,,"LIST","MSG") >K cached

 COMPONENT: GETIREF(TFILE,TFIELD,TVUID,TARRAY,TMASTER)

 VARIABLES: TFILE Type: Input

 (optional) VistA file/subfile number where term/concept is defined.

 - When defined, the search is limited to those term/concepts that exist

 in that file and have the VUID assigned to TVUID.

 - When not defined, the search will include term/concepts that have the

 VUID assigned to TVUID and may exist in both file terms and in SET OF

 CODES terms.

 TFIELD Type: Input

 (optional) Field number, in TFILE, where term/concept is defined.

 - When not defined, TFIELD defaults to the .01 field number, and it

 represents terms defined in the file TFILE. The search is limited to

 those term/concepts that exist in that file and have the VUID assigned

 to TVUID

 - When defined, TFIELD must be of type SET OF CODES. The search is

 limited to those term/concepts that exist in that file/field and have

 the VUID assigned to TVUID.

 TVUID Type: Input

 (required) The VHA unique id (VUID) value specified to limit the search on.

 TARRAY Type: Both

 (required) The name of the array (local or global) where results of the search will be

 stored.

 Returns: The given array populated as

 - @TARRAY=<list count>

 @TARRAY@(<file#>,<field#>,<internal reference>)=<status info>

 where the <status info> is defined as

 "<internal value>^<FileMan effective date/time>^

 <external value>^<master entry?>"

 ; or

 - when no entries are found, the array named by TARRAY is not populated

 ; or

 - when an error occurs, the array named by TARRAY is populated as follows:

 @TARRAY("ERROR")="<error message>"

 TMASTER Type: Input

 (optional) Flag to limit the search of terms based on the value of the MASTER ENTRY FOR VUID

 field.

 - 0, to include all terms; or

 - 1, to include only those terms designated as MASTER ENTRY FOR VUID

 This subroutine searches and returns a list of terms/concepts for a given VUID (TVUID). Filtering of the list

 is applied when the remaining parameters are defined: TFILE, TFIELD, and TMASTER.

 Example:

 >N array S array="MYARRAY"

 >S file=16000009,field=.01,vuid=12343,master=0

 >D GETIREF^XTID(file,field,vuid,array,master)

 >ZW MYARRAY

 MYARRAY=2 MYARRAY(16000009,.01,"1,")=1^3050202.153242^ACTIVE^0

 MYARRAY(16000009,.01,"3,")=0^3050215.07584^INACTIVE^1

 When no entries are found, the named array is not populated

 When an error occurs, the named array is populated as follows:

 >ZW MYARRAY

 MYARRAY("ERROR")="<error message>"

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 5515

 NAME: HTTP Client

 USAGE: Supported ENTERED: DEC 29,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This API provides access to a HTTP client to retrieve WEB pages.

 ROUTINE: XTHC10

 COMPONENT: $$GETURL(URL,XT8FLG,XT8RDAT,XT8RHDR,XT8SDAT,XT8SHDR)

 VARIABLES: URL Type: Input

 URL (http://host:port/path)

 XT8FLG Type: Input

 Timeout and flags to control processing. If a value of this parameter starts from a number

 then this number is used as a value of the timeout (in seconds). Otherwise, the default value

 of 5 seconds is used.

 XT8RDAT Type: Output

 Closed root of the variable where the message body is returned. Data is stored in consecutive

 nodes (numbers starting from 1). If a line is longer than 245 characters, only 245 characters

 are stored in the corresponding node. After that, overflow sub-nodes are created. For

 example:

 ;

 @XT8DATA@(1)="<html>" @XT8DATA@(2)="<head><title>VistA</title></head>" @XT8DATA@(3)="<body>"

 @XT8DATA@(4)="<p>" @XT8DATA@(5)="Beginning of a very long line" @XT8DATA@(5,1)="Continuation

 #1 of the long line" @XT8DATA@(5,2)="Continuation #2 of the long line" @XT8DATA@(5,...)=...

 @XT8DATA@(6)="</p>"

 XT8RHDR Type: Output

 Reference to a local variable where the parsed headers are returned. Header names are

 converted to upper case; the values are left "as is". The root node contains the status line.

 For example:

 ;

 XT8HDR="HTTP/1.0 200 OK" XT8HDR("CACHE-CONTROL")="private" XT8HDR("CONNECTION")="Keep-Alive"

 XT8HDR("CONTENT-LENGTH")="2690" XT8HDR("CONTENT-TYPE")="text/html" XT8HDR("DATE")="Fri, 26

 Sep 2003 16:04:10 GMT" XT8HDR("SERVER")="GWS/2.1"

 XT8SDAT Type: Input

 Closed root of a variable containing body of the request message. Data should be formatted as

 described earlier (see the XT8RDAT parameter).

 NOTE: If this parameter is defined, not empty, and the referenced array contains data then

 the POST request is generated. Otherwise, the GET request is sent.

 XT8SHDR Type: Input

 Reference to a local variable containing header values, which will be added to the request.

 GETS THE DATA FROM THE PROVIDED URL USING HTTP 1.0

 Return values:

 <0 Error Descriptor (see the $$ERROR^XTERROR)

 >0 HTTP Status Code^Description

 See the http://www.faqs.org/rfcs/rfc1945.html for more details of HTTP status codes.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 5516

 NAME: HTTP client utilities

 USAGE: Supported ENTERED: DEC 29,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Utility API to help with HTML.

 ROUTINE: XTHCUTL

 COMPONENT: $$DECODE(STR)

 VARIABLES: STR Type: Input

 A string of HTML.

 DeCode a string =" ", <=<, >=>, =" " Returns a string with the escaped characters replaced.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 10094

 NAME: XTFN

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XTFN

 COMPONENT: COS

 VARIABLES:

 COMPONENT: DTR

 VARIABLES:

 COMPONENT: EXP

 VARIABLES:

 COMPONENT: LN

 VARIABLES:

 COMPONENT: LOG

 VARIABLES:

 COMPONENT: PI

 VARIABLES:

 COMPONENT: PWR

 VARIABLES:

 COMPONENT: RTD

 VARIABLES:

 COMPONENT: SD

 VARIABLES:

 COMPONENT: SIN

 VARIABLES:

 COMPONENT: SQRT

 VARIABLES:

 COMPONENT: TAN

 VARIABLES:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 10095

 NAME: XTKERMIT

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XTKERMIT

 COMPONENT: SEND

 VARIABLES: ;To call from outside on KERMIT

 ;set XTKDIC = fileman type global root,

 ;DWLC = last current data node

 ;Return DWLC = last data node, XTKDIC is killed.

 ;Optional

 ;set XTKMODE = 0 to send/receive in Image mode (no conversion)

 ; 1 to send/receive in DATA mode (just convert control char)

 ; 2 to send/receive as TEXT (FM word-processing).

 ;Text mode sends a CR after each global node

 ; makes a new global node for each CR received.

 ;XTKMODE = 2 would be normal for most DHCP applications.

 COMPONENT: RECEIVE

 VARIABLES: ;To call from outside on KERMIT

 ;set XTKDIC = fileman type global root,

 ;DWLC = last current data node

 ;Return DWLC = last data node, XTKDIC is killed.

 ;Optional

 ;set XTKMODE = 0 to send/receive in Image mode (no conversion)

 ; 1 to send/receive in DATA mode (just convert control char)

 ; 2 to send/receive as TEXT (FM word-processing).

 ;Text mode sends a CR after each global node

 ; makes a new global node for each CR received.

 ;XTKMODE = 2 would be normal for most DHCP applications.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 10122

 NAME: XTLKKWL

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XTLKKWL

 COMPONENT: XTLKKWL

 VARIABLES: Developers can perform any supported VA Fileman calls on files configured for MTLU. To ignore the special

 lookup routine, XTLKDICL, be sure that DIC(0) includes an "I." Alternatively, multi-term look-ups can be

 performed on any VA Fileman file, even if it has not been configured for primary use by MTLU. Using the

 programmer API, the lookup can be performed using any index contained within the file, such as a Fileman KWIC

 cross-reference.

 Input routine: XTLKKWL

 Required variables: (XTLKGBL, XTLKKSCH("GBL"))=global root (same as DIC)

 XTLKKSCH("DSPLY")=Display routine (ie, DGEN^XTLKKWLD)

 XTLKKSCH("INDEX")=Cross-reference to use

 XTLKX=User input

 Optional variable: XTLKSAY=1 or 0 (If 1, mtlu will display details during

 lookup)

 XTLKHLP=Executable code to display custom help

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 10143

 NAME: XLFMSMT

 USAGE: Supported ENTERED: APR 11,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XLFMSMT

 COMPONENT: WEIGHT(val,from,to)

 VARIABLES: Weight Measurement

 COMPONENT: LENGTH(val,from,to)

 VARIABLES: Length Measurement

 COMPONENT: VOLUME(val,from,to)

 VARIABLES: Weight Measurement

 COMPONENT: BSA(ht,wt)

 VARIABLES: Body surface area

 COMPONENT: TEMP(val,from,to)

 VARIABLES: Temperature measurement

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 10144

 NAME: XLFHYPER

 USAGE: Supported ENTERED: APR 11,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: XLFHYPER

 COMPONENT: $$SINH(X,PR)

 VARIABLES:

 COMPONENT: $$COSH(X,PR)

 VARIABLES:

 COMPONENT: $$TANH(X,PR)

 VARIABLES:

 COMPONENT: $$CSCH(X,PR)

 VARIABLES:

 COMPONENT: $$SECH(X,PR)

 VARIABLES:

 COMPONENT: $$COTH(X,PR)

 VARIABLES:

 COMPONENT: $$ASINH(X,PR)

 VARIABLES:

 COMPONENT: $$ACOSH(X,PR)

 VARIABLES:

 COMPONENT: $$ATANH(X,PR)

 VARIABLES:

 COMPONENT: $$ACOTH(X,PR)

 VARIABLES:

 COMPONENT: $$ASECH(X,PR)

 VARIABLES:

 COMPONENT: $$ACSCH(X,PR)

 VARIABLES:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: TOOLKIT
 ICR#: 10153

 NAME: MTLU LOOKUPS/FILE MANAGEMENT

 USAGE: Supported ENTERED: JAN 11,1995

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Procedure calls for MTLU.

 ROUTINE: XTLKMGR

 COMPONENT: SY(xtlk1,xtlk2,xtlk3)

 VARIABLES: XTLK1 Type: Input

 Associated file

 XTLK2 Type: Input

 term

 XTLK3 Type: Input

 Synonym (or optional array for multiple synonymns per term). For example: SYN(1)=<first

 synonym>, SYN(2)=<2nd synonym>

 XTLKER(1,f Type: Output

 File not defined in the Local Lookup file (8984.4)

 XTLKER(2,t Type: Output

 The term could not be added.

 XTLKER(3,s Type: Output

 Synonym could not be added.

 Add terms and synonyms to the Local Synonym file(8984.3).

 COMPONENT: K(xtlk1,xtlk2,xltk3)

 VARIABLES: XTLK1 Type: Input

 Associated file

 XTLK2 Type: Input

 code in associated file

 XLTK3 Type: Input

 keyword

 XTLKER(1,f Type: Output

 File not defined in the LOCAL LOOKUP file (8984.4)

 XTLKER(2,c Type: Output

 the code is not in the associated file.

 XTLKER(3,s Type: Output

 The keyword could not be added.

 Add keywords to the LOCAL KEYWORD file (8984.1).

 COMPONENT: L(xtlk1,xtlk2,xtlk3,xtlk4)

 VARIABLES: XTLK1 Type: Input

 filename or number

 XTLK2 Type: Input

 application-specific display protocol (optional)

 XLTK3 Type: Input

 MTLU index to use for look-ups

 XTLK4 Type: Input

 variable pointer prefix

 XTLKER(1,f Type: Output

 file could not be added

 Define a file in the LOCAL LOOKUP file (8984.4). Adding the target file here does not automatically place the

 special look-up routine, ^XTLKDICL, in the file's Data Dictionary. since use of this routine is at the

 discretion of the developer, it should be manually added via the Edit File option under VA Fileman's Utilities

 Menu.

 COMPONENT: DSH(xtlk1,xtlk2)

 VARIABLES: XTLK1 Type: Input

 filename

 XTLK2 Type: Input

 leave undefined to delete all shortcuts for a given target file or pass in an array for

 selected shortcuts.

 Delete shortcuts from the LOCAL SHORTCUT file (8984.2)

 COMPONENT: DSY(xtlk1,xtlk2)

 VARIABLES: XTLK1 Type: Input

 filename

 XTLK2 Type: Input

 Leave undefined to delete all synonyms for a given target file or pass in an array for

 selected synonyms.

 Delete synonyms from the LOCAL SYNONYM file (8984.3)

 COMPONENT: DK(xtlk1,xtlk2)

 VARIABLES: XTLK1 Type: Input

 filename

 XTLK2 Type: Input

 Leave undefined to delete all keywords for a given target file or pass in an array for

 selected keywords.

 Delete keywords from the LOCAL KEYWORD file (8984.1)

 COMPONENT: DLL(xtlk1)

 VARIABLES: XTLK1 Type: Input

 associated filename or number

 XTLKER(1,f Type: Output

 file is not in the LOCAL LOOKUP file (8984.4)

 XTLKER(2) Type: Output

 Entries exist for keywords, shortcuts or synonyms for the associated file. These must be

 deleted first.

 Delete an entry from the LOCAL LOOKUP FILE (8984.4)

 COMPONENT: LKUP(fil,xtlkx,xtlksay,xtlkhlp,xtlkmore)

 VARIABLES: FIL Type: Input

 target file (must be defined in the LOCAL LOOKUP file, 8984.4)

 XTLKX Type: Input

 word or phrase to use in the look-up

 XTLKSAY Type: Input

 <OPTIONAL>set to -1, 0 or 1 (default). 0=minimal display, -1=NO screen writes are performed,

 1 or null=normal display. The purpose of XTLKSAY is to control the degree of output to the

 screen, not the amount of file information displayed. If screen displays are turned off, MTLU

 matches can be processed by checking the count in ^TMP("XTLKHITS",$J).

 ^TMP("XTLKHITS",$J,x)=IEN of the entry in the target file. Remember to kill this node after

 processing.

 XTLKHLP Type: Input

 <OPTIONAL>executable M code to display application-specific help

 XTLKMORE Type: Input

 <OPTIONAL>if set to '1' and there are no MTLU matches, the search will continue using all

 available Fileman cross-references. At this point, it will be a simple FileMan look-up and

 display (default=1).

 NOTE: If XTLKSAY=-1, then XTLKMORE is ignored.

 This is a general lookup facility for MTLU. The target file must be defined in the LOCAL LOOKUP file, but the

 routine ^XTLKDICL does not have to be defined in the target file's DD.

 COMPONENT: SH(xtlk1,xtlk2,xtlk3)

 VARIABLES: XTLK1 Type: Input

 Associated file

 XTLK2 Type: Input

 code in associated file

 XTLK3 Type: Input

 shortcut

 XTLKER(2,x Type: Output

 error-code in associated file did not exist.

 XTLKER(3,x Type: Output

 error-shortcut could not be added.

 Populate the MTLU Shortcuts file (8984.2).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 937

 NAME: SEARCH TEMPLATE RESULTS

 USAGE: Supported ENTERED: AUG 12,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT: DIBT(

 DESCRIPTION: TYPE: File

 ^DIBT(SORT_TEMPLATE#,1,IEN)=""

 The 1 node indicates that the IEN list was created one of two ways:

 1) The user was in FileMan INQUIRE mode, selected a number of records, and saved the list in a template.

 2) The user ran the FileMan SEARCH, either through the interactive FileMan menu, or through the programmer entry point

 EN^DIS. In this case, the IEN list is the record numbers that met the search criteria.

 IEN - is the internal entry number of a record in the file indicated by the 4th piece of the 0 node of the template,

 ^DIBT(SORT_TEMPLATE#,0).

 Read, Write, Delete access allowed.

 ^DIBT(SORT_TEMPLATE#,1,IEN)

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2050

 NAME: Database Server (DBS) API: DIALOG Utilities

 USAGE: Supported ENTERED: JUL 2,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 DIALOG file utilities.

 BLD: DIALOG Extractor $$EZBLD: DIALOG Extractor (Single Line) MSG: Output Generator

 ROUTINE: DIALOG

 COMPONENT: BLD()

 VARIABLES: DIALOG# Type: Input

 (Required) Record number from the DIALOG file for the text to be returned.

 [.]TEXT_PA Type: Input

 (Optional) Local array containing the dialog parameters to substitute into the resulting

 text. Set the subscript of each node in this array to a dialog parameter that's in a |window|

 in the referenced Dialog entry's text. The value of each node should be in external,

 printable format, and will be substituted in the Dialog text for that dialog parameter.

 [.]OUTPUT_ Type: Both

 (Optional) This is useful mainly if you are returning error messages as part of an API for

 other programmers to use. Use it to pass dialog parameters back to the user of your API, such

 that they can be accessed individually instead of just being embedded in the error text.

 OUTPUT_ARR Type: Both

 (Optional) If provided, the text will be output in the local or global array named by this

 parameter.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 S Suppresses the blank line that is normally inserted between discrete blocks of text that

 are built by separate calls to this routine.

 F Formats the local array similar to the default output format of the ^TMP global, so that

 MSG^DIALOG can be called to either write the array to the current device or to a simple local

 array.

 This entry point performs the following functions:

 Extracts a dialog from a FileMan DIALOG file entry Substitutes dialog parameters into the text if requested

 Returns the text in an array

 Format: BLD^DIALOG(DIALOG#,[.]TEXT_PARAM,[.]OUTPUT_PARAM,OUTPUT_ARRAY,FLAGS)

 COMPONENT: $$EZBLD()

 VARIABLES: DIALOG# Type: Input

 (Required) Record number from the DIALOG File for the text to be returned.

 [.]TEXT_PA Type: Input

 (Optional) Name of local array containing the parameter list for those parameters that are to

 be incorporated into the resulting text. These parameters should be in external, printable

 format. If there is only one parameter in the list, it can be passed in a local variable or

 as a literal.

 This extrinsic function returns the first line of text from an entry in the DIALOG File. It can be used when

 the text entry is only one line and when the output does not need to be put into an array.

 Format $$EZBLD^DIALOG(DIALOG#,[.]TEXT_PARAM)

 COMPONENT: MSG()

 VARIABLES: FLAGS Type: Input

 (Optional) Flags to control processing. If none of the text type flags (E, H or M) is

 entered, the routine behaves as if "E" were entered. If no flags are entered, it behaves as

 if FLAGS contained "WE". The possible values are:

 A Local Array specified by the second parameter receives the text. W Writes the text to the

 current device. S Saves the ^TMP or other designated input array (does not kill the array).

 E Error array text is processed. H Help array text is processed. M Message array text

 (other text) is processed. B Blank lines are suppressed between error messages. T Return

 Total number of lines in the top level node of the local array specified by the second

 parameter.

 Type:

 .OUTPUT_AR Type: Both

 (Optional) This parameter contains the name of the local array to which the text is to be

 written. If FLAGS contains an A, this parameter must be sent. Otherwise, the parameter is

 ignored.

 TEXT_WIDTH Type: Input

 (Optional) Maximum line length for formatting text.

 LEFT_MARGI Type: Input

 (Optional) Left margin for writing text. If sent, the text is lined up in a column starting

 at this column number.

 INPUT_ROOT Type: Input

 (Optional) Closed root of local input array in which text resides. If the text resides in a

 local array, this parameter must be sent.

 ARRAY Type: Output

 Total number of lines (only returned if FLAGS contains "T").

 ARRAY(n) Type: Output

 A line of formatted text (n=sequential integer starting with 1).

 This procedure takes text from one of the FileMan dialogue arrays (for errors, help text, or other text) or

 from a similarly structured local array writes it and/or moves it into a simple local array.

 Format: MSG^DIALOG(FLAGS,.OUTPUT_ARRAY,TEXT_WIDTH,LEFT_MARGIN,INPUT_ROOT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2051

 NAME: Database Server API: Lookup Utilities

 USAGE: Supported ENTERED: JUL 2,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Lookup utilities.

 FIND: Finder $$FIND1: Finder (Single Record) LIST: Lister

 ROUTINE: DIC

 COMPONENT: FIND()

 VARIABLES: FILE Type: Input

 (Required) This parameter is the number of the file or subfile to search. If it is a

 subfile, it must be accompanied by the IENS parameter.

 IENS Type: Input

 (Optional) The IENS that identifies the subfile if FILE is a subfile number. Defaults to no

 subfile.

 FIELDS Type: Input

 (Optional) The fields to return with each entry found, in addition to the .01 field, internal

 entry number, and any MUMPS identifiers on the file. Defaults to returning the internal

 entry number, the .01 field, and all identifiers.

 FLAGS Type: Input

 (Optional) This parameter lets the caller adjust the Finder's algorithm. The possible values

 are:

 A Allow pure numeric input to always be tried as an IEN. M Multiple index lookup allowed. O

 Only find exact matches if possible. Q Quick lookup. X EXact matches only.

 VALUE Type: Input

 (Required) The lookup value.

 NUMBER Type: Input

 (Optional) The maximum number of entries to find.

 INDEXES Type: Input

 (Optional) The indexes the Finder should search for matches.

 SCREEN Type: Input

 (Optional) A screen to apply to each record found.

 IDENTIFIER Type: Input

 (Optional) The text to accompany each found entry to help identify it to the end user.

 TARGET_ROO Type: Both

 (Optional) The array that should receive the output list of found entries.

 If not specified, the default location is descendent from

 ^TMP("DILIST",$J). When the calling application is finshed with the data the

 ^TMP("DILIST",$J) array may be killed.

 MSG_ROOT Type: Both

 (Optional) The array that should receive any error messages.

 This procedure finds records in a file based on an input value.

 Format FIND^DIC(FILE,IENS,FIELDS,FLAGS,VALUE,NUMBER,INDEXES,SCREEN,IDENTIFIER,

 TARGET_ROOT,MSG_ROOT)

 COMPONENT: $$FIND1()

 VARIABLES: FILE Type: Input

 (Required) This parameter should be the number of the file or subfile to search. If it is a

 subfile, it must be accompanied by the IENS parameter.

 IENS Type: Input

 (Optional) The IENS that identifies the subfile if FILE is a subfile number.

 FLAGS Type: Input

 (Optional) This parameter lets the caller adjust the Finder's algorithm.

 The possible values are:

 A Allow pure numeric input to always be tried as an IEN. M Multiple index lookup

 allowed. O Only find exact matches if possible.

 Q Quick lookup. X

 EXact matches only.

 VALUE Type: Input

 (Required) The lookup value.

 INDEXES Type: Input

 (Optional) The indexes the Finder should search for a match.

 SCREEN Type: Input

 (Optional) A screen to apply to the record found.

 MSG_ROOT Type: Both

 (Optional) The array that should receive any error messages.

 This extrinsic function finds a single record in a file based on an input value; if more than one match is

 found, the function returns an error.

 Format $$FIND1^DIC(FILE,IENS,FLAGS,VALUE,INDEXES,SCREEN,MSG_ROOT)

 COMPONENT: LIST()

 VARIABLES: FILE Type: Input

 (Required) The file whose entries are to be listed. This should equal the file or subfile

 number, depending on what the caller wishes to list.

 IENS Type: Input

 (Optional) If the FILE parameter equals a file number, don't pass the IENS parameter; it is

 not needed. If, on the other hand, the FILE parameter equals a subfile number, the Lister

 needs the IENS parameter to help identify which subfile to list.

 FIELDS Type: Input

 (Optional) The fields to return with each entry in the list instead of the field identifiers

 otherwise returned.

 FLAGS Type: Input

 (Optional) Flags to control processing:

 B Backwards. (Defaults to traversing forward.) I Internal format is returned.

 NUMBER Type: Input

 (Optional) The number of entries to return.

 [.]FROM Type: Both

 Optional) The index entry from which to begin the list (e.g., a FROM value of "XQ" would list

 entries following XQ).

 PART Type: Input

 (Optional) The partial match restriction.

 INDEX Type: Input

 (Optional) The index from which to build the list. Defaults to "B".

 SCREEN Type: Input

 (Optional) The screen to apply to each potential entry in the returned list to decide whether

 or not to include it.

 This code can rely upon the following:

 Naked indicator Zero-node of entry's record. D Index being traversed. DIC Number of file

 being traversed. DIC(0) Flags passed to the Lister (direction). Y Record number of entry

 under consideration. Y() array For subfiles, descendants give record numbers for all upper

 levels. Structure resembles DA. Y1 IENS equivalent to Y array.

 IDENTIFIER Type: Input

 (Optional) The text to accompany each potential entry in the returned list to help identify

 it to the end user.

 TARGET_ROO Type: Both

 (Optional) The array that should receive the output list.

 MSG_ROOT Type: Both

 (Optional) The array that should receive any error messages.

 This procedure, expected to be used to populate a GUI Listbox gadget, retrieves a list of records from a file.

 Format LIST^DIC(FILE,IENS,FIELDS,FLAGS,NUMBER,[.]FROM,PART,INDEX,SCREEN,

 IDENTIFIER,TARGET_ROOT,MSG_ROOT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2052

 NAME: Database Server API: Data Dictionary Utilities

 USAGE: Supported ENTERED: JUL 2,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Data dictionary utilities.

 FIELD: DD Field Retriever FIELDLST: DD Field List Retriever FILE: DD File Retriever FILELST: DD File List Retriever $$GET1:

 Attribute Retriever

 ROUTINE: DID

 COMPONENT: FIELD()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 FIELD Type: Input

 (Required) Field name or number.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 N No entry in the target array is created if the attribute is null. Z Word processing

 attributes include "0" nodes with text.

 ATTRIBUTES Type: Input

 (Required) A list of attribute names separated by semicolons. Full attribute names must be

 used. Following are the attributes that can be requested: AUDIT AUDIT CONDITION COMPUTE

 ALGORITHM COMPUTED FIELDS USED DATE FIELD LAST EDITED DECIMAL DEFAULT DELETE ACCESS

 DESCRIPTION FIELD LENGTH GLOBAL SUBSCRIPT LOCATION HELP-PROMPT INPUT TRANSFORM LABEL

 MULTIPLE-VALUED OUTPUT TRANSFORM POINTER READ ACCESS SOURCE SPECIFIER TECHNICAL DESCRIPTION

 TITLE TYPE WRITE ACCESS XECUTABLE HELP

 TARGET_ROO Type: Both

 (Required) The closed root of the array that should receive the attributes.

 MSG_ROOT Type: Both

 (Optional) The name of a closed root reference that is used to pass error messages. If not

 passed, ^TMP("DIERR",$J) is used.

 This procedure retrieves the values of the specified field-level attributes for the specified field.

 Format FIELD^DID(FILE,FIELD,FLAGS,ATTRIBUTES,TARGET_ROOT,MSG_ROOT)

 COMPONENT: FIELDLST()

 VARIABLES: TARGET_ROO Type: Both

 (Required) The root of an output array.

 Output TARGET_ROOT The descendants of the array root are subscripted by the attribute names.

 "WP" nodes indicate that the attribute consists of a word processing field.

 This procedure returns a list of field-level attributes that are supported by FileMan. It shows specifically

 which attributes the Data Dictionary retriever calls can return.

 Format FIELDLST^DID(TARGET_ROOT)

 COMPONENT: FILE()

 VARIABLES: FILE Type: Input

 (Required) File number (but not subfile attributes).

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 N No entry in the target array is created if the attribute is null. Z Word processing

 attributes include Zero (0) nodes with text.

 ATTRIBUTES Type: Input

 (Required) A list of attribute names separated by semicolons. Full attribute names must be

 used:

 ARCHIVE FILE AUDIT ACCESS DATE DD ACCESS DEL ACCESS DESCRIPTION DEVELOPER DISTRIBUTION

 PACKAGE ENTRIES GLOBAL NAME LAYGO ACCESS LOOKUP PROGRAM NAME PACKAGE REVISION DATA REQUIRED

 IDENTIFIERS RD ACCESS VERSION WR ACCESS

 TARGET_ROO Type: Both

 (Required) The name of a closed array reference.

 MSG_ROOT Type: Both

 (Optional) The name of a closed root array reference that is used to pass error messages. If

 not passed, messages are returned in ^TMP("DIERR",$J).

 This procedure retrieves the values of the file-level attributes for the specified file. It does not return

 subfile attributes.

 Format FILE^DID(FILE,FLAGS,ATTRIBUTES,TARGET_ROOT,MSG_ROOT)

 COMPONENT: FILELST()

 VARIABLES: DD File List Retriever

 COMPONENT: $$GET1()

 VARIABLES: FILE Type: Input

 (Required) File number.

 FIELD Type: Input

 Field number or name. (Required only when field attributes are being requested, otherwise

 this function assumes a file attribute is being requested).

 FLAGS Type: Input

 (Optional) Flag to control processing:

 Z Zero nodes on word processing attributes are included in the array subscripts.

 ATTRIBUTE Type: Input

 (Required) Data dictionary attribute name.

 TARGET-ROO Type: Both

 Closed array reference where multi-lined attributes will be returned. (Required only when

 multi-line values are returned, such as word processing attributes like "DESCRIPTION").

 MSG-ROOT Type: Both

 (Optional) The name of a closed root reference that is used to pass error messages. If not

 passed, ^TMP("DIERR",$J) is used.

 This extrinsic function retrieves a single attribute from a single file or field.

 Format $$GET1^DID(FILE,FIELD,FLAGS,ATTRIBUTE,TARGET_ROOT,MSG_ROOT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2053

 NAME: Data Base Server API: Editing Utilities

 USAGE: Supported ENTERED: JUL 2,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Editing Utilities

 CHK: Data Checker FILE: Filer HELP: Helper UPDATE: Updater VAL: Validator WP: Word Processing Filer $$KEYVAL^DIE(): Key

 Validator VALS^DIE(): Fields Validator

 ROUTINE: DIE

 COMPONENT: CHK()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 FIELD Type: Input

 (Required) Field number for which data is being validated.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 H Help (single "?") is returned if VALUE is not valid. E External value is returned in

 RESULT(0).

 VALUE Type: Input

 (Required) Value to be validated, as entered by a user.

 .RESULT Type: Both

 (Required) Local variable that receives output from the call.

 MSG_ROOT Type: Both

 (Optional) Root into which error, help, and message arrays are put. If this parameter is not

 passed, these arrays are put into nodes descendent from ^TMP.

 This procedure checks user-supplied data against the data dictionary definition of a field.

 Format CHK^DIE(FILE,FIELD,FLAGS,VALUE,.RESULT,MSG_ROOT)

 COMPONENT: FILE()

 VARIABLES: FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 K LocKing is done by the Filer. (See discussion of Locking below.) S Save FDA. If this flag

 is not set and there were no errors during the filing process, the FDA is deleted. If this

 flag is set, the array is never deleted. E External values are processed. If this flag is

 set, the values in the FDA must be in the format input by the user. The value is validated

 and filed if it is valid. If the flag is not set, values must be in internal format and must

 be valid; no validation or transformation is done by the Filer

 FDA_ROOT Type: Input

 (Required) The root of the FDA that contains the data to file.

 MSG_ROOT Type: Both

 (Optional) The root of an array (local or global) into which error messages are returned. If

 this parameter is not included, error messages are returned in the default

 array-^TMP("DIERR",$J).

 This procedure: Puts validated data that is in internal FileMan format into the database. OR: Validates data

 that is in external (user-provided) format, converts it to internal FileMan format, and files valid data into

 the database.

 Format FILE^DIE(FLAGS,FDA_ROOT,MSG_ROOT)

 COMPONENT: HELP()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 IENS Type: Input

 (Optional) Standard IENS indicating internal entry numbers.

 FIELD Type: Input

 (Required) Field number for which help is requested.

 FLAGS Type: Input

 (Required) Flags used to determine what kind of help is returned by the call. If a lower case

 letter is shown, use it to suppress that kind of help-useful in conjunction with ? or ??. The

 possible values are:

 ? Help equivalent to user entering one "?" at an edit prompt. (Also help returned for an

 invalid response.) ?? Help equivalent to user entering "??" at an edit prompt. A All

 available help for the field. F Fields that can be used for lookups. Returned for top-level

 .01 fields and for pointed-to files for pointer data types. For pointed-to files, the "F"

 flag is effective only if the "G" flag is also sent. H Help prompt text. X Xecutable

 help-the MUMPS code contained in Xecutable Help is executed. In order to have the help

 returned in an array, the executed code must use EN^DDIOL to load the help message. D

 Description text for the field; this may be multiple lines. P Pointer screen description. C

 Set of Codes screen description. T Date/Time generic help. This help text is customized

 based on the allowable and required elements of the particular Date/Time field. S Set of

 codes possible choices. Any screen that exists on the set of codes field is applied so that

 only actually selectable choices are presented. U Unscreened set of codes choices. V

 Variable pointer help that lists the prefixes and messages associated with a particular

 variable pointer field. B (b) Brief variable pointer help. A single line beginning with "To

 see the entries ...". M More variable pointer help. Detailed description of how to enter

 variable pointer data. G (g) getting help from pointed-to file. Help for the .01 field of

 pointed-to file is returned.

 MSG_ROOT Type: Both

 (Optional) Closed root into which the output from the call is put. If not supplied, output is

 returned in ^TMP.

 DIHELP Type: Output

 Number of lines of help text returned

 TMP("DIHEL Type: Output

 Array containing the lines of help text. The text is found in integer subscripted nodes (n),

 beginning with 1. A blank node is inserted between each different type of help returned.

 This procedure retrieves user-oriented help for a field from the Data Dictionary and other sources.

 Format HELP^DIE(FILE,IENS,FIELD,FLAGS,MSG_ROOT)

 COMPONENT: UPDATE()

 VARIABLES: FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 E External values are processed. If this flag is set, the values in the FDA must be in the

 format input by the user. The Updater validates all values and converts them to internal

 format. Invalid values cancel the entire transaction.

 If the flag is not set, values must be in internal format and must be valid. S The Updater

 Saves the FDA instead of killing it at the end.

 FDA_ROOT Type: Input

 (Required) The name of the root of a FileMan Data Array, which describes the entries to add

 to the database.

 IEN_ROOT Type: Both

 (Optional) The name of the Internal Entry Number Array (or IEN Array).

 Output: As the Updater assigns record numbers to the records described in the FDA, it sets up

 nodes in the IEN Array to indicate how it decoded the sequence numbers.

 MSG_ROOT Type: Both

 (Optional) The array that should receive any error messages. If the MSG_ROOT is not passed,

 errors are returned descendent from ^TMP("DIERR",$J).

 This procedure adds new entries in files or subfiles.

 Format UPDATE^DIE(FLAGS,FDA_ROOT,IEN_ROOT,MSG_ROOT)

 COMPONENT: VAL()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 IENS Type: Input

 (Required) Standard IENS indicating internal entry numbers.

 FIELD Type: Input

 (Required) Field number for which data is being validated.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 E External value is returned in RESULT(0). F FDA node is set for valid data in array

 identified by FDA_ROOT. H Help (single ?) is returned if VALUE is not valid. R Record

 identified by IENS is verified to exist and to be editable. Do not include "R" if there are

 placeholders in the IENS.

 VALUE Type: Input

 (Required) Value to be validated as input by a user.

 .RESULT Type: Both

 (Required) Local variable which receives output from call.

 FDA_ROOT Type: Both

 (Optional; required if F flag present) Root of FDA into which internal value is loaded if F

 flag is present.

 MSG_ROOT Type: Both

 (Optional) Root into which error, help, and message arrays are put. If this parameter is not

 passed, these arrays are put into nodes descendent from ^TMP.

 The purpose of the Validator procedure is to take the external form of user input and determine if that value

 is valid.

 Format VAL^DIE(FILE,IENS,FIELD,FLAGS,VALUE,.RESULT,FDA_ROOT,MSG_ROOT)

 COMPONENT: WP()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 IENS Type: Input

 (Required) Standard IENS indicating internal entry numbers.

 FIELD Type: Input

 (Required) Field number of the word processing field into which data is being filed.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 A Append new word processing text to the current word processing data. If this flag is not

 sent, the current contents of the word processing field are completely erased before the new

 word processing data is filed. K LocK the entry or subentry before changing the word

 processing data.

 WP_ROOT Type: Input

 (Required) The root of the array that contains the word processing data to be filed.

 MSG_ROOT Type: Both

 (Optional) Root into which errors are put. If this parameter is not passed, these arrays are

 put into nodes descendent from ^TMP.

 This procedure files a single word processing field.

 Format WP^DIE(FILE,IENS,FIELD,FLAGS,WP_ROOT,MSG_ROOT)

 COMPONENT: $$KEYVAL()

 VARIABLES: FLAGS Type: Both

 (Optional) Flags to control processing. The possible values are:

 Q = Quit when the first problem in the FDA is encountered.

 FDA_ROOT Type: Both

 (Required) The root of the FDA that contains the data to be checked. The array can be a local

 or global one. See the Database Server Introduction for details of the structure of the FDA.

 The value of fields in the FDA must be the internal value. Do not pass external (e.g.,

 unresolved pointer values, non-FileMan dates) in the FDA.

 No action is taken on fields in the referenced FDA if those fields do not participate in a

 Key defined in the KEY file.

 MSG_ROOT Type: Both

 (Optional) The root of an array into which error messages are returned. If this parameter is

 not included, errors are returned in the default array: ^TMP("DIERR",$J).

 0/1 Type: Output

 The function returns a 1 if key integrity is not violated by any value in the FDA and a 0 if

 an invalid key was produced by any of the values.

 The Key Validator extrinsic function verifies that new values contained in the FDA do not produce an invalid

 key. All keys in which any field in the FDA participates are checked. If the value for a field in a key being

 checked is not present in the FDA, the value used to verify the key is obtained from the previously filed data.

 Format $$KEYVAL^DIE(FLAGS,FDA_ROOT,MSG_ROOT)

 COMPONENT: VALS()

 VARIABLES: FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 K - If the file has a Primary Key, this flag indicates that the Primary Key fields, not the

 .01 field, are to be used for lookup in the Finding and LAYGO/Finding nodes of the FDA.

 Without this flag, VALS^DIE assumes that you want to file the fields in the Primary Key,

 rather than use them for lookup, and performs the uniqueness check. This flag is equivalent

 to the "K" flag in the Updater (UPDATE^DIE).

 R - Records identified by IENSs in the FDA_EXT are verified to exist and to be editable.

 (Same as R flag for VAL^DIE.)

 U - Don't perform key validation. Without this flag, the data in the FDA is checked to ensure

 that no duplicate keys are created and that key field values are not deleted.

 FDA_EXT_RO Type: Input

 (Required) The root of a standard FDA. This array should contain the external values that you

 want to validate. This is the input array. See the Database Server Introduction for details

 of the structure of the FDA.

 FDA_INT_RO Type: Both

 (Required) The root of a standard FDA. This FDA is the output array, and upon return is set

 equal to the internal values of each validated field. If a field fails validation, its value

 is set to an up-arrow (^). (NOTE: If a field is valid, the corresponding node in the output

 array is set to the internal value, not an up-arrow (^), even if that field violates key

 integrity.) See the Database Server Introduction for details of the structure of the FDA

 MSG_ROOT Type: Both

 (Optional) The root of an array (local or global) into which error messages are returned. If

 this parameter is not included, error messages are returned in the default array:

 ^TMP("DIERR",$J).

 The Fields Validator procedure validates data for a group of fields and converts valid data to internal VA

 FileMan format. It is intended for use with a set of fields that comprise a logical record; fields from more

 than one file can be validated by a single call. By default, the integrity of any keys affected by the new

 values is checked.

 The Fields Validator performs the same checks performed by VAL^DIE (see for details).

 Format VALS^DIE(FLAGS,FDA_EXT_ROOT,FDA_INT_ROOT,MSG_ROOT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2054

 NAME: Data Base Server API: Misc. Library Functions

 USAGE: Supported ENTERED: JUL 2,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Various libaray functions.

 CLEAN: Array and Variable Clean-up $$CREF: Root Converter (Open to Closed Format) DA: DA() Creator DT: Date Converter FDA:

 FDA Loader $$IENS: IENS Creator $$OREF: Root Converter (Closed to Open Format) $$VALUE1: FDA Value Retriever (Single) VALUES:

 FDA Values Retriever

 ROUTINE: DILF

 COMPONENT: CLEAN

 VARIABLES: None Type:

 This procedure kills the standard message arrays and variables that are produced by VA FileMan.

 COMPONENT: $$CREF()

 VARIABLES: OPEN_ROOT Type: Input

 (Required) An open root which is a global root ending in either an open parenthesis or a

 comma.

 This extrinsic function converts the traditional open root format to the closed root format used by subscript

 indirection.

 Format $$CREF^DILF(OPEN_ROOT)

 COMPONENT: DA()

 VARIABLES: IENS Type: Input

 (Required) A string with record and subrecord numbers in IENS format.

 .DA Type: Both

 (Required) The name of the array which receives the record numbers. NOTE: This array is

 cleaned out (killed) before the record numbers are loaded.

 This procedure converts an IENS into an array with the structure of a DA() array.

 Format DA^DILF(IENS,.DA)

 COMPONENT: DT()

 VARIABLES: FLAGS Type: Input

 (Optional) Control processing of user input and the type of output returned. Generally, FLAGS

 is the same as %DT input variable to ^%DT entry point, with the following exceptions: "A" is

 not allowed and the meaning of "E" is different (see below). The possible values are:

 E External, readable date returned in zero-node of RESULT. F Future dates are assumed. N

 Numeric-only input is not allowed. P Past dates are assumed. R Required time input. S

 Seconds will be returned. T Time input is allowed but not required. X EXact date (with

 month and day) is required.

 IN_DATE Type: Input

 (Required) Date input as entered by the user in any of the formats known to VA FileMan.

 .RESULT Type: Both

 (Required) Local array that receives the internal value of the date/time and, if the "E" flag

 is sent, the readable value of the date.

 Output Output is returned in the local array passed by reference in the RESULT parameter,

 shown below:

 RESULT Date in internal FileMan format. If input is invalid or if help is requested with a

 "?", -1 is returned.

 RESULT(0) If requested, date in external, readable format. When appropriate, error messages

 and help text are returned in the standard manner in ^TMP or in MSG_ROOT (if it is

 specified).

 LIMIT Type: Input

 (Optional) A value equal to a date/time in FileMan internal format or NOW. IN_DATE is

 accepted only if it is greater than or equal to LIMIT if it is positive, or less than or

 equal to LIMIT if it is negative. This is equivalent to the %DT(0) variable in the ^%DT call.

 MSG_ROOT Type: Both

 (Optional) Root into which error, help, and message arrays are put.

 This procedure converts a user-supplied value into VA FileMan's internal date format and (optionally) into the

 standard VA FileMan external, readable date format.

 Format DT^DILF(FLAGS,IN_DATE,.RESULT,LIMIT,MSG_ROOT)

 COMPONENT: FDA()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 .DA Type: Input

 (Required for format 2) DA() array containing entry and subentry numbers.

 IENS Type: Input

 (Required for format 1) Standard IENS indicating internal entry numbers.

 FIELD Type: Input

 (Required) Field number for which data is being loaded into the FDA.

 FLAGS Type: Input

 (Optional) Flag to control processing:

 R Record identified by IENS or .DA is verified to exist. Do not use the "R" FLAG if the IENS

 or DA() array contain placeholder codes instead of actual record numbers.

 VALUE Type: Input

 (Required, can be null) Value to which the FDA node will be set.

 FDA_ROOT Type: Both

 (Required) The root of the FDA in which the new node is loaded.

 MSG_ROOT Type: Both

 (Optional) Root into which error, help, and message arrays are put. If this parameter is not

 passed, these arrays are put into nodes descendent from ^TMP.

 This procedure can be used to load data into the FDA. It accepts either the traditional DA() array or the IENS

 for specifying the entry. No validation of VALUE is done.

 Format 1. FDA^DILF(FILE,IENS,FIELD,FLAGS,VALUE,FDA_ROOT,MSG_ROOT)

 2. FDA^DILF(FILE,.DA,FIELD,FLAGS,VALUE,FDA_ROOT,MSG_ROOT)

 COMPONENT: $$IENS()

 VARIABLES: .DA Type: Both

 Input Parameters .DA (Required) An array with the structure of the traditional VA FileMan

 DA() array-that is, DA=lowest subfile record number, DA(1)=next highest subfile record

 number, etc.

 Output A string of record numbers in the IENS format-that is, "DA,DA(1),...DA(n),".

 This extrinsic function returns the IENS when passed an array in the traditional DA() structure.

 Format $$IENS^DILF(.DA)

 COMPONENT: $$OREF()

 VARIABLES: CLOSED_ROO Type: Input

 (Required) A closed root, which is a global root ending in a closed parenthesis.

 This extrinsic function converts a closed root to an open root. It converts an ending close parenthesis to a

 comma.

 Format $$OREF^DILF(CLOSED_ROOT

 COMPONENT: $$VALUE1()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 FIELD Type: Input

 (Required) Field number for which data is being requested.

 FDA_ROOT Type: Input

 (Required) The root of the FDA from which data is being requested.

 This extrinsic function returns the value associated with a particular file and field in a standard FDA. Only a

 single value is returned.

 Format $$VALUE1^DILF(FILE,FIELD,FDA_ROOT)

 COMPONENT: VALUES()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 FIELD Type: Input

 (Required) Field number for which data is being requested.

 FDA_ROOT Type: Input

 (Required) The root of the FDA from which data is being requested.

 .RESULT Type: Both

 (Required) Local array that receives output from the call. The array is killed at the

 beginning of each call.

 This procedure returns values from an FDA for a specified field.

 Format VALUES^DILF(FILE,FIELD,FDA_ROOT,.RESULT)

 COMPONENT: LOCK()

 VARIABLES: REF Type: Both

 Input: RESOLVED GLOBAL REFERENCE - (Required) This is the fully resolved global reference.

 Output: $Truth value - 1 equals lock obtained; 0 equals lock failed.

 The purpose is to lock a global reference using VA FileMan's Lock time out value(DILOCKTM). Format:

 LOCK^DILF(resolved global reference) Input: RESOLVED GLOBAL REFERENCE - (Required)This is the fully resolved

 global reference. Output: $Truth value - 1 equals lock obtained; 0 equals lock failed Example: >S

 REF="^MYFILE(123,1,0)" >D LOCK^DILF(REF) >W $T 1 >W DILOCKTM 3

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2055

 NAME: Data Base Server API: Misc. Data Libaray Functions

 USAGE: Supported ENTERED: JUL 2,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Data libaray functions.

 $$EXTERNAL: Converter to External $$FLDNUM: Field Number Retriever PRD: Package Revision Data Initializer RECALL: Recall

 Record Number $$ROOT: File Root Resolver $$VFIELD: Field Verifier $$VFILE: File Verifier

 ROUTINE: DILFD

 COMPONENT: $$EXTERNAL()

 VARIABLES: FILE Type: Input

 (Required) The number of the file or subfile that contains the field that describes the

 internal value passed in.

 FIELD Type: Input

 (Required) The number of the field that describes the internal value passed in.

 FLAGS Type: Input

 (Optional) A single-character code that explains how to handle output transforms found along

 pointer chains. F First. If the first field in a pointer chain has an output transform, apply

 the transform to that first field and quit. Ignore any other output transforms found along

 the pointer chain. With the exception of this function, FileMan regularly handles output

 transforms this way. L Last. If the last field in a pointer chain has an output transform,

 apply the transform to that last field and quit. Ignore any other output transforms found

 along the pointer chain. U Use. Use the first output transform found on the last field in

 the pointer chain. Following the pointer chain, watch for output transforms. When one is

 found, remember it, but keep following the pointer chain. When the last field in the chain is

 reached, apply the remembered transform to that last field.

 INTERNAL Type: Input

 (Required) The internal value that is to be converted to its external format.

 MSG_ROOT Type: Both

 (Optional) The array that should receive any error messages. If the MSG_ROOT is not passed,

 errors are returned descendent from ^TMP("DIERR",$J).

 This extrinsic function converts any internal value to its external format.

 Format $$EXTERNAL^DILFD(FILE,FIELD,FLAGS,INTERNAL,MSG_ROOT)

 COMPONENT: $$FLDNUM()

 VARIABLES: FILE Type: Input

 (Required) The file number of the field's file or subfile.

 FIELDNAME Type: Input

 (Required) The full name of the field for which you want the number.

 This extrinsic function returns a field number when passed a file number and a field name.

 Format $$FLDNUM^DILFD(FILE,FIELDNAME)

 COMPONENT: PRD()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 DATA Type: Input

 (Required) Free text information, determined by the developer.

 This procedure sets the PACKAGE REVISION DATA attribute for a file.

 Format PRD^DILFD(FILE,DATA)

 COMPONENT: RECALL()

 VARIABLES: FILE Type: Input

 (Required) The file or subfile number.

 IENS Type: Input

 (Required) The IENS that identifies the record selected.

 USER Type: Input

 (Required) The user number (i.e., DUZ) of the user who made the selection.

 This procedure saves a record number for later retrieval using spacebar recall.

 Format RECALL^DILFD(FILE,IENS,USER)

 COMPONENT: $$ROOT()

 VARIABLES: FILE Type: Input

 (Required) File number or subfile number.

 IENS Type: Input

 (Required when passing subfile numbers) Standard IENS indicating internal entry number.

 FLAGS Type: Input

 (Optional) If set to 1 (true), returns a closed root. The default is to return an open root.

 ERROR_FLAG Type: Input

 (Optional) If set to 1 (true), processes an error message if error is encountered.

 This extrinsic function resolves the file root when passed file or subfile numbers.

 Format $$ROOT^DILFD(FILE,IENS,FLAGS,ERROR_FLAG)

 COMPONENT: $$VFIELD()

 VARIABLES: FILE Type: Input

 (Required) The number of the file or subfile in which the field to be checked exists.

 FIELD Type: Input

 (Required) The number of the field to be checked.

 This extrinsic function verifies that a field in a specified file exists.

 Format $$VFIELD^DILFD(FILE,FIELD)

 COMPONENT: $$VFILE()

 VARIABLES: FILE Type: Input

 (Required) The number of the file or subfile that you want to check.

 This extrinsic function verifies that a file exists.

 Format $$VFILE^DILFD(FILE)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2056

 NAME: Data Base Server API: Data Retriever Utilities

 USAGE: Supported ENTERED: JUL 2,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Data retriever utilities.

 $$GET1: Single Data Retriever GETS: Multiple Data Retriever

 ROUTINE: DIQ

 COMPONENT: $$GET1()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 IENS Type: Input

 (Required) Standard IENS indicating internal entry numbers.

 FIELD Type: Input

 (Required) Can be one of the following:

 A single field number A list of field numbers, separated by semicolons A range of field

 numbers, in the form M:N, where M and N are the end points of the inclusive range. All field

 numbers within this range are retrieved. * for all fields at the top level (no sub-multiple

 record). ** for all fields including all fields and data in sub-multiple fields. Field number

 of a multiple followed by an * to indicate all fields and records in the sub-multiple for

 that field.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 E Returns External values in nodes ending with "E". I Returns Internal values in nodes

 ending with "I". (Otherwise, external is returned). N Does not return Null values. R

 Resolves field numbers to field names in target array subscripts. Z Word processing fields

 include Zero nodes.

 TARGET_ROO Type: Both

 (Required) The name of a closed root reference.

 Output: The output array is in the FDA format, i.e., TARGET_ROOT(FILE,IENS,FIELD)=DATA. WP

 fields have data descendent from the field nodes in the output array.

 MSG_ROOT Type: Both

 (Optional) The name of a closed root reference that is used to pass error messages.

 This procedure retrieves one or more fields of data from a record or sub-record(s) and places the values in a

 target array.

 Format GETS^DIQ(FILE,IENS,FIELD,FLAGS,TARGET_ROOT,MSG_ROOT)

 COMPONENT: GETS()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 IENS Type: Input

 (Required) Standard IENS indicating internal entry numbers.

 FIELD Type: Input

 (Required) Can be one of the following:

 A single field number A list of field numbers, separated by semicolons A range of field

 numbers, in the form M:N, where M and N are the end points of the inclusive range. All field

 numbers within this range are retrieved. * for all fields at the top level (no sub-multiple

 record). ** for all fields including all fields and data in sub-multiple fields. Field number

 of a multiple followed by an * to indicate all fields and records in the sub-multiple for

 that field.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 E Returns External values in nodes ending with "E". I Returns Internal values in nodes

 ending with "I". (Otherwise, external is returned). N Does not return Null values. R

 Resolves field numbers to field names in target array subscripts. Z Word processing fields

 include Zero nodes.

 TARGET_ROO Type: Both

 (Required) The name of a closed root reference.

 Output: The output array is in the FDA format, i.e., TARGET_ROOT(FILE,IENS,FIELD)=DATA. WP

 fields have data descendent from the field nodes in the output array.

 MSG_ROOT Type: Both

 (Optional) The name of a closed root reference that is used to pass error messages.

 This procedure retrieves one or more fields of data from a record or sub-record(s) and places the values in a

 target array.

 Format GETS^DIQ(FILE,IENS,FIELD,FLAGS,TARGET_ROOT,MSG_ROOT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2607

 NAME: Browser API

 USAGE: Supported ENTERED: OCT 14,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The Browser displays ASCII text on a terminal which supports a scroll region.

 ROUTINE: DDBR

 COMPONENT: EN

 VARIABLES: None Type:

 This is an interactive procedure that asks the user for:

 File

 Word Processing Field

 Entry

 and then displays the text.

 COMPONENT: WP()

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 IENS Type: Input

 (Required) Standard IENS indicating internal entry number string.

 FIELD Type: Input

 (Required) Word processing field name or number.

 FLAGS Type: Input

 N No copy of the document is made. The Browser will use the source document. Useful for long

 static documents.

 R Restrict switching.

 TITLE Type: Input

 (Optional) Text that is centered in header. Document title.

 LINE Type: Input

 (Optional) The line in the document that would be at the bottom margin of the opening screen.

 TABS Type: Input

 (Optional) Closed array root, passed by value, that is used to scroll horizontally. If not

 set, the Browser provides default tab stops.

 TOP Type: Input

 (Optional) A number representing the location of the title bar of the Browser screen.

 BOTTOM Type: Input

 (Optional) A number representing the location of the status bar of the Browser screen.

 This procedure displays word processing fields, as well as allowing navigation throughout the text, in a

 FileMan-compatible database using FileMan's Browser facility.

 Format WP^DDBR(FILE,IENS,FIELD,FLAGS,TITLE,LINE,TABS,TOP,BOTTOM)

 COMPONENT: BROWSE()

 VARIABLES: SOURCE_ARR Type: Input

 (Required) Source array in a closed root format, passed by value which is the location of a

 sequential local or global array containing text.

 FLAGS Type: Input

 (Optional) Flags to control processing are described below:

 N No copy of the document is made. The Browser will use the source document. Useful for long

 static documents.

 R Restrict switching.

 TITLE Type: Input

 (Optional) Text centered in screen title.

 LINE Type: Input

 (Optional) The line in the document that would be at the bottom margin of the opening screen.

 TABS Type: Input

 (Optional) Closed array root, passed by value; used to scroll horizontally. If not set, the

 Browser provides default tab stops.

 TOP Type: Input

 (Optional) A number representing the location of the title bar of the Browser screen.

 BOTTOM Type: Input

 (Optional) A number representing the location of the status bar of the Browser screen.

 This procedure enables the user to utilize FileMan's Browser to view and navigate through a document stored in

 a sequential local or global array.

 Format BROWSE^DDBR(SOURCE_ARRAY,FLAGS,TITLE,LINE,TABS,TOP,BOTTOM)

 COMPONENT: DOCLIST()

 VARIABLES: SOURCE_ARR Type: Input

 (Required) Source array in a closed root format, passed by value which is subscripted by

 document titles and set to the source array of the document in a closed root format.

 FLAGS Type: Input

 (Optional) Flag to control processing is described below:

 R Restrict Switching to other documents not in current list.

 TOP Type: Input

 (Optional) A number representing the location of the title bar of the Browser screen.

 BOTTOM Type: Input

 (Optional) A number representing the location of the status bar of the Browser screen.

 This procedure call allows passing more than one document to the Browser facility.

 Format DOCLIST^DDBR(SOURCE_ARRAY,FLAGS,TOP,BOTTOM)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2608

 NAME: Browser API

 USAGE: Supported ENTERED: OCT 14,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This function call returns a 1 or 0 (true or false) to determine if the CRT being used can support a scroll region and reverse

 index.

 ROUTINE: DDBRT

 COMPONENT: $$TEST

 VARIABLES: None Type:

 Function call to determine if a CRT can support scroll region and reverse index. Usage: S X=$$TEST^DDBRT 1 =

 YES 0 = NO

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2609

 NAME: Browser API

 USAGE: Supported ENTERED: OCT 14,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Browser device handler functions.

 ROUTINE: DDBRZIS

 COMPONENT: CLOSE

 VARIABLES: None Type:

 This procedure executes $$REWIND^%ZISC(), to rewind the file, and copies the text from the host file into a

 scratch global.

 COMPONENT: OPEN

 VARIABLES: None Type:

 This procedure captures the text used in the Browser's title.

 COMPONENT: POST

 VARIABLES: None Type:

 This procedure initializes the Browser to display the text sent to the device.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2610

 NAME: ScreenMan API: Form Utilities

 USAGE: Supported ENTERED: OCT 14,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$GET() - This extrinsic function retrieves data from a form-only field or a computed field. PUT() - This procedure stuffs

 data into a form-only field.

 ROUTINE: DDSVALF

 COMPONENT: $$GET()

 VARIABLES: FIELD Type: Input

 (Required) The Field Order number, Caption, or Unique Name of the form-only field.

 BLOCK Type: Input

 (Required at the page and form levels) The Block Order or Block Name. The default is the

 current block.

 PAGE Type: Input

 (Required at the form level) The Page Number or Page Name. The default is the current page.

 FLAGS Type: Input

 (Optional) Controls whether the internal or external form is returned, as shown below:

 I Return the Internal form of the data. (Default) E Return the External form of the data.

 IENS Type: Input

 (Required at the page and form levels) The standard IENS that identifies the entry or

 subentry associated with the form-only field. The default is the current entry or subentry.

 This extrinsic function retrieves data from a form-only field or a computed field.

 Format $$GET^DDSVALF(FIELD,BLOCK,PAGE,FLAGS,IENS)

 COMPONENT: PUT()

 VARIABLES: FIELD Type: Input

 (Required) The Field Order number, Caption, or Unique Name of the form-only field.

 BLOCK Type: Input

 (Required at the page and form levels) The Block Order or Block Name. The default is the

 current block.

 PAGE Type: Input

 (Required at the form level) The Page Number or Page Name. The default is the current page.

 VALUE Type: Input

 (Required) The value to stuff into the form-only field. If FLAGS (described below) does not

 contain an "I", the value must be in the form of a valid, unambiguous user response.

 FLAGS Type: Input

 (Optional) Indicates whether VALUE is in internal or external form, as shown below:

 I VALUE is in Internal form; it is not validated. E VALUE is in External form (default).

 IENS Type: Input

 (Required at the page and form levels) The standard IENS that identifies the entry or

 subentry associated with the form-only field. The default is the current entry or subentry.

 This procedure stuffs data into a form-only field.

 Format PUT^DDSVALF(FIELD,BLOCK,PAGE,VALUE,FLAGS,IENS)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2648

 NAME: Import Tool API

 USAGE: Supported ENTERED: NOV 19,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This procedure imports data from ASCII host files into VA FileMan file entries.

 Format FILE^DDMP([FILE],[[.]FIELDS],[.CONTROL],.SOURCE,[.]FORMAT)

 ROUTINE: DDMP

 COMPONENT: FILE()

 VARIABLES: FILE Type: Input

 (Optional) File number into which imported data will be filed. Do not pass this parameter if

 the import file specifies the destination VA FileMan file and fields. The file must already

 exist.

 [.]FIELDS Type: Input

 (Optional) Array specifying the fields into which imported data will be filed. The array can

 either:

 Name an Import Template, or Directly specify the fields for import. Do not pass this

 parameter if the import file specifies the destination VA FileMan file and fields.

 If you have the import fields stored in an Import Template, simply set the top-level,

 unsubscripted node to the name of the template, surrounded by [brackets].

 .CONTROL Type: Input

 (Optional) Pass this array by reference. You can control the behavior of FILE^DDMP by setting

 the following nodes in the CONTROL array: CONTROL("FLAGS") (Optional) Concatenated string of

 character flags to control processing of the import. E External values are contained in the

 import file. F Import File contains identity of destination FileMan file and fields. If F

 flag is not present, the FILE and FIELDS parameters are required and must contain file and

 field information. CONTROL("MSGS"): (Optional) Set to the root of an array (local or global)

 into which error messages should be returned. If a value is not passed, messages are returned

 in nodes descendant from ^TMP("DIERR",$J). CONTROL("MAXERR"): (Optional) Set to the number of

 errors encountered at which point to abort the import. Default is not to abort.

 CONTROL("IOP"): (Optional) Set to the name of the device (as stored in the DEVICE file) on

 which to print the Import Report. Default is to ask the user for output device.

 CONTROL("QTIME"): (Optional) Set to the time for queuing the data filing, and subsequent

 printing of the Import Results report. Default is to ask the user whether or not to queue,

 and for the queuing time.

 .SOURCE Type: Input

 (Required) An array that identifies the import file. Pass this array by reference.

 SOURCE("FILE") (Required) Set this node to the import file name. SOURCE("PATH") (Optional)

 Path or directory where the file can be found. If this node is not defined, the default path

 is used to locate the file.

 [.]FORMAT Type: Input

 (Required) Specifies the format of the incoming data. You can either:

 Pass the name of a FOREIGN FORMAT File entry in the top-level, unsubscripted node of this

 array, or Set individual nodes in this array to define the import format (pass by reference).

 If you set individual nodes in the array to define the format, you can set:

 FORMAT("FDELIM") Set this node to the field delimiter used for the imported data, if a field

 delimiter is used. FORMAT("FIXED") Set this node to "YES" if the incoming data is in

 fixed-length format. If not set to "YES", the default format is field-delimited.

 FORMAT("QUOTED") Set this node to "YES", if you would like VA FileMan to ignore the field

 delimiter in any quoted strings in the incoming data.

 This procedure imports data from ASCII host files into VA FileMan file entries. Each record (line of data) in

 the host file is stored as a new entry in a specified VA FileMan file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2649

 NAME: Classic FileMan API: Max. Routine Size

 USAGE: Supported ENTERED: NOV 19,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This argumentless function returns the maximum routine size that should be used when compiling cross references, print

 templates, or input templates.

 ROUTINE: DILF

 COMPONENT: $$ROUSIZE

 VARIABLES: None Type:

 This argumentless function returns the maximum routine size that should be used when compiling cross

 references, print templates, or input templates.

 Format $$ROUSIZE^DILF

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2821

 NAME: DIALOG File

 USAGE: Supported ENTERED: AUG 9,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: .84 ROOT:
 DESCRIPTION: TYPE: Other

 To qantify supported DIALOG entries in the DIALOG file #.84

 ROUTINE:

 COMPONENT: 201

 VARIABLES: DIALOG NUMBER: 201 TYPE: ERROR

 INTERNAL PARAMETERS NEEDED: YES PACKAGE: VA FILEMAN

 DESCRIPTION: The specified input variable is either 1) required but not

 defined or 2) not valid.

 TEXT:

 The input variable |1| is missing or invalid. PARAMETER SUBSCRIPT: 1 PARAMETER DESCRIPTION:

 Variable name.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 2916

 NAME: Data Base Server API: DD Modification Utilities

 USAGE: Supported ENTERED: SEP 20,1999

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: DDMOD

 COMPONENT: DELIX

 VARIABLES: FILE Type: Input

 (Required) File or subfile number.

 FIELD Type: Input

 (Required) Field number.

 CROSS_REF Type: Input

 (Required) Cross-reference number. Traditional cross-references are defined in the data

 dictionary under:

 ^DD(file#,field#,1,cross reference number)

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 K For Regular, KWIC, Mnemonic, and Soundex-type cross-references, delete the data in the

 index. For MUMPS and Trigger-type cross-references, execute the kill logic of the

 cross-reference for all entries in the file. For Bulletin-type cross-references, the "K"

 flag is ignored; the kill logic for Bulletin-type cross-references is never executed by this

 procedure.

 W Write messages to the current device as the index is deleted and cross-references and

 input templates are recompiled.

 OUTPUT_ROO Type: Both

 (Optional) Input: The name of the array that should receive information about input templates

 and cross-references that may have been recompiled and a flag to indicate that the deletion

 was audited in the DD Audit file (#.6). This must be a closed root, either local or global.

 Output: If the field on which the deleted cross-reference was defined is used in any compiled

 input templates, those input templates are recompiled. Information about the recompiled input

 templates is stored descendant from OUTPUT_ROOT("DIEZ"):

 OUTPUT_ROOT("DIEZ",input template #) =

 input template name ^ file # ^ compiled routine name

 If cross-references for the file are compiled, they are recompiled, and the compiled routine

 name is stored in OUTPUT_ROOT("DIKZ"):

 OUTPUT_ROOT("DIKZ") = compiled routine name

 If the data dictionary for the file is audited, an entry is made in the DD Audit file (#.6)

 and OUTPUT_ROOT("DDAUD") is set to 1:

 OUTPUT_ROOT("DDAUD") = 1

 MSG_ROOT Type: Both

 (Optional) The name of the array that should receive any error messages. This must be a

 closed root, either local or global. If not passed, errors are returned descendent from

 ^TMP("DIERR",$J).

 This procedure deletes a Traditional Cross-Reference definition from the data dictionary. Optionally, it

 deletes the data in the index or executes the kill logic for all entries in the file. Compiled input templates

 that contain the field on which the cross-reference is defined are recompiled. If cross-references on the file

 are compiled, they are recompiled.

 Format: DELIX^DDMOD(FILE,FIELD,CROSS_REF,FLAGS,OUTPUT_ROOT,MSG_ROOT)

 Examples

 1. In this example, regular cross-reference #4 (the "C" index), defined on field #12 in file #16200, is

 deleted. The "K" flag indicates that the entire ^DIZ(16200,"C") index is removed from the file.

 >D DELIX^DDMOD(16200,12,4,"K","MYOUT")

 >ZW MYOUT

 MYOUT("DDAUD")=1

 MYOUT("DIEZ",100)=ZZTEST EDIT^16200^ZZIT

 MYOUT("DIKZ")=ZZCR

 The MYOUT output array indicates that the deletion was recorded in the DD Audit file (#.6). Field #12 is

 included in the compiled input template ZZTEST EDIT (#100), which is compiled into the ZZIT namespaced

 routines. Cross-references on file #16200 are compiled under the ZZCR namespace.

 2. In this example, the whole-file regular cross-reference #7 (the "N" index), defined on field #15 within

 subfile #16200.075, is deleted. The "K" flag indicates that the entire ^DIZ(16200,"N") index should be removed,

 and the "W" flag indicates that messages should be printed to the current device.

 >D DELIX(16200.075,15,7,"KW")

 Removing index ...

 Deleting cross-reference definition ...

 Compiling ZZ TEST CR Input Template of File 16200...

 'ZZIT1' ROUTINE FILED..

 'ZZIT' ROUTINE FILED....

 'ZZIT2' ROUTINE FILED.

 Compiling Cross-Reference(s) 16200 of File 16200.

 ...SORRY, HOLD ON...

 'ZZCR1' ROUTINE FILED.

 'ZZCR2' ROUTINE FILED.

 'ZZCR3' ROUTINE FILED.

 'ZZCR4' ROUTINE FILED.

 'ZZCR5' ROUTINE FILED.

 'ZZCR' ROUTINE FILED.

 Error Codes Returned

 202 The specified parameter is missing or invalid.

 301 The passed flags are incorrect.

 401 The file does not exist.

 406 The file has no .01 definition.

 407 A word-processing field is not a file.

 501 The file does not contain the specified field.

 COMPONENT: DELIXN

 VARIABLES: FILE Type: Input

 (Required) File or subfile number. For whole-file indexes, this is the number of the file at

 the upper level where the data in the index resides.

 INDEX Type: Input

 (Required) Index name.

 FLAGS Type: Input

 (Optional) Flags to control processing. The possible values are:

 K For Regular indexes, delete the data in the index. For MUMPS indexes, execute the kill

 logic for all entries in the file.

 W Write messages to the current device as the index is deleted and cross-references and

 input templates are recompiled.

 OUTPUT_ROO Type: Both

 (Optional) Input: The name of the array that should receive information about input templates

 and cross-references that may have been recompiled. This must be a closed root, either local

 or global.

 Output: If a field used in the index is used in any compiled input templates, those input

 templates are recompiled. Information about the recompiled input templates is stored

 descendant from OUTPUT_ROOT("DIEZ"):

 OUTPUT_ROOT("DIEZ",input template #) =

 input template name ^ file # ^ compiled routine name

 If cross-references for the file are compiled, they are recompiled, and the compiled routine

 name is stored in OUTPUT_ROOT("DIKZ"):

 OUTPUT_ROOT("DIKZ") = compiled routine name

 MSG_ROOT Type: Both

 (Optional) The name of the array that should receive any error messages. This must be a

 closed root, either local or global. If not passed, errors are returned descendent from

 ^TMP("DIERR",$J).

 This procedure deletes a New-Style Index definition from the Index file. Optionally, it deletes the data in

 the index or executes the kill logic for all entries in the file. Compiled input templates that contain one or

 more of the fields defined in the index are recompiled. If cross-references on the file are compiled, they are

 recompiled.

 Format: DELIXN^DDMOD(FILE,INDEX,FLAGS,OUTPUT_ROOT,MSG_ROOT)

 Examples

 1. In this example, the new-style "G" index defined on file #16200 is deleted. The "K" flag indicates that the

 entire ^DIZ(16200,"G") index should be removed from the file.

 >D DELIXN^DDMOD(16200,"G","K","MYOUT")

 >ZW MYOUT

 MYOUT("DIEZ",94)=ZZ TEST^16200^ZZIT

 MYOUT("DIEZ",100)=ZZ TEST A^16200^ZZITA

 MYOUT("DIKZ")=ZZCR

 The MYOUT output array indicates that a field or fields defined in the deleted index are used in the compiled

 input templates ZZ TEST (#94) and ZZ TEST 2 (#100). Those two input templates were recompiled.

 Cross-references on file #16200 were also recompiled under the ZZCR namespace.

 2. In this example, the whole-file regular index (the "J" index) is deleted. The fields in the index come from

 fields in a multiple, subfile #16200.075, but the whole-file index resides at the top-level file #16200. The

 "K" flag indicates that the entire ^DIZ(16200,"J") index should be removed, and the "W" flag indicates that

 messages should be printed to the current device.

 >D DELIXN^DDMOD(16200,"J","KW","MYOUT")

 Removing index ...

 Deleting index definition ...

 Compiling ZZ TEST Input Template of File 16200....

 'ZZIT' ROUTINE FILED....

 'ZZIT1' ROUTINE FILED.

 Compiling ZZ TEST A Input Template of File 16200....

 'ZZITA' ROUTINE FILED....

 'ZZITA' ROUTINE FILED.

 Compiling Cross-Reference(s) 16200 of File 16200.

 ...SORRY, JUST A MOMENT PLEASE...

 'ZZCR1' ROUTINE FILED.

 'ZZCR2' ROUTINE FILED.

 'ZZCR3' ROUTINE FILED.

 'ZZCR4' ROUTINE FILED.

 'ZZCR5' ROUTINE FILED.

 'ZZCR6' ROUTINE FILED.

 'ZZCR7' ROUTINE FILED.

 'ZZCR8' ROUTINE FILED.

 'ZZCR9' ROUTINE FILED.

 'ZZCR10' ROUTINE FILED.

 'ZZCR' ROUTINE FILED.

 Error Codes Returned

 202 The specified parameter is missing or invalid.

 301 The passed flags are incorrect.

 COMPONENT: FILESEC

 VARIABLES: FILE Type: Both

 (Required) File number. (Cannot be less than 2.)

 .SECURITY_ Type: Both

 (Required) Array of new security access codes:

 SECURITY_CODES("AUDIT") = Audit Access SECURITY_CODES("DD") = Data Dictionary Access

 SECURITY_CODES("DEL") = Delete Access SECURITY_CODES("LAYGO") = LAYGO Access

 SECURITY_CODES("RD") = Read Access SECURITY_CODES("WR") = Write Access

 MSG_ROOT Type: Both

 (Optional) The root of an array into which error messages are returned. If this parameter is

 not included, errors are returned in the default array: ^TMP("DIERR",$J).

 Set File Protection Security Codes

 FORMAT FILESEC^DDMOD(FILE,.SECURITY_CODES,MSG_ROOT)

 This entry point sets the security access codes for a file, which are stored in the following nodes:

 ^DIC(filenumber,0,"AUDIT") -- Audit Access

 ^DIC(filenumber,0,"DD") -- Data Dictionary Access

 ^DIC(filenumber,0,"DEL") -- Delete Access

 ^DIC(filenumber,0,"LAYGO") -- LAYGO Access

 ^DIC(filenumber,0,"RD") -- Read Access

 ^DIC(filenumber,0,"WR") -- Write Access

 Error Code: 401 File does not exist or the File Number that was passed was Less Than 2.

 COMPONENT: CREIXN

 VARIABLES: .RESULTS Type: Both

 (Optional) Local variable that receives the IEN of the entry that was created in the INDEX

 file (#.11), if the call is successful, and the Name of the new index. If the cross-reference

 could not be created, a value of null ("") is returned.

 RESULT = IEN in Index file ^ cross-reference name or

 RESULT = "" if cross-reference could not be created

 .XREF Type: Input

 (Required) This input array contains information about the new-style cross-reference to be

 created. The elements in this array are as follows:

 XREF("FILE") = The number of the file or subfile on which the index physically resides. For

 whole-file indexes, this should be the file number of the upper level file, not the subfile

 that contains the fields in the index. For MUMPS cross-references that don't set an index,

 XREF("FILE") should be the file that contains the fields in the cross-reference. (Required)

 XREF("TYPE") = "R" or "REGULAR" for regular indexes; or "MU" or "MUMPS" for MUMPS-type

 cross-references. (Required)

 XREF("NAME") = The name of the cross-reference. If XREF("NAME") is not passed, CREIXN^DDMOD

 gets the next available name based on the XREF("FILE") and XREF("USE"). In most cases,

 however, you should explicitly give your new cross-reference a name. (Required if XREF("USE")

 is not passed.)

 XREF("ROOT FILE") = For whole-file indexes, the number of the file or subfile that contains

 the fields in the cross-reference. This is the subfile number, not the upper level file

 number where the index physically resides. XREF("ROOT FILE") should only be set for

 whole-file indexes. (Required for whole-file indexes.)

 XREF("SHORT DESCR") = Short description of the cross-reference (Required)

 XREF("DESCR",1) = Line 1 of the cross-reference description. XREF("DESCR",n) = Line n of the

 cross-reference description. (Optional)

 XREF("USE") = "LS" or "LOOKUP & SORTING" for indexes used for both lookup and sorting; "S" or

 "SORTING ONLY" for indexes used for sorting only; or "A" or "ACTION" for MUMPS

 cross-reference that do not set an index.

 "LS" ("LOOKUP & SORTING") - The cross-reference sets an index and the index name must

 start with "B" or a letter that alphabetically follows "B". Calls to Classic FileMan lookup

 (^DIC) or the Finder (FIND^DIC or $$FIND1^DIC) where the index is not specified will include

 this index in the search. The index will be available for use by the FileMan Sort and Print

 (EN1^DIP).

 "S" ("SORTING ONLY") - The cross-references sets an index, and the index name must start

 with "A". Calls to Classic FileMan lookup (^DIC) or the Finder (FIND^DIC or $$FIND1^DIC) will

 not use this index unless it is specified in the input parameters to those calls. The index

 will be available for use by the FileMan Sort and Print (EN1^DIP).

 "A" ("ACTION") -This is used for MUMPS cross-references that perform some action(s)

 other than building an index. The cross-reference name must start with "A".

 If XREF("USE") is not passed, CREIXN^DDMOD assumes a value based on the cross-reference

 name and type. If the name starts with "A", XREF("USE") is assumed to be "S" (Sorting Only)

 for Regular indexes, and "A" (Action) for MUMPS cross-references. If the name doesn't start

 with an "A", XREF("USE") is assumed to be "LS" (Lookup & Sorting). Note that for clarity,

 however, it is recommended that you explicitly set XREF("USE").

 (Required if XREF("NAME") is not passed.)

 XREF("EXECUTION") = "F" or "FIELD" for field-level execution; or "R" or "RECORD" for

 record-level execution.

 This indicates whether the cross-reference logic should be executed after a field in the

 cross-reference changes, or only after all fields in a record are updated in an editing

 session. The logic for most simple (single-field) cross-references should be executed

 immediately after the field changes, and so should have an Execution of "F". The logic for

 most compound (multi-field) cross-references should be executed only once after a transaction

 on the entire record is complete, and so should have an Execution of "R".

 (Optional) (Defaults to "F" for simple cross-references, and "R" for compound

 cross-references.)

 XREF("ACTIVITY") = One or both of the following codes:

 I = Installing an entry at a site

 R = Re-cross-referencing this index

 If Activity contains an "I", FileMan fires the cross-references during a KIDS

 installation. If Activity contains an "R", FileMan fires the cross-reference during a

 re-cross-referencing operation.

 Note that FileMan automatically fires cross-references during an edit, regardless of

 Activity, although you can control whether a cross-reference is fired by entering set and

 kill conditions.

 Also, if you explicitly select a cross-reference in an EN^DIK, EN1^DIK, or ENALL^DIK

 call, or in the UTILITY FUNCTIONS/RE-INDEX FILE option on the VA FileMan menu, that

 cross-reference will be fired whether or not its Activity contains an "R".

 (Optional) (Defaults to "IR")

 XREF("SET CONDITION") = MUMPS code that sets the variable X. The set logic of the

 cross-reference is executed only if the set condition, if present, sets X to Boolean true,

 according the M rules for Boolean interpretation.

 The MUMPS code can assume the DA array describes the record to be cross-referenced, and

 that the X(order#) array contains values after the transform for storage is applied, but

 before the truncation to the maximum length. The variable X also equals X(order#) of the

 lowest order number.

 When fields that make up a cross-reference are edited and the kill and set conditions

 are executed, the X1(order#) array contains the old field values, and the X2(order#) array

 contains the new field values. If a record is being added, and there is an X1(order#) array

 element that corresponds to the .01 field, it is set to null. When a record is deleted, all

 X2(order#) array elements are null.

 (Optional)

 XREF("KILL CONDITION") = MUMPS code, that sets the variable X. The kill logic of the

 cross-reference is executed only if the kill condition, if present, sets X to Boolean true,

 according the M rules for Boolean interpretation.

 See XREF("SET CONDITION") above for a description of the DA, X, X1, and X2 arrays that

 can be used in the MUMPS code.

 (Optional)

 For MUMPS cross-references, you can also set the following nodes in the XREF array. (For

 Regular Indexes, the set and kill logic is determined automatically for you, and so these

 nodes, if passed in, are ignored.) The code can also make use of the DA, X, X1, and X2 arrays

 as described in XREF("SET CONDITION") above.

 XREF("SET") = M code that FileMan should be executed when the values of fields that make

 up the cross-reference are set or changed. (Optional) (Defaults to "Q")

 XREF("KILL") = M code that FileMan should be executed when the values of fields that

 make up the cross-reference are changed or deleted.

 (Optional) (Defaults to "Q")

 XREF("WHOLE KILL") = M code that can be executed to remove an entire index for all

 records in a file. When an entire fire is reindexed, FileMan executes this code rather than

 looping through all the entries in the file and executing the kill logic once for each entry.

 (Optional)

 Each value in the cross-reference is described in the XREF("VAL",order#) portion of the XREF

 array. The order numbers must be positive integers starting from 1, and determine the order

 in which FileMan evaluates the cross-reference values to place in the X(order#) array during

 cross-reference execution.

 XREF("VAL",order#) = The field number (for field-type xref values); or M code that sets

 X to the cross-reference value (for computed-type xref values). For computed-type

 cross-reference values, the X(order#) array is available for those cross-reference values

 with lower order numbers, and the DA array describes the IEN of the current record.

 (Required)

 XREF("VAL",order#,"SUBSCRIPT") = The subscript position number in the index, if this

 cross-reference value is used as a subscript in the index. The first subscript to the right

 of the index name is subscript number 1. All subscripts must be consecutive integers

 starting from 1. (Optional)

 XREF("VAL",order#,"LENGTH") = The maximum length of the cross-reference value FileMan

 should use when storing the value as a subscript in the index. (Optional).

 XREF("VAL",order#,"COLLATION") = "F" for "forwards"; "B" for "backwards". This indicates

 the direction FileMan's lookup utilities should $ORDER through this subscript when entries

 are returned or displayed to the user. (Optional) (Defaults to "F".)

 XREF("VAL",order#,"LOOKUP PROMPT") = Text that becomes the prompt to the user when this

 index is used for lookup, and a value is requested for this subscript. (Optional)

 For field-type cross-reference values only, the following nodes can also be set:

 XREF("VAL",order#,"XFORM FOR STORAGE") = M code that sets the variable X to a new value.

 X is the only variable guaranteed to be defined and is equal to the internal value of the

 field. The Transform for Storage can be used to the transform the internal value of the field

 before it is stored as a subscript in the index.

 XREF("VAL",order#,"XFORM FOR LOOKUP") = M code that sets the variable X to a new value.

 X is the only variable guaranteed to be defined and is equal to the lookup value entered by

 the user. During lookup, if the lookup value is not found in the index, FileMan executes the

 Transform for Lookup code to transform the lookup value X and tries the lookup again.

 XREF("VAL",order#,"XFORMFOR DISPLAY") = M code that sets the variableX to a new value. X

 is the only variable guaranteed to be defined and isset equal to the value of the subscript

 of in the index. During lookup, ifa match or matches are ma de to the lookup value, the

 Transform for Display code is executed before displaying the index value to the user.

 FLAGS Type: Used

 (Optional) Flags to control processing. The possible values are:

 k - When CREIXN^DDMOD calls DELIXN^DDMOD to initially delete the old cross-reference with

 the same name as the one it is creating, don't kill the data in the old index if it is a

 Regular indexes, and don't execute the old Kill logic if it is a MUMPS cross-references.

 Whether or not this flag is passed, CREIXN^DDMOD deletes the old cross-reference definition,

 if it exists, before bringing in the new definition.

 S - For Regular indexes, set the data in the index. For MUMPS cross-references, execute the

 Set logic for all entries in the file.

 W - Write messages to the current device as the index is created and cross-references and

 input templates are recompiled.

 MSG_ROOT Type: Both

 (Optional) The name of the array that should receive any error messages. This must be a

 closed root, either local or global. If not passed, errors are returned descendent from

 ^TMP("DIERR",$J).

 OUTPUT_ROO Type: Both

 (Optional) The name of the array that should receive information about input templates and

 cross-references that may have been recompiled. See Output below. This must be a closed root,

 either local or global.

 This procedure creates a new-style cross-reference definition in the INDEX file (#.11). Optionally, it builds

 the data in the index (for Regular cross-references) or executes the set logic (for MUMPS cross-references) for

 all entries in the file. Compiled input templates that contain one or more of the fields defined in the

 cross-reference are recompiled. If cross-references on the file are compiled, they are recompiled.

 One use of CREIXN^DDMOD is in the pre-install or post-install routine of a KIDS (Kernel Installation and

 Distribution System) Build to create a new-style cross-reference at the installing site.

 If you pass in the cross-reference name in the XREF("NAME") input parameter, before CREIXN^DDMOD creates the

 new-index it automatically makes a call to DELIXN^DDMOD to delete the cross-reference with the same name, and

 optionally executes the kill logic for that cross-reference.

 See ^DIKCBLD for information on a programmer mode utility that can be used to help create a routine that calls

 CREIXN^DDMOD.

 Format:

 CREIXN^DDMOD(.XREF,FLAGS,.RESULT,OUTPUT_ROOT,MSG_ROOT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3209

 NAME: DDR GETS ENTRY DATA

 USAGE: Supported ENTERED: SEP 20,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3215

 NAME: DDR DELETE ENTRY

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3216

 NAME: DDR FILER

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3217

 NAME: DDR FIND1

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3218

 NAME: DDR FINDER

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3220

 NAME: DDR GET DD HELP

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3221

 NAME: DDR LISTER

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3222

 NAME: DDR LOCK/UNLOCK NODE

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3223

 NAME: DDR VALIDATOR

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 3224

 NAME: DDR KEY VALIDATOR

 USAGE: Supported ENTERED: OCT 3,2000

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Remote Procedure

 This RPC entry may be referenced from the Option file to support invoking the RPC from its corresponding FM Delphi Component.

 The RPC must not be invoked directly.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 4397

 NAME: DIAUTL

 USAGE: Supported ENTERED: APR 8,2004

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Auditing Utilities.

 ROUTINE: DIAUTL

 COMPONENT: TURNON()

 VARIABLES: FILE Type: Input

 (Required) File number of a file which is being audited.

 FIELD Type: Input

 (Required) Specifies which fields from the file will be forced on ("ALWAYS") for auditing.

 Can be one of the following: - A single field number.

 - A list of field numbers, separated by semicolons.

 - A range of field numbers, in the form M:N, where M and N are the end points of the

 inclusive range. All field numbers within this range will be audited.

 - * meaning, "audit all fields."

 MODE Type: Input

 This is an optional parameter. It defaults to "y", which means to turn on auditing.

 y - Yes, always audit (default). Turn auditing on. e - Audit only when edited or deleted. n

 - No, don't audit. Turn auditing off.

 This is a utility to enable/disable auditing.

 This procedure turns on (or off) auditing for specified fields in a file (except for Computed and

 Word-Processing fields). These changes are recorded in the Data Dictionary audit, if the file has

 Data-Dictionary auditing turned on. Also, input templates containing the changed fields are recompiled.

 Usage:

 D TURNON^DIAUTL(file,field,mode)

 Examples:

 To turn on auditing for the STOP CODE NUMBER (#8) field in the HOSPITAL LOCATION (#44) file:

 D TURNON^DIAUTL(44,8) or D TURNON^DIAUTL(44,8,"y")

 To turn off auditing for that field:

 D TURNON^DIAUTL(44,8,"n")

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 4399

 NAME: Local FileMan Array DIPA()

 USAGE: Supported ENTERED: APR 13,2004

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Allow usage of the DIPA() array for developers.

 ROUTINE:

 COMPONENT: SETPARAM(value,"parameter")

 VARIABLES: DIPA() Type: Output

 When the VA FileMan function SETPARAM(value,"parameter") is used the information is stored in

 the local array DIPA("parameter")=<value>. This IA is to allow the read only usage of this

 array.

 Allow read only usage of DIPA() array.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 4454

 NAME: Direct read of global DD('KWIC'

SUBSCRIBING PACKAGE: TEXT INTEGRATION UTILITIES

 USAGE: Supported ENTERED: JUL 12,2004

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT: DD('KWIC')

 DESCRIPTION: TYPE: File

 This IA covers the ability to read the global node ^DD("KWIC". There is currently no other way to access the string located in

 this node other than a direct global read.

 ^DD('KWIC')

 Read only access.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10000

 NAME: Classic FileMan API: Date/Time Manipulation

 USAGE: Supported ENTERED: APR 8,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Date and Time manipulation and Number formating.

 ROUTINE: %DTC

 COMPONENT: %DTC

 VARIABLES: X1 Type: Input

 One date of the required two in VA FileMan format. Required and not returned.

 X2 Type: Input

 The other date in VA FileMan format. Required and not returned.

 X Type: Output

 The number of days between the two dates. X2 is subtracted from X1.

 %Y Type: Output

 If %Y is equal to 1, the dates have both month and day values.

 If %Y is equal to 0, the dates were imprecise and therefore not workable.

 Returns the number of days between two dates.

 COMPONENT: C

 VARIABLES: X1 Type: Input

 The date in VA FileMan format to which days are going to be added or subtracted. Required

 and not returned.

 X2 Type: Input

 If positive, the number of days to add. If negative, the number of days to subtrct.

 Required and not returned.

 X Type: Output

 The resulting date after the operation has been performed in VA FileMan format.

 %H Type: Output

 The $H form of the date.

 Takes a date and adds or subtracts a number of days, returning a VA FileMan date and a $H format date. If time

 is included with the input, it will also be included with the output.

 COMPONENT: NOW

 VARIABLES: % Type: Output

 VA FileMan date/time down to the second.

 %H Type: Output

 $H date/time.

 %I(1) Type: Output

 The numeric value of the month.

 %I(2) Type: Output

 The numeric value of the day.

 %I(3) Type: Output

 The numeric value of the year.

 X Type: Output

 VA FileMan date only.

 Returns the current date/time in VA FileMan and $H formats.

 COMPONENT: H

 VARIABLES: X Type: Input

 The date/time in VA FileMan format. Required and returned.

 %H Type: Output

 The same date in $H format. If the date is imprecise, then the first of the month or year is

 returned.

 %T Type: Output

 The time in $H format, i.e., the number of seconds since midnight. If there is no time, then

 %T equals zero.

 %Y Type: Output

 The day-of-week as a numeric from 0 to 6, where 0 means Sunday and 6 means Saturday. If the

 date is imprecise, then %Y is equal to -1.

 Converts a VA FileMan date/time to a $H formate date/time.

 COMPONENT: DW

 VARIABLES: This entry point produces results similar to H^%DTC. The difference is that X is reset to the name of the day

 of the week - Sunday, Monday, etc. If the date is imprecise, then X is returned equal to null.

 COMPONENT: YMD

 VARIABLES: %H Type: Both

 A $H format date/time. Required and returned.

 % Type: Output

 Time down to the second in VA FileMan format, that is, as a decimal. If %H does not have

 time, then % equals zero.

 X Type: Output

 The date in VA FileMan format.

 Converts a $H format date to a VA FileMan date.

 COMPONENT: COMMA

 VARIABLES: X Type: Input

 The number you want to format. X is required and it may be positive or negative.

 X2 Type: Input

 The number of decimal digits we want the output to have. If X2 is not defined, two decimal

 digits are returned. If X2 is a number followed by the dollar sign (e.g., 3$) then a dollar

 sign will be prefixed to X before it is output.

 X3 Type: Input

 The length of the desired output. If X3 is less than the formatted X, X3 will be ignored.

 If X3 is not defined, then a length of twelve is used.

 X Type: Output

 The initial value of X, formatted with commas, rounded to the number of decimal digits

 specified in X2. If X2 contained a dollar sign, then the dollar sign will be next to the

 leftmost digit. If X was negative, then the returned value of X will be in parentheses. If

 X was positive, a trailing space will be appended. If necessary, X will be padded with

 leading spaces so that the length of X will equal the value of the X3 input variable.

 Formats a number to a string that will separate billions, millions, and thousands with commas.

 COMPONENT: S

 VARIABLES: % Type: Input

 Number of seconds from midnight (Input).

 Decimal part of FileMan date (Output).

 Converts number of seconds since midnight to hours, minutes, and seconds as a decimal part of FileMan date.

 COMPONENT: YX

 VARIABLES: %H Type: Both

 This contains the date and time in $H format which is to be converted. Time is optional.

 Required and returned.

 Y Type: Output

 The date and time (if time has been sent) in external format. Seconds will be included if

 the input contained seconds.

 X Type: Output

 The date in VA FileMan format.

 % Type: Output

 The time as a decimal value inVA FileMan format. If time was not sent, then % will be

 returned as zero.

 This entry point takes a $H date and passes back a printable date/time. It also passes back the VA FileMan

 form of the date and time.

 COMPONENT: HELP

 VARIABLES: %DT Type: Input

 %DT(0) Type: Input

 This entry point displays a help prompt based on %DT and %DT(0).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10001

 NAME: Classic FileMan API: Internal to External Date

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This entry point takes an internal date in the variable Y and writes out its external form.

 ROUTINE: DIO2

 COMPONENT: DT

 VARIABLES: Y Type: Input

 (Required) Contains the internal date to be converted. If this has five or six decimal

 places, seconds will automatically be written. Y is required and it is not changed.

 This entry point takes an internal date in the variable Y and writes out its external form.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10002

 NAME: Classic FileMan API: Input Template Compilation

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Input template compilation for inproved performance.

 ROUTINE: DIEZ

 COMPONENT: EN

 VARIABLES: X Type: Input

 The name of the routine for the compiled input template.

 Y Type: Input

 The internal entry number of the input template to be compiled.

 DMAX Type: Input

 The maximum size the compiled routines should reach. Consider using the $$ROUSIZE^DILF (see

 DBIA #2054) function to set this variable.

 Non-interactive input template compilation.

 COMPONENT: DIEZ

 VARIABLES: None Type:

 Interactive input template compilation.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10003

 NAME: Classic FileMan API: Date/Time Input & Conversion

 USAGE: Supported ENTERED: NOV 13,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Validate date/time input and convert it to VA FileMan's conventional internal format:"YYYMMDD.HHMMSS", where: YYY = number of

 years since 1700 MM = Month number DD = Day number HH = Hour number MM = Minute number SS = Seconds number

 ROUTINE: %DT

 COMPONENT: %DT

 VARIABLES: %DT Type: Input

 A string of alphabetic characters which alter how %DT responds. Briefly stated, the

 acceptable characters are:

 A Ask for date input. E Echo the answer. F Future dates are assumed. N Pure Numeric input

 is not allowed. P Past dates are assumed. R Requires time input. S Seconds should be

 returned. T Time input is allowed but not required. X EXact date (with month and day) is

 required.

 X Type: Both

 X is always returned. It contains either what was passed to %DT (in the case where %DT did

 not contain an A) or what the user entered.

 %DT("A") Type: Input

 (Optional) A prompt which will be displayed prior to the reading of the input. Without this

 variable, the prompt "DATE:" will be issued.

 Type:

 %DT("B") Type: Input

 The default answer to the "DATE:" prompt. It is your responsibility to ensure that %DT("B")

 contains a valid date/time.

 %DT(0) Type: Input

 (Optional) Prevents the input date value from being accepted if it is chronologically before,

 or after, a particular date.

 Y Type: Output

 %DT always returns the variable Y, which can be one of two values:

 Y=-1 The date/time was invalid. Y=YYYMMDD.HHMMSS The value determined by %DT.

 DTOUT Type: Output

 This is only defined if %DT has timed-out waiting for input from the user.

 Accepts input and validates the input as being the correct date and time.

 COMPONENT: DD

 VARIABLES: Y Type: Both

 (Required) This contains the internal date to be converted. If this has five or six decimal

 places, seconds will automatically be returned.

 Y is returned as the external form of the date.

 %DT Type: Input

 (Optional) This is only used to force seconds to be returned even if Y does not have that

 resolution. %DT must contain S for this to happen.

 Converts a FileMan internal date to external.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10004

 NAME: Classic FileMan API: Data Display

 USAGE: Supported ENTERED: NOV 16,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Provides ways to display data from file entries and ways to convert data from one format to another.

 ROUTINE: DIQ

 COMPONENT: DT

 VARIABLES: Y Type: Both

 Input: (Required) Contains the internal date to be converted. If this has five or six decimal

 places, seconds are automatically returned.

 Output: External form of the date or date/time value, e.g., JAN 01, 1998.

 This call converts the date in Y exactly like D^DIQ. Unlike D^DIQ, however, it also writes the date after it

 has been converted.

 COMPONENT: Y

 VARIABLES: Naked Glob Type: Input

 The naked global reference must be at the zero node of the data dictionary definition which

 describes the data [i.e., it must be at ^DD(File#,Field#,0)].

 Y Type: Both

 Input: Set Y to the internal form of the value being converted. This is the data that you

 want to convert to external form.

 Output: The external form of the value. Basically, Y is changed from internal to external.

 C Type: Input

 Set C to the second piece of the zero node of the data dictionary which defines that element.

 This entry point converts the internal form of any data element to its external form. It works for all FileMan

 data types, uses output transforms, and follows pointer trails to their final resolution. The equivalent

 Database Server call is $$EXTERNAL^DILFD (see DBIA #2055).

 COMPONENT: EN

 VARIABLES: DIC Type: Input

 (Required) The global root of the file.

 DA Type: Input

 (Required) If you are displaying an entry at the top level of a file, set DA to the internal

 entry number of the file entry to display.

 If you are editing an entry in a subfile, set up DA as an array, where DA=entry number in the

 subfile to display, DA(1) is the entry number at the next higher file level,...DA(n) is the

 entry number at the file's top level.

 DR Type: Input

 (Optional) Names the global subscript or subscripts which are to be displayed by DIQ. If DR

 contains a colon (:), the range of subscripts is understood to be specified by what precedes

 and follows the colon. Otherwise, DR is understood to be the literal name of the subscript.

 All data fields stored within, and descendent from, the subscript(s) will be displayed, even

 those which normally have read access security protection.

 DIQ(0) Type: Input

 (Optional) You can include the following flags in this variable to change the display of the

 entry:

 C To display computed fields. A To display audit records for the entry. R To display the

 entry's record number (IEN).

 This entry point displays a range of data elements in captioned format, to the current device.

 COMPONENT: D

 VARIABLES: Y Type: Input

 Type: Both

 Input: (Required) Contains the internal date to be converted. If this has five or six decimal

 places, seconds are automatically returned.

 Output: External form of the date or date/time value, e.g., JAN 01, 1998.

 This entry point takes an internal date in the variable Y and converts it to its external form. This call is

 very similar to DD^%DT.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10005

 NAME: Classic FileMan API: Required Variables

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Sets up the required variables of VA FileMan.

 ROUTINE: DICRW

 COMPONENT: DT

 VARIABLES: DUZ Type: Output

 Set to zero if it is not already defined.

 DUZ(0) Type: Output

 Set to null if not already defined. If DUZ(0)="@", this subroutine will enable terminal break

 if the operating system supports such functionality.

 IO(0) Type: Output

 Set to $I if IO(0) is not defined. Therefore, this program should not be called if the user

 is on a device different from the home terminal and IO(0) is undefined.

 DT Type: Output

 Set to the current date, in VA FileMan format.

 U Type: Output

 Set to the Up-arrow (^).

 Sets up the required variables of VA FileMan.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10006

 NAME: Classic FileMan API: File Lookup/Add New Entries

 USAGE: Supported ENTERED: NOV 18,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Entry point DIC is for general file lookups. Entry point IX if for a single cross reference lookups.

 ROUTINE: DIC

 COMPONENT: DIC

 VARIABLES: DIC Type: Input

 (Required) The file number or an explicit global root.

 DIC(0) Type: Input

 (Required) A string of alphabetic characters which alter how DIC responds. At a minimum this

 string must be set to null. A detailed description of these characters can be found later in

 this section.

 Flag Short Description : A Ask the entry; if erroneous, ask again. B Lookup only on "B"

 index of cross-referenced pointed-to files for a match to X. Note: this flag is introduced

 with patch DI*21*29. C Cross reference suppression is turned off. E Echo back information. F

 Forget the lookup value. I Ignore the special lookup program. L Learning a new entry is

 allowed. M Multiple-index lookup allowed. N Internal Number lookup allowed (but not forced).

 O Only find one entry if it matches exactly. Q Question erroneous input (with two ??). S

 Suppresses display of .01 (except B cross reference match). X EXact match required. Z Zero

 node returned in Y(0) and external form in Y(0,0).

 X Type: Both

 Input: If DIC(0) does not contain an A, then the variable X must be defined equal to the

 value you want to lookup. If the value in X has more than one match or partial match, the

 lookup fails and Y=-1 is returned.

 Output: Contains the value of the field where the match occurred.

 DIC("A") Type: Input

 (Optional) A prompt that is displayed prior to the reading of the X input.

 DIC("B") Type: Input

 (Optional) The default answer which is presented to the user when the lookup prompt is

 issued.

 DIC("S") Type: Input

 (Optional) DIC("S") is a string of MUMPS code that DIC executes to screen an entry from

 selection. DIC("S") must contain an IF statement to set the value of $T.

 DIC("W") Type: Input

 (Optional) A MUMPS command string which is executed when DIC displays each of the entries

 that match the user's input.

 DIC("DR") Type: Input

 When calling DIC with LAYGO allowed, you can specify that a certain set of fields will be

 asked for in the case where the user enters a new entry.

 DIC("P") Type: Input

 This variable is needed to successfully add the FIRST subentry to a multiple when the

 descriptor (or header) node of the multiple does not exist.

 DIC("V") Type: Input

 If the .01 field is a variable pointer, it can point to entries in more than one file. You

 can restrict the user's ability to input entries from certain files by using the DIC("V")

 variable.

 DLAYGO Type: Input

 (Optional) If this variable is set equal to the file number, then the users will be able to

 add a new entry to the file whether or not they have LAYGO access to the file.

 DINUM Type: Input

 (Optional) This input variable identifies the subscript at which the data is to be stored.

 Y Type: Output

 DIC always returns the variable Y. The variable Y is returned with one of these three

 formats:

 Y=-1 The lookup was unsuccessful. Y=N^S N is the internal number of the entry in the file

 and S is the value of the .01 field for that entry. Y=N^S^1 N and S are defined as above and

 the 1 indicates that this entry has just been added to the file.

 Y(0) Type: Output

 This variable is only set if DIC(0) contains a Z. When the variable is set, it is equal to

 the entire zero node of the entry that was selected.

 Y(0,0) Type: Output

 This variable is also only set if DIC(0) contains a Z. When the variable is set, it is equal

 to the external form of the .01 field of the entry.

 DTOUT Type: Output

 This is only defined if DIC has timed-out waiting for input from the user.

 DUOUT Type: Output

 This is only defined if the user entered an up-arrow.

 Given a lookup value, this entry point searches a file and either finds a matching entry, adds an entry, or

 returns a condition indicating that the lookup was unsuccessful.

 COMPONENT: IX

 VARIABLES: DIC Type: Input

 The global root of the file.

 DIC(0) Type: Input

 The lookup parameters as previously described for ^DIC.

 D Type: Input

 The cross reference in which to start looking. If DIC(0) contains M, then DIC will continue

 with further cross references. If it does not, then the lookup is only on the single cross

 reference.

 X Type: Input

 If DIC(0) does not contain an A, then the variable X must be defined equal to the value you

 want to lookup.

 DIC("A") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC.

 DIC("B") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC.

 DIC("DR") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC.

 DIC("P") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC.

 DIC("S") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC.

 DIC("V") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC.

 DIC("W") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC.

 Y Type: Output

 DIC always returns the variable Y, which can be one of the three following formats:

 Y=-1 indicates the lookup was unsuccessful. Y=N^S N is the Internal Number of the entry in

 the file and S is the value of the .01 field for that entry. Y=N^S^1 N and S are defined as

 above and the 1 indicates that this entry has just been added to the file.

 Y(0) Type: Output

 This variable is only set if DIC(0) contains a Z. When it is set, it is equal to the entire

 zero node of the entry that was selected.

 Y(0,0) Type: Output

 This variable is also only set if DIC(0) contains a Z. When it is set, it is equal to the

 external form of the .01 field of the entry.

 DTOUT Type: Output

 This is only defined if DIC has timed-out waiting for input from the user.

 DUOUT Type: Output

 This is only defined if the user entered an up-arrow.

 This entry point is similar to ^DIC and MIX^DIC1 (see DBIA #10007), except on how it uses cross-references to

 do lookup.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10007

 NAME: Classic FileMan API: Custom Lookup & File Info. Setup

 USAGE: Supported ENTERED: NOV 18,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Entry point DO sets up certain file information. Entry point MIX does multi-index nonstandard order lookup.

 ROUTINE: DIC1

 COMPONENT: DO

 VARIABLES: DIC Type: Input

 The global root of the file.

 DIC(0) Type: Input

 The lookup parameters as previously described for ^DIC (see DBIA #10006).

 DO Type: Output

 File name^file number and specifiers. This is the file header node.

 NOTE: Use the letter O, not the number zero, in this variable name.

 DO(2) Type: Output

 File number and specifiers. This is the second ^piece of DO. +DO(2) will always equal the

 file number.

 DIC("W") Type: Output

 This is an executable variable which contains the write logic for identifiers. When an entry

 is displayed, the execution of this variable shows other information to help identify the

 entry.

 DO("SCR") Type: Output

 An executable variable which contains a file's screen (if any). The screen is an IF-statement

 that can screen out certain entries in the file. This differs from DIC("S") in that it is

 used on every lookup regardless of input or output; that is, the screen is applied to

 inquiries and printouts as well as lookups. The value for this variable comes from

 ^DD(+DO(2),0,"SCR") and the specifier "s" must be in DO(2).

 Retrieve's a file's file header node, code to execute its identifiers, and its screen (if any), and puts them

 into local variables for use during lookup into a file.

 COMPONENT: MIX

 VARIABLES: DIC Type: Input

 The global root of the file.

 DIC(0) Type: Input

 The lookup parameters as previously described for ^DIC (see DBIA #10006).

 D Type: Input

 The list of cross references, separated by up-arrows, to be searched, e.g., D="SSN^WARD^B".

 This variable is killed by VA FileMan; it is undefined when the MIX^DIC1 call is complete.

 Make sure DIC(0) contains M; otherwise, only the first cross reference in D will be used for

 the lookup.

 X Type: Input

 If DIC(0) does not contain an A, then the variable X must be defined equal to the value you

 want to look up.

 DIC("A") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC

 (see DBIA #10006).

 Type:

 DIC("B") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC

 (see DBIA #10006).

 DIC("DR") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC

 (see DBIA #10006).

 DUC(' Type:

 DIC("P") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC

 (see DBIA #10006).

 DIC("S") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC

 (see DBIA #10006).

 DIC("V") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC

 (see DBIA #10006).

 DIC("W") Type: Input

 This set of input variables affects the behavior of lookup as previously described for ^DIC

 (see DBIA #10006).

 Y Type: Output

 DIC always returns the variable Y in one of the three following formats:

 Y=-1 Indicates the lookup was unsuccessful.

 Y=N^S N is the Internal Number of the entry in the file and S is the value of the .01 field

 for that entry.

 Y=N^S^1 N and S are defined as above and the 1 indicates that this entry has just been added

 to the file.

 Y(0) Type: Output

 This variable is only set if DIC(0) contains a Z. When it is set, it is equal to the entire

 zero node of the entry that was selected.

 Y(0,0) Type: Output

 This variable is also only set if DIC(0) contains a Z. When it is set, it is equal to the

 external form of the .01 field of the entry.

 DTOUT Type: Output

 This is only defined if DIC has timed-out waiting for input from the user.

 DUOUT Type: Output

 This is only defined if the user entered an up-arrow.

 This entry point is similar to ^DIC and IX^DIC (see DBIA #10006) except on how it uses cross-references to do

 lookup.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10008

 NAME: Classic FileMan API: Entry Display For Lookups

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Displays the list of entries in a file a user can see.

 ROUTINE: DICQ

 COMPONENT: DQ

 VARIABLES: DIC Type: Input

 (Required) Global root of the file.

 DIC(0) Type: Input

 (Required) Look-up parameter string (see DBIA #10006).

 DIC("S") Type: Input

 Optional screen (see DBIA #10006).

 D Type: Input

 (Required) Set to "B".

 DZ Type: Input

 (Required) Set to "??". This is set in order to prevent VA FileMan from issuing the "DO YOU

 WANT TO SEE ALL nn ENTRIES?" prompt.

 Displays the list of entries in a file a user can see.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10009

 NAME: Classic FileMan API: Adding New Entries & YES/NO Prompt

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Can be used for adding new entries to a file. Or for YES/NO prompts.

 ROUTINE: DICN

 COMPONENT: FILE

 VARIABLES: DD Type: Used

 It is mandatory that you KILL the DD variable prior to calling FILE^DICN.

 DO Type: Used

 If DO does not contain the characteristics of the file you are adding to, then you should

 KILL DO so that FILE^DICN can call DO^DIC1 to retrieve those characteristics. NOTE: This

 variable is D with the letter O, not zero.

 DIC Type: Input

 The global root of the file.

 DIC(0) Type: Input

 (Required) A string of alphabetic characters which alter how DIC responds. At a minimum this

 string must be set to null. The characters you can include are:

 E = Echo back information. F = Prevents saving the entry number of the matched entry in the

 ^DISV global. Z = Zero node returned in Y(0) and external form in Y(0,0).

 DIC("P") Type: Input

 Used when adding subentries in multiples (see DBIA #10006).

 DA Type: Input

 Array of entry numbers (see DBIA #10006).

 X Type: Input

 (Optional) Identifies the subscript at which the data is to be stored; that is, the internal

 entry number of the new record, shown as follows (This means that DINUM must be a canonic

 number and that no data exists in the global at that subscript location.):

 $D(@(DIC_DINUM_")"))=0 If a record already exists at the DINUM internal entry number, no

 new entry is made. The variable Y is returned equal -1.

 DIC("DR") Type: Input

 (Optional) Used to input other data elements at the time of adding the entry. If the user

 does not enter these elements, the entry will not be added. The format of DIC("DR") is the

 same as the variable DR described under the discussion of DIE (see DBIA #10018).

 Y Type: Output

 DIC always returns the variable Y, which can be in one of the two following values:

 Y=-1 Indicates the lookup was unsuccessful; no new entry was added.

 Y=N^S^1 N is the internal number of the entry in the file, S is the value of the .01 field

 for that entry, and the 1 indicates that this entry has just been added to the file.

 Y(0) Type: Output

 This variable is only set if DIC(0) contains a Z. When it is set, it is equal to the entire

 zero node of the entry that was selected.

 Y(0,0) Type: Output

 This variable is also only set if DIC(0) contains a Z. When it is set, it is equal to the

 external form of the .01 field of the entry.

 DTOUT Type: Output

 This is only defined if DIC has timed-out waiting for input from the user.

 DUOUT Type: Output

 This is only defined if the user entered an up-arrow.

 Used for adding new entries to a file or sub-file.

 COMPONENT: YN

 VARIABLES: % Type: Both

 Input: Determines the default response as follows:

 % = 0 (zero) No default % = 1 YES % = 2 NO

 Output: The processed user's response. It can be one of the following:

 % = -1 The user entered an ^ (up-arrow). % = 0 (zero) The user entered <RET> when no default

 was presented OR the user entered a ? (question mark). % = 1 The user entered a YES

 response. % = 2 The user entered a NO response.

 %Y Type: Output

 The actual text that the user entered.

 A reader for a YES/NO response.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10010

 NAME: Classic FileMan API: Print Data

 USAGE: Supported ENTERED: JAN 12,1995

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Use EN1^DIP to print a range of entries, in columnar format.

 ROUTINE: DIP

 COMPONENT: EN1

 VARIABLES: L Type: Input

 (Required) String that evaluates to zero.

 DIC Type: Input

 (Required) Global root or file number, in the usual format.

 FLDS Type: Input

 (Optional) The various fields to be printed.

 BY Type: Input

 (Optional) The fields by which the data is to be sorted.

 FR Type: Input

 (Optional) The START WITH: values of the SORT BY fields.

 FR(n) Type: Input

 TO Type: Input

 (Optional) The GO TO: values of the SORT BY fields.

 TO(n) Type: Input

 (Optional) An alternate way to provide the GO TO: values of the SORT BY fields.

 DHD Type: Input

 (Optional) The header desired for the output.

 DIASKHD Type: Input

 (Optional) Set to null to prompt user for a header.

 DIPCRIT Type: Input

 (Optional)Set to 1 to print SORT criteria on the first page of the report.

 PG Type: Input

 (Optional) Starting page number.

 DHIT Type: Input

 (Optional) M code to execute after each entry is printed.

 DIOEND Type: Input

 (Optional) M code to execute after the printout has finished.

 DIOBEG Type: Input

 (Optional) M code to execute before the printout starts.

 DCOPIES Type: Input

 (Optional) Number of copies to print (for SDP-type devices).

 IOP Type: Input

 (Optional) Name of device to send output to.

 DQTIME Type: Input

 (Optional) Time to print, for queued printing.

 DIS(0) Type: Input

 (Optional) M code to screen out entries.

 DIS(n) Type: Input

 (Optional) Additional screens, "OR"-ed with each other, "AND"-ed with the DIS(0) screen.

 DISUPNO Type: Input

 (Optional) Set to 1 to suppress output when no records are found.

 DISTOP Type: Input

 (Optional) Set to 0 to prevent users from stopping prints.

 DISTOP("C" Type: Input

 (Optional) M code to execute if a user stops the print.

 BY(0) Type: Input

 (Optional; Required for BY(0) sorts) Set this variable to an open global root. The open

 global root should be the static part of a global; a list of record numbers must be stored at

 a descendant subscript level.

 L(0) Type: Input

 (Optional; Required if BY(0) is set to an open global root.)

 Use L(0) to specify the number of dynamic subscript levels that exist beyond the static

 global root, including the subscript level containing the list of record numbers. The minimum

 value of L(0) is 1.

 FR(0,n) Type: Input

 (Optional) To select only a subset of records at a given subscript level n, you can use

 FR(0,n) and/or TO(0,n). For n equal to any of the 'n' dynamic sorting subscript levels in the

 global specified by BY(0), you can set FR(0,n) to the sort-from value for that subscript

 level.

 TO(0,n) Type: Input

 (Optional) This variable contains the ending value (the sort-to value) for any of the 'n'

 dynamic sorting subscripts in the global specified by BY(0).

 DISPAR(0,n Type: Input

 (Optional) Like the FR(0,n) and TO(0,n) variables, this variable array can be set for any of

 the 'n' dynamic sorting subscripts in the global specified by BY(0). This array allows you to

 create subheaders for the sorting subscripts in the global.

 DISPAR(0,n Type: Input

 Note: 'OUT' should be "OUT".

 (Optional) If a literal title is input to DISPAR(0,n) above, then you can also enter MUMPS

 code to transform the value of the subscript from the global before it is printed as a

 subheader. It acts like an output transform.

 Fileman 21 provides a new feature. If a print is done and there were no records found to print, it will print

 the header and a message notifying the user that no records were found to print.

 Occasionally, however, this can cause a problem, if the header is a print template. In this case, at the time

 the header logic is executed, D0=-1 It appears that the logic generated by FileMan for printing regular fields

 is robust enough to handle this situation. When the print template contained code entered by the developer, it

 has been seen not to work when D0=-1.

 There are two ways to fix this either of which could be done at anytime prior to the release of FileMan 21:

 a) change the logic to use $G so that it will still work with D0=-1

 b) There is a new input variable that can be set to suppress this feature. When you are setting ithe other

 input variables to EN1^DIP, if you could S DISUPNO=1, the feature would be suppressed and no error would occur.

 DISUPNO is killed at the end of the print in FileMan 21, but since FM20 doesn't know about it, it should

 probably be NEWed by your code.

 If you use the FLDS input variable to EN1^DIP or a print template to call an 'M' routine to evaluate and print

 a value, you must WRITE the value you want printed. Examples 1 and 2 below illustrate how this is done.

 Example #1: The routine is called from a Print Template

 ===

 Print Template: NAME: ZZ640A DATE CREATED: AUG 13, 1998@10:21

 READ ACCESS: @ FILE: MY PATIENT

 USER #: 133 WRITE ACCESS: @

 DATE LAST USED: AUG 14, 1998 HEADER (c): MY PATIENT LIST FIRST PRINT FIELD: NAME;C1;L22;"PATIENT"// THEN

 PRINT FIELD: D SSN^MYPROG;X THEN PRINT FIELD: W X;C24;R4;"SSN"// COMPILED (c): NO

 Routine Called: MYPROG ;SFCIOFO/S0 TEST ROUTINE ; 21 Aug 98 2:06 PM SSN ;

 K VA,VADM S DFN=D0 D ^VADPT

 S X=$P(VA("PID"),"-",3)

 Q

 Example of Usage: ZZ640A ;SFCIOFO/S0 TEST FILEMAN PRINT ; 19 Aug 98 4:03 PM

 S DIC="^DIZ(640001,",BY=".01",L=0,FR=""

 S FLDS="[ZZ640A]"

 D EN1^DIP

 Q

 Example #2: The routine is called from the FLDS input variable

 ==

 Routine Called: MYPROG ;SFCIOFO/S0 TEST ROUTINE ; 21 Aug 98 2:06 PM SSN ;

 K VA,VADM S DFN=D0 D ^VADPT

 S X=$P(VA("PID"),"-",3)

 Q

 Example of Usage: ZZ640A ;SFCIOFO/S0 TEST FILEMAN PRINT ; 19 Aug 98 4:03 PM

 S DIC="^DIZ(640001,",BY=".01",L=0,FR=""

 S FLDS=".01;C1;L22;""PATIENT"",D SSN^MYPROG;X,W X;C24;""SSN"""

 D EN1^DIP

 Q

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10011

 NAME: Classic FileMan API: Word Processing

 USAGE: Supported ENTERED: NOV 16,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Call ^DIWP to format and (optionally) output any group of text lines.

 ROUTINE: DIWP

 COMPONENT: DIWP

 VARIABLES: X Type: Input

 The string of text to be added as input to the formatter. The X input string may contain

 |-windows, as described in the VA FileMan User's Manual| (e.g.,). The expressions within the

 windows will be processed as long as they are not context-dependent; that is, as long as they

 do not refer symbolically to database field names. Thus, SEP 26,2011 will cause today's date

 to be inserted into the formatted text, but |SSN| will be printed out as it stands, because

 it cannot be interpreted in context.

 DIWL Type: Input

 The (integer-valued) left margin for the text. Set this to a postive number, 1 or greater. Do

 not change the value of DIWL if you are making repeated calls to ^DIWP to format text.

 DIWR Type: Input

 The (integer-valued) right margin for the text.

 DIWF Type: Input

 A string of format control parameters. If contained in DIWF, the parameters have the

 following effects:

 W If the DIWF parameter contains "W", ^DIWP operates in "write" mode If the DIWF parameter

 does not contain "W", ^DIWP operates in "accumulate" mode. See above for the discussion of

 these two modes.

 When making repeated calls to ^DIWP, don't mix modes; use "write" or "accumulate" mode, but

 don't switch between them.

 Cn = The text will be formatted in a column width of n, thus overriding the value of DIWR. D

 = The text will be in double-spaced format. In The text will be indented n columns in from

 the left margin (DIWL). N = Each line will be printed as it appears in the text (no-wrap).

 If DIWF contains N, the value of DIWR will be ignored. R = The text will be in

 right-justified format. | = Word processing windows (material within vertical bars) will not

 be| evaluated. The window will print as it exists in the word processing field.

 Before calling ^DIWP, you should kill the global ^UTILITY($J,"W").

 ^DIWP works in two modes (based on whether the DIWF input parameter contains "W" or not):

 1. In ^DIWP's "accumulate" mode, repeated calls to ^DIWP accumulate and format text in ^UTILITY($J,"W"). When

 you are done accumulating text, to write the text to the current device, you should call ^DIWW. ^DIWW writes

 the accumulated text to the current device with the margins you specified in your calls to ^DIWP, and then

 removes the text from ^UTILITY.

 2. In ^DIWP's "write" mode, if the text added to ^UTILITY($J,"W") by ^DIWP causes one or more (that is, n)

 line breaks, n lines are written to the current device (and the remaining partial line is stored in ^UTILITY.)

 This leaves one line of text in ^UTILITY once all calls to ^DIWP are completed. To write the remaining line of

 text to the current device and remove it from ^UTILITY, call ^DIWW.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10012

 NAME: Classic FileMan API: Form Document Print

 USAGE: Supported ENTERED: NOV 16,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Designed to use the contents of a word processing field as a target document into which data can be inserted at print time.

 ROUTINE: DIWF

 COMPONENT: EN1

 VARIABLES: DIC Type: Input

 A file number or a global root. The file identified must contain a word processing field.

 Y Type: Output

 This will be -1 only if the file sent to DIWF in the variable DIC does not contain a word

 processing field.

 This entry point is used when the calling program knows which file (document file) contains the desired word

 processing text to be used as a target document.

 COMPONENT: EN2

 VARIABLES: DIWF Type: Input

 The global root at which the desired text is stored.

 DIWF(1) Type: Input

 If the calling program wants to specify which file should be used as a source for generating

 output, the number of that file should appear in the variable DIWF(1). Otherwise, the user

 will be asked the "Print from what FILE:" question.

 Y Type: Output

 Y will be -1 if:

 1. There is no data beneath the root passed in DIWF. 2. The file passed in DIWF(1) could

 not be found.

 This entry point is used when the calling program knows both the document file and the entry within that file

 which contains the desired word processing text to be used as a target document.

 COMPONENT: DIWF

 VARIABLES: To be used for interactive dialogue with the user.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10013

 NAME: Classic FileMan API: Entry Deletion & File Reindexing

 USAGE: Supported ENTERED: DEC 4,2001

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Multiple entry points to support entry deletion and file reindexing.

 ROUTINE: DIK

 COMPONENT: IXALL

 VARIABLES: DIK Type: Input

 The global root of the file to be indexed.

 Reindexes all cross references for all entries in a file.

 COMPONENT: IX

 VARIABLES: DIK Type: Input

 If you are reindexing an entry at the top level of a file, set DIK to the global root of the

 file.

 If you are reindexing only a subentry, set DIK to the full global root leading to the

 subentry, including all intervening subscripts and the terminating comma, up to but not

 including the ien of the subfile entry to reindex.

 DA Type: Input

 If you are reindexing an entry at the top level of a file, set DA to the internal entry

 number of the file entry to reindex.

 If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry number in

 the subfile to reindex, DA(1) is the entry number at the next higher file level,...DA(n) is

 the entry number at the file's top level.

 Reindexes all cross references of the file for only one entry in the file.

 COMPONENT: IX1

 VARIABLES: DIK Type: Input

 If you are reindexing an entry at the top level of a file, set DIK to the global root of the

 file.

 If you are reindexing a subentry, set DIK to the full global root leading to the subentry,

 including all intervening subscripts and the terminating comma, up to but not including the

 ien of the subfile entry to reindex.

 DA Type: Input

 If you are reindexing an entry at the top level of a file, set DA to the internal entry

 number of the file entry to reindex.

 If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry number in

 the subfile to reindex, DA(1) is the entry number at the next higher file level,...DA(n) is

 the entry number at the file's top level.

 Reindexes all cross references of the file for only one entry in the file.

 COMPONENT: DIK

 VARIABLES: DIK Type: Input

 The global root of the file from which you want to delete an entry.

 If you are deleting a subentry, set DIK to the full global root leading to the subentry,

 including all intervening subscripts and the terminating comma, up to but not including the

 ien of the subfile entry to delete.

 DA Type: Input

 If you are deleting an entry at the top level of a file, set DA to the internal entry number

 of the file entry to delete.

 If you are deleting an entry in a subfile, set up DA as an array, where DA=entry number in

 the subfile to delete, DA(1) is the entry number at the next higher file level,...DA(n) is

 the entry number at the file's top level.

 Used to delete an entry from a file.

 COMPONENT: EN

 VARIABLES: DIK Type: Input

 If you are reindexing an entry at the top level of a file, set DIK to the global root of the

 file.

 If you are reindexing a subentry, set DIK to the full global root leading to the subentry,

 including all intervening subscripts and the terminating comma, up to but not including the

 ien of the subfile entry to reindex.

 DA Type: Input

 If you are reindexing an entry at the top level of a file, set DA to the internal entry

 number of the file entry to reindex.

 If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry number in

 the subfile to reindex, DA(1) is the entry number at the next higher file level,...DA(n) is

 the entry number at the file's top level.

 DIK(1) Type: Input

 Use the field number (to get all indices) or the field number and specific indices of the

 cross reference.

 Reindexes one or more cross references of a field for one entry in a file.

 COMPONENT: EN1

 VARIABLES: DIK Type: Input

 If you are reindexing an entry at the top level of a file, set DIK to the global root of the

 file.

 If you are reindexing a subentry, set DIK to the full global root leading to the subentry,

 including all intervening subscripts and the terminating comma, up to but not including the

 ien of the subfile entry to reindex.

 DA Type: Input

 If you are reindexing an entry at the top level of a file, set DA to the internal entry

 number of the file entry to reindex.

 If you are reindexing an entry in a subfile, set up DA as an array, where DA=entry number in

 the subfile to reindex, DA(1) is the entry number at the next higher file level,...DA(n) is

 the entry number at the file's top level.

 DIK(1) Type: Input

 Use the field number (to get all cross references) or the field number and specific indices

 of the cross references you want.

 Reindexes one or more cross references of a field for one entry in a file. It only executes the SET logic of

 the cross reference.

 COMPONENT: ENALL

 VARIABLES: DIK Type: Input

 If you are reindexing an entries at the top level of a file, set DIK to the global root of

 the file.

 If you are reindexing subentries, set DIK to the full global root leading to the subentry,

 including all intervening subscripts and the terminating comma, up to but not including the

 iens of the subfile entries to reindex.

 DIK(1) Type: Input

 Use the field number (to get all indices) or the field number and specific cross references

 separated by up-arrows.

 DA(1..n) Type: Input

 If you are reindexing entries in a subfile, set up DA as an array, where DA(1) is the entry

 number at the next higher file level,...DA(n) is the entry number at the file's top level.

 Since ENALL^DIK reindexes all entries at a given file level, don't set the unsubscripted DA

 node.

 Reindexes all entries in a file for the cross references on a specific field.

 COMPONENT: IX2

 VARIABLES: DIK Type: Input

 If you are executing the kill logic for an entry at the top level of a file, set DIK to the

 global root of the file.

 If you are executing the kill logic for a subentry, set DIK to the full global root leading

 to the subentry, including all intervening subscripts and the terminating comma, up to but

 not including the IEN of the subfile entry.

 DA Type: Input

 If you are executing the kill logic for an entry at the top level of a file, set DA to the

 internal entry number of that file entry.

 If you are executing the kill logic for an entry in a subfile, set up DA as an array, where

 DA is the entry number in the subfile, DA(1) is the entry number at the next higher file

 level, etc. DA(n) is the entry number at the file's top level.

 Executes the KILL logic for only one entry at all file levels at or below the one specified in DIK.

 Before calling this entry point, you should be familiar with the effects of executing the kill logic of the

 relevant cross-references (including bulletins, triggers, and MUMPS-type).

 COMPONENT: IXALL2

 VARIABLES: DIK Type: Input

 If you are executing the kill logic for all entries at the top level of a file, set DIK to

 the global root of the file.

 If you are executing the kill logic for all entries in a subfile only, set DIK to the full

 global root of the subfile

 DA Type: Input

 If you are executing the kill logic for all entries at the top level of a file this variable

 need not be set.

 If you are executing the kill logic for all entries in a subfile, set up DA as an array,

 where DA(1) is the entry number at the next higher file level, DA(2) is the entry number one

 level above that, etc. DA(n) is the entry number at the file's top level.

 Executes the KILL logic for all entries in a file.

 Before calling this entry point, you should be familiar with the effects of executing the kill logic of the

 relevant cross-references (including bulletins, triggers, and MUMPS-type).

 NOTE: IXALL^DIK, IXALL2^DIK, ENALL^DIK, ENALL2^DIK, and the Re-Index File option on the Utility Functions menu

 set the 3rd piece of the 0 node of the file's global root (the file header) to the last internal entry number

 used in the file. They set the 4th piece to the total number of entries in the file.

 COMPONENT: EN2

 VARIABLES: DIK Type: Input

 If you are executing the kill logic for an entry at the top level of a file, set DIK to the

 global root of the file.

 If you are executing the kill logic for a subentry, set DIK to the full global root leading

 to the subentry, including all intervening subscripts and the terminating comma, up to but

 not including, the IEN of the subfile entry.

 DA Type: Input

 If you are executing the kill logic for an entry at the top level of a file, set DA to the

 internal entry number of that file entry.

 If you are executing the kill logic for an entry in a subfile, set up DA as an array, where

 DA is the entry number in the subfile, DA(1) is the entry number at the next higher file

 level, etc. DA(n) is the entry number at the file's top level.

 DIK(1) Type: Input

 Set DIK(1) to the field number (to get all cross-references defined on that field). For

 example:

 S DIK(1)=.01

 OR, set DIK(1) to the field number and the names or numbers of specific cross-reference on

 that field, all separated by up-arrows (^). For example,

 S DIK(1)=".01^B"

 S DIK(1)=".01^B^C"

 S DIK(1)=".01^1^2"

 Executes the KILL logic for one or more cross-references on a specific field for one entry in a file.

 Before calling this entry point, you should be familiar with the effects of executing the kill logic of the

 relevant cross-references (including bulletins, triggers, and MUMPS-type).

 COMPONENT: ENALL2

 VARIABLES: DIK Type: Input

 If you are executing the kill logic for all entries at the top level of a file, set DIK to

 the global root of the file.

 If you are executing the kill logic for all entries in a subfile only, set DIK to the full

 global root of the subfile.

 DA Type: Input

 If you are executing the kill logic for all entries at the top level of a file, this variable

 need not be set.

 If you are executing the kill logic for all entries in a subfile, set up DA as an array,

 where DA(1) is the entry number at the next higher file level, DA(2) is the entry number one

 level above that, etc. DA(n) is the entry number at the file's top level.

 DIK(1) Type: Input

 Set DIK(1) to the field number (to get all cross-references defined on that field). For

 example:

 S DIK(1)=.01

 OR, set DIK(1) to the field number and the names or numbers of specific cross-reference on

 that field, all separated by up-arrows (^). For example,

 S DIK(1)=".01^B"

 S DIK(1)=".01^B^C"

 S DIK(1)=".01^1^2"

 Executes the KILL logic for one or more cross-references on a specific field for all entries in a file.

 Before calling this entry point, you should be familiar with the effects of executing the kill logic of the

 relevant cross-references (including bulletins, triggers, and MUMPS-type).

 NOTE: IXALL^DIK, IXALL2^DIK, ENALL^DIK, ENALL2^DIK, and the Re-Index File option on the Utility Functions menu

 set the 3rd piece of the 0 node of the file's global root (the file header) to the last internal entry number

 used in the file. They set the 4th piece to the total number of entries in the file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10014

 NAME: Classic FileMan API: Data Dictionary Deletion

 USAGE: Supported ENTERED: NOV 16,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Used to delete a file's data dictionary and its entry in ^DIC in order to properly update a running system.

 ROUTINE: DIU2

 COMPONENT: EN

 VARIABLES: DIU Type: Input

 The file number or global root. This must be a subfile number when deleting a subfile's data

 dictionary.

 DIU(0) Type: Input

 Input parameter string that may contain the following:

 D DELETE the data as well as the data dictionary. E ECHO back information during deletion.

 S SUBFILE data dictionary is to be deleted. T TEMPLATES are to be deleted.

 Occasionally you may need to delete a file's data dictionary and its entry in ^DIC in order to properly update

 a running system. Use this entry point to do it.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10015

 NAME: Classic FileMan API: Data Retrieval

 USAGE: Supported ENTERED: NOV 16,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This entry point retrieves data from a file for a particular entry.

 ROUTINE: DIQ1

 COMPONENT: EN

 VARIABLES: DIC Type: Input

 The file number or global root.

 DR Type: Input

 A string specifying in which you specify the data fields to retrieve for the given entry. The

 DR-string may contain:

 1. A single number corresponding to the internal number of a field in the file. 2. A range

 of field numbers, in the form M:N, where M is the first and N the last number of the

 inclusive range. All fields whose numbers lie within this range will be retrieved. 3. A

 combination of the above, separated by semicolons. If field numbers .01, 1, 2, 4, 10, 11, 12,

 13, 14, 15, and 101 exist for a file, and you want to retrieve the data in these fields,

 simply write:

 S DR=".01;1;4;10:15;101"

 DR(subfile Type: Input

 If you want to retrieve values from fields from a subentry in a multiple field, include the

 top-level field number for the multiple in DR. Then, include the multiple's subfield numbers

 whose values you want to retrieve in a node in DR, subscripted by the subfile number.

 See also DA(subfile_number) below for how to specify which subfile entry to retrieve.

 For example, if you want to retrieve data from subfields .01 and 7 for subentry 1 from field

 4 which defines the multiple 16000.02, then you write:

 S DIC=16000,DR="4",DA=777

 S DR(16000.02)=".01:7",DA(16000.02)=1

 D EN^DIQ1

 DA Type: Input

 The internal number of the entry from which data is to be extracted.

 DA(subfile Type: Input

 If you want to retrieve values from fields from a subentry in a multiple, set DA to the

 top-level entry number. Then, include the subentry number in a node in DA, subscripted by the

 subfile number. See DR(subfile_number) below for how to specify which fields in the subfile

 entry to retrieve.

 You can descend one or more subfile levels; however, you can only retrieve values for one

 subentry at any given subfile level. The full path from the top level of the file to the

 lowest-level subfile entry must be fully specified in nodes in DR and DA.

 DIQ Type: Input

 (Optional) The local array name into which the field values will be placed.

 ^UTILITY("DIQ1",$J, will be used if DIQ is not present. This array name should not begin with

 DI.

 DIQ(0) Type: Input

 (Optional) This variable is used to tell EN^DIQ1 whether to return internal values, external

 values, or both. DIQ(0) also indicates when null values are not returned. The DIQ(0) string

 can contain the values that follow:

 I return internal values E return external values N do not return null values

 ARRAY Type: Output

 The format and location of the output from EN^DIQ1 depends on the status of input variables

 DIQ and DIQ(0) and on whether or not a word processing field is involved.

 DIQ and DIQ(0) undefined

 Output into:

 ^UTILITY("DIQ1",$J,file#,DA,field#)=external value This is for backwards compatibility.

 Each field requested will be defined in the utility global, but the value may be null. The

 only exception to this would be when DA held the number of an entry which does not exist. In

 that case, nothing is returned. The values returned are the external, printable

 values-pointers, sets of codes, etc., are resolved; dates are in external format.

 DIQ(0) defined, DIQ undefined

 Output into:

 ^UTILITY("DIQ1",$J,file#,DA,field#,"E")=external value

 ^UTILITY("DIQ1",$J,file#,DA,field#,"I")=internal value If DIQ(0)["E", the external value

 is returned with a final global subscript of "E".

 If DIQ(0)["I", the internally stored value is returned with a final global subscript of "I".

 The internal value is the value stored in the file; for example, the record number of the

 entry in the pointed-to file, not the resolved value of the pointer. Since computed fields

 store no data, no nodes are returned for computed fields.

 If DIQ(0)["N", no nodes are set for either internal or external values if the field is null.

 If DIQ(0) contains both "I" and "E", generally two nodes are returned for each field: one

 with the internal value, one with the external value. However, no nodes are produced for the

 internal value if the field is computed; and no nodes are produced at all for null-valued

 fields if DIC(0)["N". Nodes are subscripted as described above.

 DIQ defined

 The output is similar except that the data is stored in the specified local array. So if

 DIQ(0) is not defined, then the output is:

 @(DIQ(file#,DA,field#))=external value If DIQ(0) is defined, then the output is:

 @DIQ(file#,DA,field#,"E")=external value

 @DIQ(file#,DA,field#,"I")=internal value Word Processing Field

 Output from a word processing field will only be an external value. The status of DIQ(0) has

 no effect. If DIQ is not defined, it goes into the global nodes that follow:

 ^UTILITY("DIQ1",$J,file#,DA,field#,1)

 ^UTILITY("DIQ1",$J,file#,DA,field#,2)

 .

 .

 .

 If DIQ is defined, it goes into:

 @DIQ(file#,DA,field#,1)=External Value 1

 @DIQ(file#,DA,field#,2)=External Value 2

 @DIQ(file#,DA,field#,3)=External Value 3

 @DIQ(file#,DA,field#,4)=External Value 4

 .

 .

 .

 This entry point retrieves data from a file for a particular entry. Note: The equivalent Database Server calls

 are GETS^DIQ and $$GET1^DIQ (see DBIA #2056).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10016

 NAME: Classic FileMan API: MUMPS Code Validation

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Checks that code conforms to the 1995 ANSI Standard and is also checked against aspects of VHA's Programming Standards and

 Conventions (SAC).

 ROUTINE: DIM

 COMPONENT: DIM

 VARIABLES: X Type: Both

 Input: The line of code to be validated.

 Output: ^DIM either kills X, or leave it unchanged. If $D(X) is zero on return from ^DIM, the

 line of code is invalid.

 Checks that code conforms to the 1995 ANSI Standard and is also checked against aspects of VHA's Programming

 Standards and Conventions (SAC).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10017

 NAME: DD DATE FORMATER

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT: DD('DD')

 DESCRIPTION: TYPE: File

 ^DD('DD')

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10018

 NAME: Classic FileMan API: Edit Data

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine handles input of selected data elements for a given file entry.

 ROUTINE: DIE

 COMPONENT: DIE

 VARIABLES: DIE Type: Input

 (Required) The global root of the file.

 DA Type: Input

 (Required) If you are editing an entry at the top level of a file, set DA to the internal

 entry number of the file entry to be edited.

 If you are editing an entry in a subfile, set up DA as an array, where DA=entry number in the

 subfile to edit, DA(1) is the entry number at the next higher file level,...DA(n) is the

 entry number at the file's top level.

 DR Type: Input

 (Required) A string specifying which data fields are asked for the given entry. The fields

 specified by DR are asked whether or not VA FileMan Write access security protection has been

 assigned to the fields.

 You can include the following in the DR-string:

 Field number Field with Default Value Stuff a Field Value (Validated) Stuff a Field Value

 (Unvalidated) Placeholder for Branching MUMPS Code Combination Input Template

 DIE("NO") Type: Input

 Note the variable name is: DIE("NO^")

 (Optional) Controls the use of the ^ in an edit session. If this variable does not exist,

 unrestricted use of the ^ for jumping and exiting is allowed.

 The variable may be set to one of the following:

 "OUTOK" Allows exiting and prevents all jumping. "BACK" Allows jumping back to a previously

 edited field and does not allow exiting. "BACKOUTOK" Allows jumping back to a previously

 edited field and allows exiting. "Other value" Prevents all jumping and does not allow

 exiting.

 DIDEL Type: Input

 (Optional) Overrides the delete access on a file or subfile.

 DTOUT Type: Output

 Is set when a time-out has occurred.

 This routine handles input of selected data elements for a given file entry. You should use ^DIE only to edit

 existing records.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10019

 NAME: Classic FileMan API: Print Template Compilation

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Print templates can be compiled into MUMPS routines. The purpose of this DIPZ code generation is simply to improve overall

 system throughput.

 ROUTINE: DIPZ

 COMPONENT: EN

 VARIABLES: X Type: Input

 The routine name.

 Y Type: Input

 The internal number of the template to be compiled.

 DMAX Type: Input

 The maximum size the compiled routines should reach. Consider using the $$ROUSIZE^DILF (see

 DBIA #2054) function to set this variable.

 This entry point recompiles a print template without user intervention.

 COMPONENT: DIPZ

 VARIABLES: None Type:

 Used for interactive print template compilation.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10020

 NAME: Classic FileMan API: Print/Sort Template Display

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: DIPT

 COMPONENT: DIBT

 VARIABLES: D0 Type: Input

 (Required) Set D0 equal to the internal number of the template in the Sort Template file.

 The Sort Template file contains a computed field labeled SORT FIELDS which displays a sort template exactly as

 it was entered.

 COMPONENT: DIPT

 VARIABLES: D0 Type: Input

 (Required) Set D0 equal to the internal number of the template in the Print Template file.

 The Print Template file contains a computed field labeled PRINT FIELDS which displays the print template

 exactly as it was entered.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10021

 NAME: Classic FileMan API: Data Dictionary Listing

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Print/display a file's data dictionary listing.

 ROUTINE: DID

 COMPONENT: EN

 VARIABLES: DIC Type: Input

 Set to the data dictionary number of the file to list.

 DIFORMAT Type: Input

 Set to the desired data dictionary listing format. Must be one of the following strings:

 STANDARD BRIEF MODIFIED STANDARD TEMPLATES ONLY GLOBAL MAP CONDENSED

 Print/display a file's data dictionary listing.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10022

 NAME: Classic FileMan API: Array Moving

 USAGE: Supported ENTERED: NOV 13,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This entry point can be used to move arrays from one location to another. The location can be local or global.

 ROUTINE: %RCR

 COMPONENT: %XY

 VARIABLES: %X Type: Input

 The global or array root of an existing array. The descendants of %X will be moved.

 %Y Type: Output

 The global or array root of the target array. It would be best if this array did not exist

 before the call.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10023

 NAME: Classic FileMan API: User Controlled Editing

 USAGE: Supported ENTERED: NOV 18,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Invokes the Enter or Edit File Entries option of VA FileMan to edit records in a given file, allowing the user to select which

 fields to edit.

 ROUTINE: DIB

 COMPONENT: EN

 VARIABLES: DIE Type: Input

 (Required) The global root of the file, the number of the file.

 DIE('NO') Type: Input

 Note: the variable is: DIE("NO^")

 (Optional) Allows the programmer control of the use of the up arrow in an edit session. If

 this variable does not exist, unrestricted use of the up arrow for jumping and exiting is

 allowed.

 The variable may be set to one of the following:

 "OUTOK" Allows exiting and prevents all jumping. "BACK" Allows jumping back to a previously

 edited field and does not allow exiting. "BACKOUTOK" Allows jumping back to a previously

 edited field and allows exiting. "Other value" Prevents all jumping and does not allow

 exiting.

 DIDEL Type: Input

 (Optional) Allows you to override the Delete Access on a file or subfile.

 Invokes the Enter or Edit File Entries option of VA FileMan to edit records in a given file, allowing the user

 to select which fields to edit.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10024

 NAME: Classic FileMan API: Wait Messages

 USAGE: Supported ENTERED: NOV 18,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Displays standard wait messages.

 ROUTINE: DICD

 COMPONENT: WAIT

 VARIABLES: None Type:

 Displays standard wait messages.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10025

 NAME: Classic FileMan API: Cross Reference Compilation

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Compiles cross references into MUMPS routines.

 ROUTINE: DIKZ

 COMPONENT: EN

 VARIABLES: X Type: Input

 The routine name.

 Y Type: Input

 The file number of the file for which you want the cross references recompiled.

 DMAX Type: Input

 The maximum size the compiled routines should reach. Consider using the $$ROUSIZE^DILF (see

 DBIA # 2054) function to set this variable.

 Recompiles a file's cross references without user intervention.

 COMPONENT: DIKZ

 VARIABLES: None Type:

 Interactive cross reference complication.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10026

 NAME: Classic FileMan API: Reader

 USAGE: Supported ENTERED: NOV 20,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 DIR is a general purpose response reader that can be used to issue a prompt, read input interactively, perform syntax checking

 on the input, issue error messages or help text, and return input in a processed form. Its use is recommended to standardize

 user dialogue and to eliminate repetitive coding.

 ROUTINE: DIR

 COMPONENT: DIR

 VARIABLES: DIR(0) Type: Input

 DIR(0) is the only required input variable. It is a three piece variable. The first

 character of the first piece must be defined (or first 3 characters for DD-type). Additional

 characters of the first piece and the second two pieces are all optional.

 The first character of the first up-arrow piece indicates the type of the input to be read.

 The second piece describes parameters, delimited by colons, to be applied to the input.

 Examples are maximum length for free text data or decimal digits for numeric data. The third

 piece is executable MUMPS code that acts on the input in the same manner as an input

 transform.

 Piece-1 of DIR(0) (Subsequent Characters are Optional):

 The first up-arrow piece of DIR(0) can contain other parameters that help to specify the

 nature of the input or modify the behavior of the reader. These characters must appear after

 the character indicating type (or after the field number if it is a DD type). They are

 described below (examples are provided later in this section):

 A Indicates that nothing should be appended to the programmer-supplied prompt DIR("A"), which

 is described below. If there is no DIR("A"), then no prompt is issued.

 O Indicates that a response is optional. If this is not included, then a null response is not

 allowed. For DD type reads, the O is automatically included if the field in question is not a

 required field.

 X Only applies to the set of codes. Indicates that an exact match is requested. No lowercase

 to uppercase conversion is to be done.

 B Only applies to a set of codes; indicates that the possible choices are to be listed

 horizontally after the prompt.

 M Only applies to a set of codes and indicates that mixed case input is allowed. Uppercase

 input, for example, would match a lowercase code. To achieve this matching, do not include

 the X parameter since that would override the M and require an exact match.

 U Only applies to free text reads. It allows the user response to contain ^ (up-arrow). A

 leading up-arrow aborts the read and set DUOUT and DIRUT whether or not U is in DIR(0).

 However, the U allows ^s to be embedded in the user response.

 C Only applies to list reads. The values returned in Y and the Y() array are compressed. They

 are not expanded to include each individual number; rather, ranges of values are returned

 using the hyphen syntax. This is similar to the format in which the user can enter a ranges

 of numbers.

 This flag is particularly useful when a user may select many numbers; for example, when

 decimals are involved. The call is much faster and the possibility of the local symbol table

 filling up with nodes in the Y() array is eliminated.

 Piece-2 of DIR(0) (Optional)

 Qualifying limits on user response are as described in summary table above.

 Piece-3 of DIR(0) (Optional)

 The third piece of DIR(0) is executable MUMPS code that acts like the input transform of a

 field in a data dictionary. The value that was entered by the user is contained in the

 variable X. The code can examine X and, if it is not appropriate, should kill X. If X is

 undefined after the execution of the third piece of DIR(0), the reader knows that the input

 was unacceptable, issues a help message, and re-asks for input.

 DA Type: Input

 (Optional) For DD-type reads only, if DIR("B") is not set, you may retrieve a value from the

 database to display as a default.

 DIR("A") Type: Input

 (Optional) The reader provides a generic default prompt for each type, e.g., enter a number,

 or enter response.

 DIR("A",#) Type: Input

 (Optional) If you want to issue a longer message before actually reading the input, you can

 set the DIR("A",#) array in addition to DIR("A"). The #'s must be numeric.

 DIR("B") Type: Input

 (Optional) Set this variable to the default response for the prompt issued.

 DIR("L",#) Type: Input

 (Optional) Only applies to set-of-codes fields. Lets you replace the standard vertical

 listing of codes that the Reader displays with your own listing.

 DIR("S") Type: Input

 (Optional) Use the DIR("S") variable to screen the allowable responses for pointer, set of

 codes, and list/range reads.

 DIR("T") Type: Input

 (Optional) Time-out value to be used in place of DTIME. Value is represented in seconds.

 DIR("?") Type: Input

 (Optional) This variable contains a simple help prompt which is displayed to the user when

 one question mark is entered.

 DIR("?",#) Type: Input

 (Optional) This array allows the user to display more than one line of help when the user

 types a single question mark.

 DIR("??") Type: Input

 (Optional) This variable, if defined, is a two-part variable. The first up-arrow piece may

 contain the name of a help frame.

 X Type: Output

 This is the unprocessed response entered by the user. It is always returned.

 Y Type: Output

 Y is always defined as the processed output.

 Date The date/time in VA FileMan format. End-of-page Y=1 for continue (user pressed <RET>).

 Y=0 for exit (the user pressed up-arrow). Y="" for time out (the user timed out). Free-text

 The data typed in by the user. In this case, it is the same as X. List or range The list of

 numeric values, delimited by commas and ending with a comma.

 If the C flag was not included in the first piece of DIR(0), an expanded list of numbers,

 including each individual number in a range, is returned. If the C flag was included, a

 compressed list that uses the hyphen syntax to indicate a range of numbers is returned.

 Any leading zeros or trailing zeros following the decimal point are removed; i.e., only

 canonic numbers are returned. If the list of returned numbers has more than 245 characters,

 integer-subscripted elements of Y [Y(1), Y(2), etc.] contain the additional numbers. Y(0) is

 always returned equal to Y. Numeric The canonic value of the number entered by the user;

 i.e., leading zeros are deleted and trailing zeros after the decimal are deleted. Pointer

 The normal value of Y from a DIC lookup, that is, Internal Entry Number^Entry Name. If the

 lookup was unsuccessful, Y=-1. Set of Codes The internal value of the response. Yes/No Y=1

 for yes. Y=0 for no DD (#,#) The first ^-piece of Y contains result of the variable X after

 it has been passed through the input transform of the field specified. Depending on the data

 type involved, subsequent ^-pieces may contain additional information. The following list

 summarizes the values of Y upon timeout, up-arrows, or <RET>s for all reads. Exceptions are

 noted.

 Condition Value of Y Comments Timeout Y="" -- Up-arrow (^) Y=^ in all cases except

 end-of-page reads. Y=0 upon end-of-page reads. -- Double Up-arrow (^^) Y=^^ -- Return Y=""

 for optional reads (reads allowing a null response). Y=-1 for pointer reads. Y=0 for YES/NO

 type when NO is default. Y=1 for YES/NO type when YES is default. Y=1 for end-of-page reads.

 Y=default when a default is provided other than forYES/NO type questions.

 Y(0) Type: Output

 This is defined for the set of codes, list, pointer, date, and Yes/No reads. It is also

 returned for DD reads when the field has a set of codes, pointer, variable pointer, or date

 data type.

 DTOUT Type: Output

 If the read has timed-out, then DTOUT is defined.

 DUOUT Type: Output

 If the user entered a leading up-arrow, DUOUT is defined.

 DIRUT Type: Output

 If the user enters a leading up-arrow, times out, or enters a null response, DIRUT is

 defined.

 DIROUT Type: Output

 If the user entered two up-arrows, DIROUT is defined.

 DIR("PRE") Type: Input

 (Optional) This variable contains M code that acts as a pre-validation transform. It can

 either change X, in which case the reader will proceed as though the new value is what the

 user entered, or kill X, in which case the reader will behave as though the user entered an

 illegal value. DIR("PRE") is executed almost immediately after the READ takes place, just

 after DTOUT is set if the READ timed out, and before any other checking is done. The only

 inputs are X and DTOUT, and the only outputs are X and DTOUT.

 DIR is a general purpose response reader that can be used to issue a prompt, read input interactively, perform

 syntax checking on the input, issue error messages or help text, and return input in a processed form. Its use

 is recommended to standardize user dialogue and to eliminate repetitive coding. DIR is reentrant: A DIR call

 may be made from within a DIR call. To reenter DIR, use the NEW command to save the DIR array (NEW DIR) before

 setting input variables and making the second call.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10027

 NAME: Classic FileMan API: Search File Entries

 USAGE: Supported ENTERED: NOV 16,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Search option for a specified file.

 ROUTINE: DIS

 COMPONENT: EN

 VARIABLES: DIC Type: Input

 (Required) The global root of the file in the form ^GLOBAL(or ^GLOBAL(#, or the number of

 the file.

 You can call the Search File Entries option of VA FileMan for a given file when you want the user to be able to

 specify the search criteria.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10028

 NAME: Classic FileMan API: Text Editing

 USAGE: Supported ENTERED: APR 28,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 This routine is used to edit word processing text using VA FileMan's editors.

 ROUTINE: DIWE

 COMPONENT: EN

 VARIABLES: DIC Type: Input

 The global root of where the text is located.

 DWLW Type: Input

 (Optional) This variable indicates the maximum number of characters that will be stored on a

 word-processing global node. When the user enters text, the input line will not be broken to

 DWLW-characters until after <RET> is pressed. So, if DWLW=40 and the user types 90 characters

 before pressing <RET>, the text would be stored in three lines in the global. If this

 variable is not set, the default value is 245. This variable is always killed by FileMan.

 DWPK Type: Input

 (Optional) This variable determines how lines that are shorter than the maximum line length

 (set by DWLW) are treated by VA FileMan. It can be set to 1 or 2. This variable is always

 killed by FileMan.

 DWPK=1 If the user enters lines shorter than the maximum line length in variable DWLW, the

 lines will be stored as is; they will not be joined. If lines longer than DWLW are entered,

 the lines will be broken at word boundaries.

 DWPK=2 If the user types lines shorter than the maximum line length in variable DWLW, the

 lines will be joined until they get to the maximum length; the lines are "filled" to DWLW in

 length. If the lines are longer than DWLW, they will be broken at word boundaries. This is

 the default used if DWPK is not set prior to the EN^DIWE call.

 DIWEPSE Type: Input

 (Optional) If this variable is defined, before entering the Preferred Editor if the Preferred

 Editor is not the Line Editor, the user receives the following prompt:

 Press RETURN to continue or '^' to exit: Set this variable if you want to allow the user

 to read information on the screen before the display is cleared by a screen-oriented editor.

 The variable is always killed by VA FileMan.

 DIWESUB Type: Input

 (Optional) The first 30 characters of this variable are displayed within angle brackets (<

 and >) on the top border of the Screen Editor screen. This variable is killed by VA FileMan.

 DIWETXT Type: Input

 (Optional) The first IOM characters of this variable are displayed in high intensity on the

 first line of the Screen Editor screen. This variable is killed by VA FileMan.

 DDWLMAR Type: Input

 (Optional) This variable indicates the initial column position of the left margin when the

 Screen Editor is invoked. The user can subsequently change the location of the left margin.

 This variable is killed by VA FileMan.

 DDWRMAR Type: Input

 (Optional) This variable indicates the initial column position of the right margin when the

 Screen Editor is invoked. The user can subsequently change the location of the right margin.

 This variable is killed by VA FileMan.

 DDWRW Type: Input

 (Optional) This variable indicates to the Screen Editor the line in the document on which the

 cursor should initially rest. This variable has effect only if the user's preferred editor is

 the Screen Editor and applies only when the Screen Editor is first invoked. If the user

 switches from the Screen Editor to another editor, and then back to the Screen Editor, the

 cursor always rests initially on line 1.

 If this variable is set to "B", the cursor will initially rest at the bottom of the document

 and the value of DDWC described below is ignored. The default value of DDWRW is 1. This

 variable is killed by VA FileMan.

 DDWC Type: Input

 (Optional) This variable indicates to the Screen Editor the initial column position of the

 cursor. The same restrictions described above for DDWRW apply to DDWC.

 If this variable is set to "E", the cursor will initially rest at the end of the line defined

 by DDWRW. The default value of DDWC is 1. This variable is killed by VA FileMan.

 DDWAUTO Type: Input

 (Optional) This variable can be set to an interval in minutes that the Screen Editor should

 automatically save the text for the user. It can be an integer between 1 and 120. If set to

 0, no autosave occurs. The setting takes effect for only the current invokation of the Screen

 Editor and can be changed by the user via the <PF1><PF1>S key sequence. The default value of

 DDWAUTO is 0. This variable is killed by FileMan.

 DDWTAB Type: Input

 (Optional) This variable indicates to the Screen Editor the initial tab stop positions. The

 setting takes effect for only the current invokation of the Screen Editor and can

 subsequently be changed by the user via the <PF1><PF1><Tab> key sequence.

 To set individual tab stops, set DDWTAB to a series of numbers separated by commas; for

 example,

 DDWTAB = "4,7,15,20"

 sets tab stops at columns 4, 7, 15, and 20. To set tab stops at repeated intervals after the

 last stop, or after column 1, type the interval as +n; for example,

 DDWTAB = "10,20,+5"

 sets tab stops at columns 10, 20, 25, 30, 35, etc.

 If not passed, the Screen Editor assumes DDWTAB = "+8"; that is, it initially sets tab stops

 at columns 1, 9, 17, 25, etc. This variable is killed by FileMan.

 DWDISABL Type: Input

 (Optional) This variable can be used to disable specific Line Editor commands. For example,

 if DWDISABL contains "P", then the Print command in the Line Editor is disabled. This

 variable is killed by FileMan.

 DDWFLAGS Type: Input

 (Optional) Flags to control the behavior of the Screen Editor. The possible values are:

 M - Indicates that the Screen Editor should initially be in NO WRAP Mode when invoked.

 Q - Indicates that if the user attempts to Quit the editor with <PF1>Q, the confirmation

 message "Do you want to save changes?" is NOT asked.

 R - Indicates that the Screen Editor should initially be in REPLACE mode when invoked.

 This variable is killed by FileMan.

 This routine is used to edit word processing text using VA FileMan's editors. If the user has established a

 Preferred Editor, through Kernel, that editor is presented for use. VA FileMan's editors expect the text to

 contain only printable ASCII characters.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10029

 NAME: Classic FileMan API: Output Last Line of Text

 USAGE: Supported ENTERED: NOV 16,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Use ^DIWW to output the remaining text left in ^UTILITY($J,"W") by ^DIWP to the current device. The ^DIWW entry point is

 designed to be used in conjunction with the ^DIWP entry point.

 ROUTINE: DIWW

 COMPONENT: DIWW

 VARIABLES: Use ^DIWW to output the remaining text left in ^UTILITY($J,"W") by ^DIWP to the current device. The ^DIWW entry

 point is designed to be used in conjunction with the ^DIWP entry point.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10030

 NAME: DD VERSION NODE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT: DD(ifn,0,'VR')

 DESCRIPTION: TYPE: File

 ^DD(ifn,0,'VR')

 Read only access.

 This optional node is created during an init at the discretion of the developer. The developer can specify which files

 should have their version numbers updated. If the developer fails to update the version number, the previous version

 number will remain in this node. Developers must update this node to the current version for nationally supported

 software.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10031

 NAME: ScreenMan API: Form Processor

 USAGE: Supported ENTERED: NOV 18,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 You can call this entry point directly from a MUMPS routine to invoke the specified form.

 ROUTINE: DDS

 COMPONENT: DDS

 VARIABLES: DDSFILE Type: Input

 (Required) The number or global root of the Primary File of the form.

 DR Type: Input

 (Required) The name of the form (an entry in the Form file) enclosed in square brackets.

 DA Type: Input

 (Optional) The record number of the file entry to display or edit. If DA is null or

 undefined, the form must either contain no data dictionary fields or have a Record Selection

 page, which is the first page ScreenMan presents to the user and is where the user can select

 a record from the file.

 DDSPAGE Type: Input

 (Optional) The Page Number of the first page to display to the user. If '$G(DDSPAGE), a page

 with a Page Number equal to 1 must exist on the form, and that is the first page ScreenMan

 presents to the user.

 DDSPARM Type: Input

 (Optional) A string of alphabetic characters that control ScreenMan's behavior are listed

 below:

 C Return the variable DDSCHANG=1 if ScreenMan detects that the user saved a Change to the

 database. E Return Error messages in ^TMP("DIERR",$J), and return DIERR if ScreenMan

 encounters problems when initially trying to load the form. If DDSPARM does not contain an

 "E", ScreenMan prints messages directly on the screen, and returns the variable DIMSG equal

 to null. S Return the variable DDSSAVE=1 if the user pressed <PF1>S or <PF1>E, or entered an

 "Exit" or "Save" command from the Command Line, whether or not any changes were actually made

 on the form.

 DDSFILE(1) Type: Input

 (Required) Contains the subfile number or the global root of the subfile.

 DA(1) ... Type: Input

 The DA array, where DA is the subrecord number at the deepest level and DA(n) is the record

 number at the top level.

 DDSCHANG Type: Output

 $G(DDSCHANG)=1, if the DDSPARM input variable to ^DDS contains a "C" and ScreenMan detects

 that the user saved a change to the database.

 DDSSAVE Type: Output

 $G(DDSSAVE)=1, if the DDSPARM input variable to ^DDS contains an "S" and the user pressed

 <PF1>E or <PF1>S, or issued the "Save" or "Exit" command from the Command Line.

 DIMSG Type: Output

 $D(DIMSG)>0, if the form could not be loaded, and the DDSPARM input variable to ^DDS does not

 contain an "E".

 DTOUT Type: Output

 $D(DTOUT)>0, if the user times out during the editing session.

 This routine invokes a ScreenMan form attached to the specified file. ScreenMan automatically uses incremental

 locks to lock all records accessed during an editing session.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10032

 NAME: Classic FileMan API: File Access Determination

 USAGE: Supported ENTERED: NOV 13,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Used to determine if a user has access to a file.

 ROUTINE: DIAC

 COMPONENT: DIAC

 VARIABLES: DIFILE Type: Input

 (Required) The file number of the file on which you want to verify file access.

 DIAC Type: Both

 Input: (Required) Use one of the values listed below to verify the specified type of file

 access:

 "RD" Verify Read access to a specific file. "WR" Verify Write access to a specific file.

 "AUDIT" Verify Audit access to a specific file. "DD" Verify DD access to a specific file.

 "DEL" Verify Delete access to a specific file. "LAYGO" Verify LAYGO access to a specific

 file.

 Output: Either 0 or 1. 1 = user has the type of access. 0 = user does not have the type of

 access.

 % Type: Output

 Either a 0 or 1.

 1 = user has the type of access. 0 = user does not have the type of access.

 Used to determine if a user has access to a file.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10033

 NAME: Other API: Filegram

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Generates a filegram.

 ROUTINE: DIFGG

 COMPONENT: EN

 VARIABLES: DIFGT Type: Input

 (Required) This variable must equal the internal entry number in the Print Template file of

 the filegram template that defines the data to be sent.

 DIFG("FE") Type: Input

 (Required) This variable must equal the internal number in the base file of the entry to be

 sent.

 Type:

 DIFG("FUNC Type: Input

 (Required) This variable must equal A, M, L or D. The meanings of these codes, which indicate

 the mode of the filegram, are:

 A ADD (force an add) M MODIFY L LAYGO D DELETE

 DIFG("FGR" Type: Input

 (Optional) Set this variable equal to the root of the global or local array in which the

 filegram will be built. The default is ^UTILITY("DIFG",$J, if this variable is not defined.

 DILC Type: Input

 (Optional) One less than the first subscript to generate. Default=0.

 DITAB Type: Input

 (Optional) Initial indentation level for filegram text.

 DIFGER Type: Output

 This output variable is defined if an error has occurred. Its possible values are:

 A required variable was not passed. A variable's format is invalid. A variable's content is

 invalid.

 Filegram generator.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10034

 NAME: Other API: Filegram

 USAGE: Supported ENTERED: NOV 17,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Used to to install filegrams.

 ROUTINE: DIFG

 COMPONENT: DIFG

 VARIABLES: DIFGLO Type: Input

 (Required) This variable must be the global root of the filegram to be installed.

 DIADD Type: Input

 (Optional) If this variable is defined, a new entry will be created in the base file.

 DINUM Type: Input

 (Optional) Entry number in base file at which new file entry, if added, will be created.

 DIFGER Type: Output

 This output variable is defined if an error has occurred.

 DIFGY Type: Output

 ^DIFG always returns DIFGY. DIFGY can have one of the following values:

 DIFGY=-1 Indicates that the lookup on the initial file processed (the base file) was

 unsuccessful.

 DIFGY=N^F Where N is the internal number of the entry in the base file and F is the base

 file's number.

 DIFGY=N^F^1 Where N and F are defined as above and 1 indicates that a new entry has been

 added to the base file.

 Used to to install filegrams.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10142

 NAME: Classic FileMan API: Loader

 USAGE: Supported ENTERED: APR 11,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Designed as a replacement for simple WRITE statements in any part of the data dictionary that has a programming 'hook', such

 as executable help.

 ROUTINE: DDIOL

 COMPONENT: EN

 VARIABLES: VALUE Type: Input

 (Optional) If there is just one line of text to output, it can be passed in the first

 parameter.

 .ARRAY Type: Input

 (Optional) If there is more than one line of text to output, stored in a local array, then

 the first parameter of the call is the name of the local array passed by reference and that

 contains string or numeric literals, where:

 ARRAY(1) = string 1

 ARRAY(2) = string 2 ...

 ARRAY(n) = string n

 GLOBAL_ROO Type: Input

 (Optional) An alternate way to pass the text to the call is in a global root. In that case,

 the first parameter is null, and the second parameter contains the name of the global root

 that contains string or numeric literals, where:

 @GLOBAL_ROOT@(1,0) = string 1

 @GLOBAL_ROOT@(2,0) = string 2 ...

 @GLOBAL_ROOT@(n,0) = string n or

 @GLOBAL_ROOT@(1) = string 1

 @GLOBAL_ROOT@(2) = string 2 ...

 @GLOBAL_ROOT@(n) = string n

 FORMAT Type: Input

 (Optional) Formatting instructions controlling how the string is written or placed in the

 array. You can specify: One or more new lines before the string (!, !!, !!!, etc.) Horizontal

 position of string (?n) FORMAT can be any number of "!" characters optionally followed by

 "?n", where n is an integer expression. The default FORMAT is "!".

 This parameter can only be used when call format (1) is used to pass a single string or

 numeric literal to EN^DDIOL.

 Used as a replacement for simple WRITE statements in part of the data dictionary, such as executable help.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10149

 NAME: ScreenMan API: Form Utilities

 USAGE: Supported ENTERED: JUN 24,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 $$GET - This extrinsic function retrieves data from a data dictionary field. PUT - Stuffs data into form-only fields.

 ROUTINE: DDSVAL

 COMPONENT: $$GET

 VARIABLES: FILE Type: Input

 (Required) The global root or number of the file or subfile. At the field level, the local

 variable DIE contains the current global root.

 [.]RECORD Type: Input

 (Required) The internal entry number or an array of internal entry numbers. This parameter

 has the same form as the DA array. At the field level, the local array DA contains the

 current array of internal entry numbers.

 FIELD Type: Input

 (Required) The field name or number, or a relational expression that follows a forward

 pointer (e.g., POINTER:FIELD).

 .ERROR Type: Input

 (Optional) $D(ERROR)>1, if the function call fails.

 FLAGS Type: Input

 (Optional) Controls whether the internal or external form is returned, as shown below (the I

 and E flags have no effect if FIELD is a word processing field):

 I Return the Internal form of the data. (Default) E Return the External form of the data.

 This extrinsic function retrieves data from a data dictionary field.

 Text for a word processing field is moved into a global array, and $$GET^DDSVAL returns the closed root of that

 array. The array has the same format as a FileMan word processing field.

 Computed fields in FileMan files cannot be retrieved. To retrieve the value of a computed field defined on the

 form, use the $$GET^DDSVALF.

 Format $$GET^DDSVAL(FILE,[.]RECORD,FIELD,.ERROR,FLAGS)

 COMPONENT: PUT

 VARIABLES: FILE Type: Input

 (Required) The global root or number of the file or subfile. At the field level, the local

 variable DIE contains the current global root.

 [.]RECORD Type: Input

 (Required) The internal entry number or an array of internal entry numbers. This parameter

 has the same form as the DA array. At the field level, the local array DA contains the

 current array of record numbers.

 FIELD Type: Input

 (Required) The field name or number.

 VALUE Type: Input

 (Required) The value to stuff into the data dictionary field. If FLAGS (described below) does

 not contain an "I", the value must be in the form of a valid, unambiguous user response.

 If FIELD is a word processing field, VALUE must be the closed root of the array that contains

 the text. The subscripts of the nodes below the root must be positive numbers, though they

 need not be integers, and there can be gaps in the sequence. The text must be in these nodes

 or in the 0 node descendent from these nodes.

 If FIELD is a multiple field, VALUE determines the subrecord to display to the user as a

 default for selection. It is not a value that is ever filed. VALUE can be "FIRST", "LAST",

 or the specific internal entry number of the subrecord to display. "FIRST" indicates that the

 subrecord with the lowest internal entry number should be displayed, and "LAST" indicates

 that the subrecord with the highest internal entry number should be displayed.

 .ERROR Type: Input

 (Optional) $D(ERROR)>1, if the procedure call fails.

 FLAGS Type: Input

 Indicates whether VALUE is in internal or external form, as shown below:

 A Append new word processing text to the current text. This flag can be used only when

 stuffing text into word a processing field. If the A flag is not sent, the current word

 processing text is completely erased before the new text is added. I VALUE is in Internal

 form; it is not validated. E VALUE is in External form. (Default) (Optional) The I and E

 flags have no effect when FIELD is a word processing field.

 This procedure stuffs data into a data dictionary field as part of ScreenMan's transaction. The data passed to

 this procedure is filed in the database only when the user explicitly saves changes.

 Format PUT^DDSVAL(FILE,[.]RECORD,FIELD,VALUE,.ERROR,FLAGS)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10150

 NAME: ScreenMan API: Form Utilities

 USAGE: Supported ENTERED: JUN 24,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Help Messages: HLP, MSG; Refresh Screen: REFRESH; Run-Time Field Status: REQ, UNED Utilities.

 ROUTINE: DDSUTL

 COMPONENT: HLP()

 VARIABLES: STRING Type: Input

 (Required) The message to print in the Command Area.

 .STRING Type: Input

 (Required) An array of messages to print in the Command Area. STRING(1), STRING(2), ...,

 STRING(n) each contain a line of text.

 This procedure prints messages in the Command Area.

 Formats HLP^DDSUTL(STRING) HLP^DDSUTL(.STRING)

 COMPONENT: MSG()

 VARIABLES: STRING Type: Input

 (Required) The message to print in the Command Area.

 .STRING Type: Input

 (Required) An array of messages to print in the Command Area. STRING(1), STRING(2), ...,

 STRING(n) each contain a line of text.

 This procedure prints Data Validation messages on a separate screen.

 Formats MSG^DDSUTL(STRING) MSG^DDSUTL(.STRING)

 COMPONENT: REFRESH

 VARIABLES: None Type:

 This entry point repaints all pages on the screen.

 You can use this entry point only within a ScreenMan form, and only in:

 Field level Pre Action Field level Post Action Field level Branching Logic Field level Data Validation Format

 REFRESH^DDSUTL

 COMPONENT: REQ()

 VARIABLES: FIELD Type: Input

 (Required) The Field Order number, Caption, or Unique Name of the field.

 BLOCK Type: Input

 (Required at the page and form levels) The Block Order or Block Name. The default is the

 current block.

 PAGE Type: Input

 (Required at the form level) The Page Number or Page Name. The default is the current page.

 VALUE Type: Input

 (Required) The value to give the REQUIRED property, listed as follows: "" Restore the

 REQUIRED property to the value defined in the Block file. 0 Make the field not required. 1

 Make the field required.

 IENS Type: Input

 (Required at the page and form levels) The standard IENS that identifies the entry or

 subentry associated with the form-only field. The default is the current entry or subentry.

 This procedure changes the REQUIRED property of a field on the form.

 Format REQ^DDSUTL(FIELD,BLOCK,PAGE,VALUE,IENS)

 COMPONENT: UNED()

 VARIABLES: FIELD Type: Input

 (Required) The Field Order number, Caption, or Unique Name of the field.

 BLOCK Type: Input

 (Required at the page and form levels) The Block Order or Block Name. The default is the

 current block.

 PAGE Type: Input

 (Required at the form level) The Page Number or Page Name. The default is the current page.

 VALUE Type: Input

 (Required) The value to give the DISABLE EDITING property, shown below:

 "" Restore the DISABLE EDITING property to the value as defined in the Block file. 0 Enable

 editing, and allow the user to navigate to the field. 1 Disable editing, and prevent the

 user from navigating to the field. 2 Disable editing, but allow the user to navigate to the

 field.

 IENS Type: Input

 (Required at the page and form levels) The standard IENS that identifies the entry or

 subentry associated with the form-only field. The default is the current entry or subentry.

 This procedure changes the DISABLE EDITING property of a field on the form.

 Format UNED^DDSUTL(FIELD,BLOCK,PAGE,VALUE,IENS)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10151

 NAME: Extract Tool API

 USAGE: Supported ENTERED: JUN 24,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 The Extract Tool lets you move or copy records from one VA FileMan file to another; a typical use is to archive records.

 ROUTINE: DIAXU

 COMPONENT: EN

 VARIABLES: DIAXF Type: Both

 Input: (Required) The number of the file that contains the source entry.

 Output: Not killed upon exit.

 DIAXT Type: Both

 Input: (Required) The extract template name enclosed in brackets in the source file that

 contains specifications of data to be extracted.

 Output: Not killed upon exit.

 DIAXDEL Type: Both

 Input: (Optional) This variable, if defined, tells the program to delete the source entry. If

 not defined, the source entry is unchanged.

 Output: Not killed upon exit.

 DIAXDA Type: Output

 Internal entry number of entry created in the destination file. In addition to DIAXDA,

 ^TMP("DIAXU",$J,"RESULT",DIAXF,DIAXFE)=DIAXDA is returned.

 DIAXNTC Type: Output

 No longer returned. For batch processing of extracts, you should use the EXTRACT^DIAXU entry

 point instead of this one.

 DIAXFE Type: Both

 Input: (Required) Internal entry number of the source entry from which data will be

 extracted.

 Output: Not killed upon exit.

 DIERR Type: Output

 Contains the following two ^-pieces of information:

 Number of errors generated during the call Total number of lines of the error messages

 In addition, the following "RESULT","ERR" node is returned:

 ^TMP("DIAXU",$J,"RESULT","ERR",file#,ien)

 TMP("DIERR Type: Output

 Errors information is returned in ^TMP("DIERR",$J), in the same format error information is

 returned for DBS calls.

 This entry point extracts data specified in the extract template for a single entry, and moves that data to a

 destination file.

 COMPONENT: EXTRACT()

 VARIABLES: FILE Type: Input

 (Required) File number of source file.

 SOURCE Type: Input

 (Required) Can be 1 of 2 formats: IEN: The record number of a single record, at the top level

 of the file, to extract. Search template name: The name of a search template, in brackets,

 that contains SEARCH results (a list of record numbers). For example, S

 SOURCE="[TEMPLATE_NAME]"

 EXTRACT_TE Type: Input

 (Required) The name of the Extract Template, in brackets, containing what fields to move.

 FLAGS Type: Input

 (Optional) A string of characters to modify the behavior of the Extract tool. Permissible

 characters in the string are: D Tells the extract tool to delete source records if they were

 moved successfully. Note that deletion is only done for entire (top-level) records.

 Subrecords are not individually deleted, even if they are individually extracted.

 .SCREENS Type: Input

 (Optional) Local array containing screen(s) to apply to subrecords at various subrecord

 levels. The screens determine whether to move individual subrecords at a given level or not.

 .FILING_LE Type: Input

 (Optional) Local array you can use to tell the Extract tool to file subrecords as individual

 transactions, at one or more subfile levels. The default filing mode is to file an entire

 record, including all subrecords, as a single transaction.

 TARGET_ROO Type: Both

 Input: (Optional) Array that should receive the results generated during the extract tool

 process. This must be a closed array reference and can be either local or global. If you do

 not pass this parameter, the results are returned in ^TMP("DIAXU",$J).

 Output: One "RESULT" node is returned for each record extracted (or attempted to be

 extracted).

 MSG_ROOT Type: Both

 Input: (Optional) Array that should receive error messages generated during the extract tool

 process. This must be a closed array reference and can be either local or global. If you do

 not pass this parameter, error messages are returned in ^TMP("DIERR",$J).

 Output: Error messages are returned in MSG_ROOT("DIERR") (if the MSG_ROOT input parameter is

 passed) or ^TMP("DIERR",$J) (if no array is specified). Errors are returned in DBS-style

 format.

 DIERR Type: Output

 This variable is returned if an error condition occurred. It contains two ^-pieces of

 information: Number of errors generated during the call Total number of lines of the error

 messages Associated error messages are stored, DBS-style, in MSG_ROOT.

 Entry point for extracting data are:

 More than one record can be extracted in a call. Subrecords can be extracted as individual transactions.

 Previously, an entire record including all subrecords had to be extracted as a single entity. DBS-style error

 reporting is used.

 Format D EXTRACT^DIAXU(FILE,SOURCE,EXTRACT_TEMPLATE,FLAGS,.SCREENS,

 .FILING_LEVEL,TARGET_ROOT,MSG_ROOT)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10152

 NAME: DD('ROU')

 USAGE: Supported ENTERED: DEC 23,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT: DD('ROU')

 DESCRIPTION: TYPE: File

 ^DD("ROU") - the default maximum routine size used by FileMan when compiling input and print templates, and cross-references.

 ^DD('ROU')

 Read only access.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10154

 NAME: DESCRIPTOR BLOCK

 USAGE: Supported ENTERED: DEC 17,1997

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 0 ROOT: DD(file,field,0)

 DESCRIPTION: TYPE: File

 The 2nd piece of ^DD(filenumber,fieldnumber,0) is used in the "File Header" piece 2. This may be referenced since no FM APIs

 exist yet to return this information.

 ^piece 2

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VA FILEMAN
 ICR#: 10155

 NAME: SET OF CODES

 USAGE: Supported ENTERED: FEB 3,1998

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 0 ROOT: DD(file,field,0)

 DESCRIPTION: TYPE: File

 The 3rd piece of ^DD(filenumber,fieldnumber,0) is used in the call to Y^DIQ. This may be referenced since no FM APIs exist

 yet to return this field for input to the supported call Y^DIQ.

 ^piece 3

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10057

 NAME: COUNTY FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 5.1 ROOT: VIC(5.1,

 DESCRIPTION: TYPE: File

 ^VIC(5.1,...

 ALL Read w/Fileman

 Entire file is supported for "READ" access only.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10058

 NAME: ZIP CODE FILE

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: 5.11 ROOT: VIC(5.11,

 DESCRIPTION: TYPE: File

 ^VIC(5.11,...

 The entire file is supported for 'READ' access only.

 ROUTINE:

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10062

 NAME: VADPT6

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VADPT6

 COMPONENT: PID

 VARIABLES: Returns VA("BID") and VA("PID").

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10115

 NAME: LIST MANAGER

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 ROUTINE: LIST MANAGER

 COMPONENT: PROTOCOLS for List Manager

 VARIABLES: The following are generic actions in the PROTOCOL file. They may be attached to any application defined

 Protocol menu specified. * VALM DOWN A LINE Move down a line.

 __

 * VALM UP ONE LINE Move up a line

 __

 * VALM FIRST SCREEN This action will display the first screen.

 __

 * VALM LAST SCREEN The action will display the last items.

 __

 * VALM NEXT SCREEN This action will allow the user to view the next screen of entries, if any exist.

 __

 * VALM PREVIOUS SCREEN This action will allow the user to view the previous screen of entries, if any

 exist.

 __

 * VALM PRINT LIST This action allows the user to print the entire list of entries currently being

 displayed.

 __

 * VALM PRINT SCREEN This action allows the user to print the current List Manager display screen. The

 header and the current portion of the list are printed.

 __

 * VALM REFRESH This actions allows the user to re-display the current screen.

 __

 * VALM SEARCH LIST Finds text in list of entries.

 __

 * VALM TURN ON/OFF MENUS This toggles the menu of actions to be displayed/not displayed automatically.

 __

 * VALM GOTO PAGE This protocol will allow the user to move to any page in the list.

 __

 * VALM RIGHT This protocol will allow the user to move the screen to the right if the List Template is set

 up for a width of more then 80 characters.

 __

 * VALM LEFT This protocol will allow the user to move the screen to the left if the List Template is set

 up for a width of more then 80 characters.

 __

 * VALM QUIT This protocol can be used as a generic 'quit' action.

 __

 * VALM HIDDEN ACTIONS This menu protocol contains all the above action protocols. The developer will

 usually specify this protocol as the 'Hidden Menu' protocol in the List Template set up. The Workbench will

 automatically designate this protocol as the 'Hidden Menu' protocol when a List Template is initially created.

 __

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10116

 NAME: VALM1

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VALM1

 COMPONENT: $$SETSTR

 VARIABLES: * $$SETSTR^VALM1(STRING, DEST, COLUMN, LENGTH) This extrinsic function will setup a string for display.

 Once the string has been set up for display, it would be set in the local variable or global specified in the

 list template. (e.g. S ^TMP("SDAM",$J,SDLN)=X)

 INPUT: STRING := string to insert DEST := destination string COLUMN := insert @ col. X LENGTH :=

 clear # of chars (length)

 OUTPUT: [returned] := <string>

 Example: >S X=$$SETSTR^VALM1("This","",10,4) W !,X

 This >S X=$$SETSTR^VALM1("is",X,20,2) W !,X

 This is >S X=$$SETSTR^VALM1("an",X,30,2) W !,X

 This is an >S X=$$SETSTR^VALM1("example.",X,40,8) W !,X

 This is an example.

 COMPONENT: INSTR

 VARIABLES: * INSTR^VALM1(STRING, COLUMN, ROW, LENGTH, ERASE) This sub-routine will insert text on display screen at

 the row and column specified.

 INPUT: STRING := string to insert COLUMN := X coordinate ROW := Y coordinate LENGTH := clear

 # of characters ERASE := erase chars first

 COMPONENT: FLDUPD

 VARIABLES: * FLDUPD^VALM1(STRING, FIELD, ENTRY) This sub-routine updates a specific field of a specified list entry

 on the display screen. The field name must match a field defined in the CAPTION LINE COLUMNS multiple of the

 LIST TEMPLATE file.

 INPUT: STRING := string to insert FIELD := col. name ENTRY := line # in list

 COMPONENT: $$SETFLD

 VARIABLES: * $$SETFLD^VALM1(STRING, VARIABLE, FIELD) This sub-routine inserts the STRING at the column where the

 specific field starts in the VARIABLE string. The FIELD name must match a field defined in the CAPTION LINE

 COLUMNS multiple of the LIST TEMPLATE file.

 INPUT: STRING := string to insert VARIABLE := destination string FIELD := col. name

 OUTPUT: [returned] := <string>

 COMPONENT: CLEAR

 VARIABLES: * CLEAR^VALM1 This will change the screen from screen mode to the full scrolling region and clear the

 screen.

 This call will also turn off the following: * underline * high intensity * reverse video *

 blinking

 Use this call in programmers' mode during development to clean up the screen after an error occurs.

 COMPONENT: FULL

 VARIABLES: * FULL^VALM1 This sets the screen to the full scrolling region.

 COMPONENT: PAUSE

 VARIABLES: * PAUSE^VALM1 This will pause the screen. The call uses a ^DIR call with DIR(0) set to "E" for end of

 page. The prompt will look like:

 COMPONENT: $$UPPER

 VARIABLES: * $$UPPER^VALM1(STRING) This will convert a string from lower case to upper case.

 INPUT: STRING := string to convert

 OUTPUT: [returned] := <string>

 COMPONENT: $$LOWER

 VARIABLES: * $$LOWER^VALM1(STRING) This extrinsic function will convert a string from upper case to lower case. It

 parses the string, using a space, comma and a '/', It starts with the second character after each delimiter.

 INPUT: STRING := string to convert

 OUTPUT: [returned] := <string>

 Example:

 S X="PATIENT,ONE AND/OR PATIENT,TWO"

 S X=$$LOWER^VALM1(X)

 W X

 Patient,One And/Or Patient,Two

 If your line of text contains many consecutive spaces, it is

 often faster to execute this function as you build each portion

 the line, instead of after the line has been completely built.

 COMPONENT: RANGE

 VARIABLES: * RANGE^VALM1 This sub-routine will allow the user to change a date range.

 INPUT: DATE RANGE LIMIT field List Template file. VALMB := default beginning date {optional}

 OUTPUT: VALMBEG := beginning date in FM date format VALMEND := ending date in FM date format

 COMPONENT: $$FDATE

 VARIABLES: * $$FDATE^VALM1(Y) This extrinsic function returns a date in 'mm/dd/yy' format. (e.g. 12/12/92)

 INPUT: Y := FM date/time format

 OUTPUT: [returned] := formatted date only

 COMPONENT: $$FDTTM

 VARIABLES: * $$FDTTM^VALM1(Y) This extrinsic function returns a date/time in 'mm/dd/yy@hh:mm' format. (e.g.

 12/12/92@09:00)

 INPUT: Y := FM date/time format

 OUTPUT: [returned] := formatted date and time

 COMPONENT: $$FTIME

 VARIABLES: * $$FTIME^VALM1(Y) This extrinsic function returns a date/time in the 'mmm dd, yyyy@hh:mm' format. (e.g.

 DEC 12, 1992@09:00)

 INPUT: Y := FM date format OUTPUT: [returned] := formatted date only

 COMPONENT: $$NOW

 VARIABLES: * $$NOW^VALM1 This extrinsic date/time function returns the value of 'NOW' in external format.

 INPUT: none OUTPUT: [returned] := value of 'now' in $$FTIME^VALM1 format (e.g. Mar 06, 1993 11:15:29)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10117

 NAME: VALM10

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VALM10

 COMPONENT: FLDTEXT

 VARIABLES: * FLDTEXT^VALM10(LINE, FIELD, STRING) This sub-routine inserts the text STRING at the column where the

 specific field starts in a LINE in the list array.

 The FIELD name must match a field defined in the CAPTION LINE COLUMNS multiple of the LIST TEMPLATE file.

 INPUT: LINE := line number FIELD := column. name STRING := string to insert

 COMPONENT: SET

 VARIABLES: * SET^VALM10(LINE, STRING, ENTRY#) This sub-routine will set the LINE in the array equal to the text

 STRING. If the List Template does not define an ARRAY NAME, then this call must be used to build lines in the

 array.

 INPUT: LINE := line number STRING := string to for array line ENTRY# := entry number associated with the

 line(if

 passed, then line will also be indexed for use by the

 EN^VALM2 selection utility.) [optional]

 COMPONENT: CNTRL

 VARIABLES: * CNTRL^VALM10(LINE, COLUMN, WIDTH, ON, OFF, SAVE) This subroutine allows the developer to indicate video

 attributes for text in a list.

 INPUT: LINE := line number COLUMN := column where code should be invoked WIDTH

 := how many columns should the code be in effect for ON := beginning control sequence OFF

 := ending control sequence SAVE := 1 to save control sequence for later use

 otherwise 0 [optional]

 COMPONENT: KILL

 VARIABLES: * KILL^VALM10(LINE) This subroutine deletes video attributes. If LINE is not defined then all video

 attributes for a List Template will be deleted. If LINE is defined then only the attributes for that line are

 deleted.

 INPUT: LINE := line number

 COMPONENT: SAVE

 VARIABLES: * SAVE^VALM10(LINE) This subroutine saves the current video attributes for the indicated line.

 INPUT: LINE := line number

 COMPONENT: RESTORE

 VARIABLES: * RESTORE^VALM10(LINE) This subroutine restores the video attributes that have been saved for the

 indicated line.

 This subroutine does not re-write the line to the screen. The subroutine WRITE^VALM(LINE) should be used to

 actually write the line.

 INPUT: LINE := line number

 COMPONENT: SELECT

 VARIABLES: * SELECT^VALM10(LINE, MODE) This subroutine will highlight/unhighlight a line in the list. The call will

 set up or delete the proper video controls and then 'writes' the line to the screen.

 The 'line' passed to this call must currently be displayed on the screen.

 INPUT: LINE := line number MODE := 1 to highlight

 0 to unhighlight and restore to original state

 COMPONENT: WRITE

 VARIABLES: * WRITE^VALM10(LINE) This subroutine will re-write the line to the screen.

 INPUT: LINE := line number

 COMPONENT: FLDCTRL

 VARIABLES: * FLDCTRL^VALM10(LINE, FIELD, ON, OFF, SAVE) This subroutine will set up the appropriate video control

 sequences for a LINE in the list array based on the DEFAULT VIDEO ATTRIBUTES in the CAPTION LINE definition for

 the template.

 If FIELD is passed, then only the video attributes defined for that field will be set up.

 If ON is defined, then code in ON will be used for the video attributes instead of the default.

 If OFF is defined, then code in OFF will be used for the video attributes instead of the default.

 INPUT: LINE := line number FIELD := column name [optional] ON := beginning control sequence [optional]

 OFF := ending control sequence [optional] SAVE := 1 to save control sequence for later use

 otherwise 0 [optional]

 COMPONENT: CLEAN

 VARIABLES: * CLEAN^VALM10 This subroutine will kill the data and video control arrays associated with the active List

 template.

 This call is commonly used to kill the array related data before re- building the array.

 COMPONENT: MSG

 VARIABLES: * MSG^VALM10(MESSAGE) This call allows the developer to immediately post a message to the 'message window'

 located in the lower frame bar of the List Manager display screen.

 INPUT: MESSAGE := Text up to 50 characters. OUTPUT: [none]

 To turn off the custom message and re-display List Manager's standard message, make a call to MSG^VALM10 with

 the null string as the message[e.g. D MSG^VALMSG("")].

 To display a custom message when List Manager re-displays the screen after an action is performed, set the

 variable VALMSG to the desired message text.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10119

 NAME: VALM2

 USAGE: Supported ENTERED:
 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 ROUTINE: VALM2

 COMPONENT: EN

 VARIABLES: * EN^VALM2(VALMNOD,OPTIONS) This sub-routine is a generic selector that can be used within an action call.

 INPUT : VALMNOD := variable in XQORNOD(0) format - See Order Entry

 documentation.

 OPTIONS := selection options

 * if it contains an 'O' then selection is optional.

 Otherwise, the user must make a selection or enter

 an up-arrow.

 * if it contains a 'S', the user can only select one

 entry. Otherwise, the user can select more than

 one item.

 OUTPUT: VALMY() := array with select entries as subscripts

 In order to use this call, the List Manager ENTRY CODE will need to set up the @VALMAR@("IDX") index array. For

 more information on setting up this array, see the section on 'Setting Up a List Template - MUMPS Code Edit.'.>

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VETERANS ADMINISTRATION
 ICR#: 10139

 NAME: VAFADDR

 USAGE: Supported ENTERED: MAR 7,1994

 STATUS: Active EXPIRES:
 DURATION: VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 See in routine documentation.

 ROUTINE: VAFADDR

 COMPONENT: ZIPIN

 VARIABLES: Input transform for zip code fields to allow 5 digit zip or ZIP+4 to be entered.

 COMPONENT: ZIPOUT

 VARIABLES: Output transform to display zip code in zip code in 12345 or 12345-6789 format.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 4090

 NAME: VISTALINK SUPPORTED CALLS

 USAGE: Supported ENTERED: JUN 16,2003

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Supported reference to allow other packages to access VistALink application developer calls. These calls address XML

 processing and RPC timeout handling.

 XML processing call tags

 ========================

 $$XMLHDR() $$CHARCHK(STR)

 RPC timeout handling call tags

 ==============================

 $$STOP() $$GETTO()

 $$SETTO(TO)

 ROUTINE: XOBVLIB

 COMPONENT: $$XMLHDR()

 VARIABLES: $$XMLHDR() Type: Output

 Output is the current XML header.

 Provides the current XML standard header.

 Example:

 DEV> W $$XMLHDR^XOBVLIB <?xml version="1.0" encoding="utf-8" ?>

 COMPONENT: $$CHARCHK(STR)

 VARIABLES: STR Type: Input

 Input:

 STR - string of characters to input

 $$CHARCHK(Type: Output

 Output string of characters with XML entities replacing character limits.

 Performs character resolution to replace XML character limits with XML entities.

 Example:

 DEV>W $$CHARCHK^XOBVLIB("This is an example of what call <charchk> does.")

 This is an example of what call <charchk> does.

 COMPONENT: $$STOP()

 VARIABLES: Type:

 $$STOP() Type: Output

 Indicator to stop processing (value = 1) or continue processing (value = 0).

 Used by the application to determine if processing should stop. Below are the development steps an application

 would use:

 RPC Time Out Process

 ====================

 Step Where Description

 ==== ===== ===========

 1 Client Set time out property at

 RpcRequest.setRpcClientTimeOut(int)

 [int :: number of seconds]

 2 Server Periodically check if timed out or

 system needs for process to stop by

 calling $$STOP^XOBVLIB()

 [returns ;: 1 - stop processing

 0 - continue processing]

 3 Client Catch RpcTimeOutFaultException

 [Related DIALOG Entry :: 182007]

 COMPONENT: $$GETTO()

 VARIABLES: $$GETTO() Type: Output

 Timeout value if it exists (in seconds) or default of 300 seconds.

 Get the current timeout value (default = 300 seconds).

 COMPONENT: $$SETTO(TO)

 VARIABLES: TO Type: Input

 TO is the RPC timeout value in seconds.

 $$SETTO(TO Type: Output

 Function sets the RPC timeout value (in seconds) and returns a 1 to indicate value

 successfully reset or 0 if not successful.

 Used to reset the RPC timeout value. Will override the current timeout setting received from the client via

 RpcRequest.setRpcClientTimeout(int) or the default.

 Note: In processing, the new timeout value will take effect the next time $$STOP^XOBVLIB() is called.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5178

 NAME: gov.va.med.vistalink.adapter.cci.VistaLinkConnectionFactory

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class VistaLinkConnectionFactory extends java.lang.Object implements javax.resource.cci.ConnectionFactory,

 java.io.Serializable, javax.resource.Referenceable.

 This implementation class provides an interface for getting connection to an EIS instance. It should be retrieved via JNDI

 lookup from the J2EE container.

 ROUTINE:

 COMPONENT: getConnection()

 VARIABLES: connection Type: Input

 javax.resource.cci.ConnectionSpec: For J2EE only. Pass in a VistALink connectionSpec

 implementation to identify the end-user under whose identity to execute RPCs. For J2SE, use

 the no-arg version of this method.

 return val Type: Output

 javax.resource.cci.Connection: returns a handle to a connection from the connection pool.

 throws Type: Output

 throws javax.resource.ResourceException.

 public javax.resource.cci.Connection getConnection() throws javax.resource.ResourceException

 Gets a VistaLinkConnection handle for J2SE mode (no argument)

 public javax.resource.cci.Connection getConnection(javax.resource.cci.ConnectionSpec connectionSpec) throws

 javax.resource.ResourceException

 Gets a VistaLink connection in J2EE mode (connection spec argument).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5179

 NAME: gov.va.med.vistalink.adapter.cci.VistaLinkConnection

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public interface VistaLinkConnection extends javax.resource.cci.Connection: This interface represents an application level

 connection handle that is used by a component to access an EIS instance.

 ROUTINE:

 COMPONENT: executeRpc()

 VARIABLES: request Type: Input

 gov.va.med.vistalink.rpc.RpcRequest: The request being made.

 return Type: Output

 returns gov.va.med.vistalink.rpc.RpcResponse: the response that is returned

 throws Type: Output

 throws: VistaLinkFaultException - thrown if an error occurred on M while processing the

 request. FoundationsException - thrown if an internal adapter exception has occurred.

 gov.va.med.vistalink.rpc.RpcResponse executeRPC(gov.va.med.vistalink.rpc.RpcRequest request) throws

 gov.va.med.vistalink.adapter.record.VistaLinkFaultException, gov.va.med.exception.FoundationsException:

 Executes an interaction with M using the RpcResponseFactory to construct a response.

 COMPONENT: getConnectionInfo()

 VARIABLES: return val Type: Output

 gov.va.med.vistalink.adapter.spi.VistaLinkServerInfo: value object containing information

 about the Vista Server connection.

 gov.va.med.vistalink.adapter.spi.VistaLinkServerInfo getConnectionInfo():

 Returns connection information about the host. The return value represents M VistA information for the

 connection, like address and port. For developer debugging.

 COMPONENT: getTimeOut()

 VARIABLES: return Type: Output

 returns int: time out value in milliseconds.

 int getTimeOut(): Returns current connection time out value.

 COMPONENT: setTimeOut()

 VARIABLES: timeOut Type: Input

 int: time out value to set in milliseconds. This timeout value is compared to the default

 value usually used for the connection. The greater of the two values will be used.

 void setTimeOut(int timeOut): Enables application to set time out for read operations on connections.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5180

 NAME: gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpec

 USAGE: Supported ENTERED: APR 11,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public interface VistaLinkConnectionSpec extends javax.resource.cci.ConnectionSpec

 This interface defined the common properties needed by any VistALink connection spec implementation.

 ROUTINE:

 COMPONENT: getDivision

 VARIABLES: return Type: Output

 java.lang.String: Returns the division (station#) of this ConnectionSpec.

 java.lang.String getDivision(): Returns the division of this ConnectionSpec.

 COMPONENT: setDivision

 VARIABLES: division Type: Input

 java.lang.String division: the division number to be set.

 void setDivision(java.lang.String division): sets the division (station #) of the connection spec.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5226

 NAME: gov.va.med.vistalink.security.m.VistaKernelPrincipal

 USAGE: Supported ENTERED: JUL 1,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public interface VistaKernelPrincipal extends java.security.Principal

 Provides an interface to marks a principal that represents a logged on Kernel user on an M system. Upon a successful JAAS

 login, one or more principals may be contained in the JAAS subject that is returned from a successful JAAS login (only one

 Kernel principal should be returned, however. The situation in which multiple principals could be returned is if some kind

 of compound logon has been set up that requires several logons to complete, for example one to Kernel, and one to a separate

 health data repository). The VistaKernelPrincipal interface is a marker you can use to identify a "VistaKernelPrincipal" as

 one of those principals. However, an easier approach is to use the helper method getKernelPrincipal in

 gov.va.med.vistalink.security.VistaKernelPrincipalImpl to directly retrieve the single VistaKernelPrincipal.

 ROUTINE:

 COMPONENT: getUserDemographicValue

 VARIABLES: key Type: Input

 java.lang.String key: The key under which the demographic value is stored.

 return Type: Output

 return java.lang.String: String the value of the demographic value requested.

 java.lang.String getUserDemographicValue(java.lang.String key): Returns a given user demographic value. Use the

 various KEY* field strings defined by this class to retrieve various values.

 COMPONENT: getName

 VARIABLES: return Type: Output

 returns value java.lang.String: the user name (from the New Person .01 field) of the

 Principal.

 java.lang.String getName(): get the Principal's full name from the New Person .01 field.

 COMPONENT: KEY_DIVISION_IEN

 VARIABLES: static final java.lang.String KEY_DIVISION_IEN: map key to store/retrieve division station IEN from

 userDemographicsHashTable.

 COMPONENT: KEY_DIVISION_STATION_NAME

 VARIABLES: static final java.lang.String KEY_DIVISION_STATION_NAME: map key to store/retrieve division station name from

 userDemographicsHashTable

 COMPONENT: KEY_DIVISION_STATION_NUMBER

 VARIABLES: static final java.lang.String KEY_DIVISION_STATION_NUMBER: map key to store/retrieve division station number

 from userDemographicsHashTable

 COMPONENT: KEY_DOMAIN_NAME

 VARIABLES: static final java.lang.String KEY_DOMAIN_NAME: map key to store/retrieve domain name from

 userDemographicHashTable

 COMPONENT: KEY_DTIME

 VARIABLES: static final java.lang.String KEY_DTIME: map key to store/retrieve user timeout value from

 userDemographicsHashTable

 COMPONENT: KEY_DUZ

 VARIABLES: static final java.lang.String KEY_DUZ: map key to store/retrieve DUZ from userDemographicsHashTable

 COMPONENT: KEY_LANGUAGE

 VARIABLES: static final java.lang.String KEY_LANGUAGE: map key to store/retrieve user language from

 userDemographicsHashTable

 COMPONENT: KEY_NAME_DEGREE

 VARIABLES: static final java.lang.String KEY_NAME_DEGREE: map key to store/retrieve degree from userDemographicsHashTable

 COMPONENT: KEY_NAME_DISPLAY

 VARIABLES: static final java.lang.String KEY_NAME_DISPLAY: map key to store/retrieve the display name from

 userDemographicsHashTable

 COMPONENT: KEY_NAME_FAMILYLAST

 VARIABLES: static final java.lang.String KEY_NAME_FAMILYLAST: map key to store/retrieve name component family-last from

 userDemographicsHashTable

 COMPONENT: KEY_NAME_GIVENFIRST

 VARIABLES: static final java.lang.String KEY_NAME_GIVENFIRST: map key to store/retrieve name component given-first from

 userDemographicsHashTable

 COMPONENT: KEY_NAME_MIDDLE

 VARIABLES: static final java.lang.String KEY_NAME_MIDDLE: map key to store/retrieve name component middle from

 userDemographicsHashTable

 COMPONENT: KEY_NAME_NEWPERSON01

 VARIABLES: static final java.lang.String KEY_NAME_NEWPERSON01 map key to store/retrieve New Person .01 Field name from

 userDemographicsHashTable

 COMPONENT: KEY_NAME_PREFIX

 VARIABLES: static final java.lang.String KEY_NAME_PREFIX: map key to store/retrieve name component prefix from

 userDemographicsHashTable

 COMPONENT: KEY_NAME_SUFFIX

 VARIABLES: static final java.lang.String KEY_NAME_SUFFIX map key to store/retrieve name component suffix from

 userDemographicsHashTable

 COMPONENT: KEY_SERVICE_SECTION

 VARIABLES: static final java.lang.String KEY_SERVICE_SECTION: map key to store/retrieve user service/section from

 userDemographicsHashTable

 COMPONENT: KEY_TITLE

 VARIABLES: static final java.lang.String KEY_TITLE: map key to store/retrieve user title from userDemographicsHashTable

 COMPONENT: KEY_VPID

 VARIABLES: static final java.lang.String KEY_VPID: map key to store/retrieve user VPID from userDemographicHashTable

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5227

 NAME: VistaLinkAppProxyConnectionSpec

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.adapter.cci.VistaLinkAppProxyConnectionSpec extends

 gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpecImpl implements

 gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpec, javax.resource.cci.ConnectionSpec.

 This is the connection spec class for Application Proxy re-authentication.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: division Type: Input

 java.lang.String division: The station number (e.g., "523", "523BZ", etc.) requested as the

 division under which logon/actions should be conducted for this user on the target Kernel/M

 system.

 appProxyNa Type: Input

 java.lang.String appProxyName: The Application Proxy Name identifier for the proxy user.

 public VistaLinkAppProxyConnectionSpec(java.lang.String division, java.lang.String appProxyName)

 COMPONENT: getAppProxyName

 VARIABLES: return Type: Output

 returns java.lang.String Application Proxy Name.

 java.lang.String getAppProxyName()

 COMPONENT: setAppProxyName

 VARIABLES: name Type: Input

 java.lang.String name to set the Application Proxy Name to.

 public void setAppProxyName(java.lang.String string)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5228

 NAME: gov.va.med.vistalink.adapter.cci.VistaLinkDuzConnectionSpec

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.adapter.cci.VistaLinkDuzConnectionSpec extends

 gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpecImpl implements

 gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpec, javax.resource.cci.ConnectionSpec.

 This is the connection spec class for Duz re-authentication.

 ROUTINE:

 COMPONENT: getDuz

 VARIABLES: return Type: Output

 returns java.lang.String DUZ.

 java.lang.String getDuz()

 COMPONENT: setDuz

 VARIABLES: duz Type: Input

 java.lang.String duz: DUZ to set the DUZ to for the connection spec.

 void setDuz(java.lang.String duz): Sets the DUZ.

 COMPONENT: constructor

 VARIABLES: division Type: Input

 java.lang.String division: The station number (e.g., "523", "523BZ", etc.) requested as the

 division under which logon/actions should be conducted for this user on the target Kernel/M

 system.

 duz Type: Input

 java.lang.String duz: The DUZ identifier for the end user.

 public VistaLinkDuzConnectionSpec(java.lang.String division, java.lang.String duz): constructor.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5229

 NAME: VistaLinkVpidConnectionSpec

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.adapter.cci VistaLinkVpidConnectionSpec extends

 gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpecImpl implements

 gov.va.med.vistalink.adapter.cci.VistaLinkConnectionSpec, javax.resource.cci.ConnectionSpec.

 This is the connection spec class for VPID re-authentication.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: division Type: Input

 java.lang.String division: The station number (e.g., "523", "523BZ", etc.) requested as the

 division under which logon/actions should be conducted for this user on the target Kernel/M

 system.

 vpid Type: Input

 java.lang.String vpid: the VPID identifier for the end-user.

 public VistaLinkVpidConnectionSpec(java.lang.String division, java.lang.String vpid): constructor.

 COMPONENT: getVpid

 VARIABLES: return Type: Output

 returns java.lang.String: VPID set in the connection spec.

 public java.lang.String getVpid()

 COMPONENT: setVpid

 VARIABLES: vpid Type: Input

 java.lang.String vpid: the VPID to set for this connection spec.

 public void setVpid(java.lang.String vpid)

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5230

 NAME: VistaLinkRequestRetryStrategy

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public interface gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategy

 Base strategy interface for determining if request should be re-executed.

 ROUTINE:

 COMPONENT: execute

 VARIABLES: request Type: Input

 gov.va.med.vistalink.adapter.record.VistaLinkRequestVO request: VistaLinkRequestVO instance

 reference for the request.

 boolean execute(VistaLinkRequestVO request): Determines if it is ok to retry executing the request after it the

 failed to complete because of a socket error or other system type problem.

 COMPONENT: return

 VARIABLES: returns boolean that indicates 1) true == attempt retry or 2) false == do not attempt retry.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5231

 NAME: VistaLinkRequestRetryStrategyAllow

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategyAllow implements

 gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategy.

 Simple 'Allow' strategy implementation that indicates request should be re-executed.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: public VistaLinkRequestRetryStrategyAllow(): constructs an instance; no arguments.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5232

 NAME: VistaLinkRequestRetryStrategyDeny

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategyDeny implements

 gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategy.

 Simple 'Deny' strategy implementation that indicates request should not be re-executed.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: public VistaLinkRequestRetryStrategyDeny(): no-arg constructor constructs an instance.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5233

 NAME: gov.va.med.vistalink.adapter.record.VistaLinkRequestVO

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public interface VistaLinkRequestVO: Base request interface.

 ROUTINE:

 COMPONENT: getTimeOut

 VARIABLES: return Type: Output

 returns int: int time out value in milli-seconds.

 int getTimeOut(): Returns time out value used for communications to M RPC server.

 COMPONENT: setTimeOut

 VARIABLES: timeout Type: Input

 int timeout: Time out value to set in milli-seconds. This timeout value is compared to the

 default value usually used for the connection. The greater of the two values will be used.

 A timeout value of 0 (zero) indicates that no specific time out for the request is specified,

 and that the time out value associated with the socket should be used during socket read

 operations.

 void setTimeOut(int timeOut): Enables application to set a request-specific time out for read operations on the

 connection, for the request.

 COMPONENT: getRetryStrategy

 VARIABLES: return Type: Output

 gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategy: returns retry strategy

 instance reference.

 gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategy getRetryStrategy(): Returns current retry

 strategy reference.

 COMPONENT: setRetryStrategy

 VARIABLES: strategy Type: Input

 gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategy strategy: the

 VistaLinkRequestRetryStrategy instance representing the strategy the application wants

 implemented.

 void setRetryStrategy(gov.va.med.vistalink.adapter.record.VistaLinkRequestRetryStrategy strategy): Enables

 application to set retry strategy for request, to be used if request execution failed because of socket failure

 or other system type problems. The strategy determines if the retry should be attempted.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5234

 NAME: gov.va.med.vistalink.adapter.spi.VistaLinkServerInfo

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.adapter.spi.VistaLinkServerInfo extends java.lang.Object:

 Represents M VistA connection information, like address and port.

 ROUTINE:

 COMPONENT: getAddress

 VARIABLES: return Type: Output

 java.net.InetAddress getAddress(): Gets the current address associated with an instance.

 public java.net.InetAddress getAddress(): Gets the current IP address associated with an instance.

 COMPONENT: getPort

 VARIABLES: return Type: Output

 returns int: the current port associated with an instance.

 public int getPort(): Gets the current port associated with an instance.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5235

 NAME: gov.va.med.vistalink.institution.IPrimaryStationRules

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public interface IPrimaryStationRules: Interface for PrimaryStationRules implementations. All implementations must be

 threadsafe.

 ROUTINE:

 COMPONENT: getPrimaryStationLookupString

 VARIABLES: division Type: Input

 java.lang.String division: division (in station # format) to derive primary station from.

 return Type: Output

 returns java.lang.String: the primaryStation value derived from the division parameter, to

 use for connector lookups.

 throws Type: Output

 Throws: gov.va.med.vistalink.institution. InstitutionMappingBadStationNumberException:

 thrown if the division passed in is considered invalid.

 java.lang.String getPrimaryStationLookupString(java.lang.String division) throws

 gov.va.med.vistalink.institution.InstitutionMappingBadStationNumberExcepti on:

 Implement a method that, given a particular 'division' string (i.e., primary station plus optional division

 suffix), returns the primary Station derived from that division string.

 The primary station is used for looking up connectors, and would be the 'computing facility' for the division

 in question.

 COMPONENT: validatePrimaryStation

 VARIABLES: primarySta Type: Input

 java.lang.String primaryStation: identifier for a 'primary station', i.e., 'computing

 facility'

 throws Type: Output

 throws gov.va.med.vistalink.institution. InstitutionMappingBadStationNumberException: thrown

 if primaryStation param is considered an invalid identifier.

 void validatePrimaryStation(java.lang.String primaryStation) throws

 gov.va.med.vistalink.institution.InstitutionMappingBadStationNumberExcepti on:

 Implement a method that validates a particular 'primary station' identifier string as valid. Primary stations

 are used in VistALink to look up a connector. Therefore, the format of a valid 'primary station' identifier

 should be such that the entity or system it identifies would have one and only one connector associated with

 it.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5236

 NAME: gov.va.med.vistalink.institution.InstitutionMappingDelegate

 USAGE: Supported ENTERED: JUL 2,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.institution.InstitutionMappingDelegate extends java.lang.Object:

 Provides methods used by applications to query the institution mapping.

 ROUTINE:

 COMPONENT: getJndiConnectorNameForInstitution

 VARIABLES: stationNum Type: Input

 java.lang.String stationNumber: institution station number for Vista Institution to retrieve

 connector for.

 return Type: Output

 returns java.lang.String: Jndi Connector name, if a connector is found that is mapped to

 input station number. Use for a JNDI lookup of actual VistaLink connector.

 throws Type: Output

 Throws:

 gov.va.med.vistalink.institution.InstitutionMapNotInitializedException - thrown if the

 institution mapping has not been initialized

 gov.va.med.vistalink.institution.InstitutionMappingNotFoundException - thrown if no connector

 JNDI name has been mapped to input station number

 public static java.lang.String getJndiConnectorNameForInstitution(java.lang.String stationNumber) throws

 InstitutionMapNotInitializedException, InstitutionMappingNotFoundException:

 Returns the JNDI connector name (if found) for a division matching the station number passed in.

 COMPONENT: getVistaLinkMappedStationNumberSet

 VARIABLES: return Type: Output

 returns java.util.Set: a Set containing station# strings contained in current mapping.

 throws Type: Output

 throws:

 gov.va.med.vistalink.institution.InstitutionMapNotInitializedException: thrown if the

 institution mapping has not been initialized.

 public static java.util.Set getVistaLinkMappedStationNumberSet() throws InstitutionMapNotInitializedException:

 Returns the set of station# strings for which adapters have been deployed on the current JVM, and for which

 institution mappings currently exist. The source of the station#s in the mapping is the primaryStation

 configuration attribute, for successfully deployed adapters.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5238

 NAME: gov.va.med.vistalink.rpc.RpcReferenceType

 USAGE: Supported ENTERED: JUL 3,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class RpcReferenceType extends java.lang.Object: Represents a reference type object for an RPC parameter. Used mainly

 for RpcRequest.setParams() call to represent a 'reference' type parameter.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: value Type: Input

 java.lang.String value: Name of variable to be referenced, like DUZ (for 1-arg constructor).

 public RpcReferenceType(): default constructor.

 public RpcReferenceType(java.lang.String value): Constructs this instance with the specified value.

 COMPONENT: getValue

 VARIABLES: return Type: Output

 returns java.lang.String: the name of the variable to be referenced in the M server

 partition.

 public java.lang.String getValue(): Returns name of the variable desired in the M server partition.

 COMPONENT: setValue

 VARIABLES: value Type: Input

 java.lang.String value: The value to set.

 public void setValue(java.lang.String value): Sets the value to the name of the variable desired to be

 referenced in the M server partition.

 COMPONENT: toString

 VARIABLES: return Type: Output

 returns java.lang.String: name of the variable desired to be referenced in the M server

 partition.

 public java.lang.String toString(): override of default toString method.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5239

 NAME: gov.va.med.vistalink.rpc.RpcRequestFactory

 USAGE: Supported ENTERED: JUL 3,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class RpcRequestFactory extends java.lang.Object implements

 gov.va.med.vistalink.adapter.record.VistaLinkRequestFactory:

 Factory class to creates instances of RpcRequest.

 ROUTINE:

 COMPONENT: getRpcRequest

 VARIABLES: return Type: Output

 returns gov.va.med.vistalink.rpc.RpcRequest: an RpcRequest with a null RpcContext and

 RpcName.

 rpcContext Type: Input

 (optional 1st parameter) java.lang.String rpcContext: name of RPC context to execute RPC(s)

 under with this request.

 throws Type: Output

 Throws gov.va.med.exception.FoundationsException: currently in method signature to maintain

 backwards compatibility, but the exception is not actually thrown.

 rpcName Type: Input

 (optional second parameter) java.lang.String rpcName: name of the RPC to execute with this

 request.

 public static RpcRequest getRpcRequest() throws FoundationsException: Creates a RpcRequest with a null

 RpcContext and RpcName.

 public static RpcRequest getRpcRequest(java.lang.String rpcContext) throws FoundationsException: Creates a

 RpcRequest with the specified RpcContext and a null RpcName.

 public static RpcRequest getRpcRequest(java.lang.String rpcContext, java.lang.String rpcName) throws

 FoundationsException: Creates appropriate rpc request object to be passed into the connection.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5240

 NAME: gov.va.med.vistalink.rpc.RpcRequestParams

 USAGE: Supported ENTERED: JUL 3,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class RpcRequestParams extends java.lang.Object: Represents the collection of parameters associated with an RPC.

 ROUTINE:

 COMPONENT: clear

 VARIABLES: public void clear(): Clears the parameters.

 COMPONENT: getParam

 VARIABLES: position Type: Input

 int position: parameter position the M RPC expects this parameter.

 return Type: Output

 returns java.lang.Object: Object String or Map. A return value of null indicates that there

 is no parameter for the position.

 public java.lang.Object getParam(int position): Gets the value for a parameter associated with a specified

 position in the parameters collection. Normally, this method is not used by the client.

 COMPONENT: setParam

 VARIABLES: position Type: Input

 int position: parameter position the M RPC expects this parameter.

 type Type: Input

 java.lang.String type: type of parameter corresponding to valid M RPC types

 value Type: Input

 java.lang.Object value: value of the parameter. Possible values are the following:

 string (corresponds to 'Literal' in VA RPC Broker) array (corresponds to 'List' in VA RPC

 Broker) ref (corresponds to 'Reference' in VA RPC Broker)

 public void setParam(int position, java.lang.String type, java.lang.Object value): Sets a parameter needed by

 for a M RPC call.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5241

 NAME: gov.va.med.vistalink.rpc.RpcResponse

 USAGE: Supported ENTERED: JUL 3,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class RpcResponse extends gov.va.med.vistalink.adapter.record.VistaLinkResponseVOImpl.

 Represents a data structure which holds the response value(s).

 ROUTINE:

 COMPONENT: getResultsDocument

 VARIABLES: return Type: Output

 returns org.w3c.dom.Document

 throws Type: Output

 Throws

 gov.va.med.vistalink.rpc.RpcResponseTypeIsNotXmlException: results type must be 'xml'

 gov.va.med.exception.FoundationsException: thrown if problem generating xml DOM document from

 results string.

 public org.w3c.dom.Document getResultsDocument() throws RpcResponseTypeIsNotXmlException, FoundationsException:

 Gets an XML Document format based on the contains of the results returned by the RPC. Note: This XML document

 is created during the call to this method and not as part of the creation of the RpcResponse object.

 If calling application wants to use this method, it should use generic xml DOM interfaces from org.w3c.dom.*

 package.

 Alternatively if application wants to use this document in a specific XML parser implementation, parser should

 be able to create a specific Document implementation from org.w3c.dom.Document interface. In this case it might

 be better from performance standpiont to use getResults() and parse xml string directly.

 COMPONENT: getResults

 VARIABLES: return Type: Output

 returns java.lang.String: results string for the returned data in this response.

 public java.lang.String getResults(): Gets the results string for the returned data in this response.

 COMPONENT: getResultsType

 VARIABLES: return Type: Output

 returns java.lang.String: return type of the results sent back from the M VistAServer, either

 'string' or 'array'.

 public java.lang.String getResultsType(): gets the return type of the results sent back from the M VistAServer.

 The possible types are 'string' or 'array'.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5242

 NAME: gov.va.med.vistalink.rpc.RpcRequest

 USAGE: Supported ENTERED: JUL 3,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class gov.va.med.vistalink.rpc.RpcRequest extends gov.va.med.vistalink.adapter.record.VistaLinkRequestVOImpl.

 Represents a RPC request to an M VistA server.

 This is the principal class for use by developers to create and setup requests to the host M server.

 ROUTINE:

 COMPONENT: buildMultipleMSubscriptKey

 VARIABLES: keyValue Type: Input

 java.lang.String keyValue: Value representing the multiple M subscript structure.

 return Type: Output

 returns java.lang.String: flagged key value to be used as HashMap key.

 public static java.lang.String buildMultipleMSubscriptKey(java.lang.String keyValue): Builds and returns string

 that contains the following: an indicator that the value represents a multiple M subscript structure the actual

 multiple M subscript structure string value.

 COMPONENT: getParams

 VARIABLES: return Type: Output

 returns gov.va.med.vistalink.rpc.RpcRequestParams containing the parameters to send with the

 request.

 public gov.va.med.vistalink.rpc.RpcRequestParams getParams(): Gets the reference to the RpcRequestParamsobject

 associated with this request. This object contains the parameters sent with the call to the RPC during the

 getResponse() call. Use this object to set these parameters before calling getResponse().

 COMPONENT: setParams

 VARIABLES: list Type: Input

 java.util.List list: list of parameters for the RPC call.

 public void setParams(java.util.List list): Sets all the parameters for a RPC call at once using a List.

 COMPONENT: clearParams

 VARIABLES: public void clearParams(): Clears the params associated with this instance of RpcRequest

 COMPONENT: getRpcName

 VARIABLES: return Type: Output

 returns java.lang.String: name of the RPC associated with the request.

 public java.lang.String getRpcName(): Gets the name of the RPC.

 COMPONENT: setRpcName

 VARIABLES: value Type: Input

 java.lang.String value: name of the RPC to be called on the M server. The name must be a

 valid RPC name as it appears in the REMOTE PROCEDURE (#8994) file in M VistA.

 public void setRpcName(java.lang.String value): Sets the name of the RPC to be called on the M server. The name

 must be a valid RPC name as it appears in the REMOTE PROCEDURE (#8994) file in M VistA.

 COMPONENT: getRpcContext

 VARIABLES: return Type: Output

 returns java.lang.String name of the RPC context associated with the request.

 public java.lang.String getRpcContext(): Gets the name of the RPC Context.

 COMPONENT: setRpcContext

 VARIABLES: value Type: Input

 java.lang.String value: the name of the RPC Context to be used. The name must be a valid B-

 type OPTION name as it appears in the OPTION (#19) file in M VistA.

 public void setRpcContext(java.lang.String value): Sets the name of the RPC Context to be used. The name must

 be a valid B- type OPTION name as it appears in the OPTION (#19) file in M VistA.

 COMPONENT: getRpcClientTimeOut

 VARIABLES: return Type: Output

 returns int: the current client time out value. (Value is returned in the number of seconds).

 public int getRpcClientTimeOut(): Gets the current client time out value. (Value is returned in the number of

 seconds).

 COMPONENT: setRpcClientTimeOut

 VARIABLES: value Type: Input

 int value: client time out value. (Value is expected in seconds.)

 public void setRpcClientTimeOut(int value): Sets the client time out value. (Value is expected in seconds.)

 COMPONENT: getRpcVersion

 VARIABLES: return Type: Output

 returns double: the rpcVersion specified in the request.

 public double getRpcVersion(): Gets the current RPC version specified by application.

 COMPONENT: setRpcVersion

 VARIABLES: value Type: Input

 double value: the RPC version number. Note: Like parameters, it is up to the application code

 to set this property appropriately for each RPC request made using the RpcRequest instance.

 To unset to default, set property to 0 (zero).

 public void setRpcVersion(double value): Sets the RPC version number Note: Like parameters, it is up to the

 application code to set this property appropriately for each RPC request made using the RpcRequest instance. To

 unset to default, set property to 0 (zero).

 COMPONENT: getRequestString

 VARIABLES: return Type: Output

 returns java.lang.String: returns the proprietary or xml (depending on setting) request

 string to be sent to the M server.

 throws Type: Output

 throws

 gov.va.med.exception.FoundationsException: thrown if a failure is encountered creating

 request string from the request.

 public java.lang.String getRequestString() throws FoundationsException: Gets the proprietary request string

 COMPONENT: isXmlResponse

 VARIABLES: return Type: Output

 returns boolean: true or false depending on whether request has been set with indicator that

 result is expected in XML format.

 public boolean isXmlResponse(): Indicates whether the returned value from the RPC call is expected in XML

 format or not.

 COMPONENT: setXmlResponse

 VARIABLES: value Type: Input

 boolean value: Whether XML is the expected type of result to be returned.

 public void setXmlResponse(boolean value): Sets request indicator that the returned value from the RPC call is

 expected in XML format or not.

 COMPONENT: setUseProprietaryMessageFormat

 VARIABLES: useSink Type: Input

 boolean useSink: the RPC request should be sent to the M server in a proprietary format

 (true) or in XML format (false).

 public void setUseProprietaryMessageFormat(boolean useSink): Set the indicator that the RPC request should be

 sent to the M server in a proprietary format (true) or in XML format (false).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK
 ICR#: 5243

 NAME: vljConnector Exceptions

 USAGE: Supported ENTERED: JUL 9,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Exceptions that can be thrown from public methods of classes distributed in vljConnector jar.

 ROUTINE:

 COMPONENT: gov.va.med.vistalink.adapter.cci.VistaLinkResourceException

 VARIABLES: public class VistaLinkResourceException extends javax.resource.ResourceException implements

 gov.va.med.exception.FoundationsExceptionInterface.

 Represents a ResourceException thrown by the VistaLink adapter.

 COMPONENT: gov.va.med.vistalink.adapter.record.LoginsDisabledFaultException

 VARIABLES: public class LoginsDisabledFaultException extends gov.va.med.vistalink.adapter.record.VistaLinkFaultException.

 This exception represents the case where the M side has logins disabled; this is when the site sets the

 parameter to not allow any logins.

 COMPONENT: gov.va.med.vistalink.adapter.record.NoJobSlotsAvailableFaultException

 VARIABLES: public class NoJobSlotsAvailableFaultException extends

 gov.va.med.vistalink.adapter.record.VistaLinkFaultException.

 This exception represents the case where on the M side there are no license slots available to start another

 process.

 COMPONENT: gov.va.med.vistalink.adapter.record.VistaLinkFaultException

 VARIABLES: public class VistaLinkFaultException extends gov.va.med.exception.FoundationsException.

 Exception encapsulates Fault information coming from M side. M side can pass bak to Java error condition in the

 system Fault message. If this condition happens, VLJ creates VistaLinkFaultException and populates it's

 properties with data from the Fault message.

 COMPONENT: gov.va.med.vistalink.adapter.spi.ConnectionHandlesExceededException

 VARIABLES: public class ConnectionHandlesExceededException extends

 gov.va.med.vistalink.adapter.cci.VistaLinkResourceException.

 This exception class is thrown when a VistaLinkManagedConnection object has exceeded its maximum allowable

 connection handles.

 COMPONENT: gov.va.med.vistalink.adapter.spi.VistaLinkSocketAlreadyClosedException

 VARIABLES: public class VistaLinkSocketAlreadyClosedException extends gov.va.med.net.VistaSocketException.

 Represents a situation where, when attempting to close a socket, the socket is already closed.

 COMPONENT: gov.va.med.vistalink.adapter.spi.VistaLinkSocketClosedException

 VARIABLES: public class VistaLinkSocketClosedException extends

 gov.va.med.vistalink.adapter.cci.VistaLinkResourceException.

 This exception class is thrown when an attempt is made to access the VistaLinkManagedConnection's underlying

 VistaSocketConnection after its has been closed or invalidated.

 COMPONENT: gov.va.med.vistalink.institution.InstitutionMapNotInitializedException

 VARIABLES: public class InstitutionMapNotInitializedException extends gov.va.med.exception.FoundationsException.

 Represents an attempt to access some functionality of the InstitutionMapping instance when that instance has

 not been created.

 COMPONENT: gov.va.med.vistalink.institution.InstitutionMappingBadStationNumberException

 VARIABLES: public class InstitutionMappingBadStationNumberException extends java.lang.Exception.

 Represents a failure to create one or more institution mappings because of one or more bad station#s on which

 the mapping was to be based.

 COMPONENT: gov.va.med.vistalink.rpc.NoRpcContextFaultException

 VARIABLES: public class NoRpcContextFaultException extends gov.va.med.vistalink.rpcRpcFaultException.

 This exception represents the case where the request RPC context does not exist or the current user does not

 have access to the B-option representing the context.

 COMPONENT: gov.va.med.vistalink.rpc.RpcFaultException

 VARIABLES: public class RpcFaultException extends gov.va.med.vistalink.adapter.record.VistaLinkFaultException.

 This fault exception class is used for all rpc-related errors returned from the M system.

 COMPONENT: gov.va.med.vistalink.rpc.RpcNotInContextFaultException

 VARIABLES: public class RpcNotInContextFaultException extends gov.va.med.vistalink.rpc.RpcFaultException.

 This exception represents the case where the requested RPC is not contained in the current RPC context.

 COMPONENT: gov.va.med.vistalink.rpc.RpcNotOkForProxyUseException

 VARIABLES: public class RpcNotOkForProxyUseException extends gov.va.med.vistalink.rpcRpcFaultException.

 This exception represents the case where the requested RPC is not marked as OK for use by an application proxy

 user, but has been attempted to be invoked by one.

 COMPONENT: gov.va.med.vistalink.rpc.RpcResponseTypeIsNotXmlException

 VARIABLES: public class RpcResponseTypeIsNotXmlException extends gov.va.med.exception.FoundationsException.

 Represents an exception indicating the RpcResponse type if not XML.

 COMPONENT: gov.va.med.vistalink.rpc.RpcTimeOutFaultException

 VARIABLES: public class RpcTimeOutFaultException extends gov.va.med.vistalink.rpc.RpcFaultException.

 This exception represents the case where the RPC execution took too long on the server and the application

 gracefully stopped the RPC's processing.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityAccessVerifyCodePairInvalidException

 VARIABLES: public class SecurityAccessVerifyCodePairInvalidException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 Represents an authentication failure during an access/verify code-based re-authentication attempt, where either

 the access code, verify code (or both) authentication credentials are invalid.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityConnectionProxyException

 VARIABLES: public final class SecurityConnectionProxyException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 This exception fault is returned from M, and signifies that the connection proxy used to create the connection

 was invalid in some way, and a connection could not be established to the EIS.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityDivisionDeterminationFaultException

 VARIABLES: public class SecurityDivisionDeterminationFaultException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 Represents an authentication failure during a re-authentication attempt, in which an invalid division has been

 passed for the user on whose behalf re-authentication is being attempted. The user does not have access to the

 requested division.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityFaultException

 VARIABLES: public class SecurityFaultException extends gov.va.med.vistalink.adapter.record.VistaLinkFaultException.

 This fault exception class is used for all security-related errors returned from the M system. It represents an

 error that happened on the M system, that VistaLink does not provide a specific java exception for.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityIdentityDeterminationFaultException

 VARIABLES: public class SecurityIdentityDeterminationFaultException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 Represents an authentication failure during a re-authentication attempt, in which the credentials passed for

 re-authentication (DUZ, VPID, etc.) could not be matched with an actual Kernel user.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityIPLockedFaultException

 VARIABLES: public final class SecurityIPLockedFaultException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 This exception fault is returned from M, and signifies that the IP address has been locked due to too many

 invalid logins.user's login credentials were invalid too many times, and the M system is rejecting further

 login attempts as a result.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityPrimaryStationMismatchException

 VARIABLES: public final class SecurityPrimaryStationMismatchException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 This exception fault is returned from M, and signifies that there was a mismatch between the client primary

 station (mapped to the connector) and the primary station of the M account the connector accessed (based on the

 value of the DEFAULT INSTITUTION field of the Kernel System Parameters file).

 COMPONENT: gov.va.med.vistalink.security.m.SecurityProductionMismatchException

 VARIABLES: public final class SecurityProductionMismatchException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 This exception fault is returned from M, and signifies that there was a mismatch between the client and the

 server in the designation of each side as production or non-production.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityTooManyInvalidLoginAttemptsFaultException

 VARIABLES: public final class SecurityTooManyInvalidLoginAttemptsFaultException extends

 gov.va.med.vistalink.security.m.SecurityFaultException.

 This exception fault is returned from M, and signifies that the user's login credentials were invalid too many

 times, and the M system is rejecting further login attempts as a result.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityUserAuthorizationException

 VARIABLES: public class SecurityUserAuthorizationException extends gov.va.med.vistalink.security.m.SecurityFaultException.

 Represents an authorization failure during a re-authentication attempt, e.g., DISUSER flag is set for the

 re-authentication user, prohibited times of day is set, etc.

 COMPONENT: gov.va.med.vistalink.security.m.SecurityUserVerifyCodeException

 VARIABLES: public class SecurityUserVerifyCodeException extends gov.va.med.vistalink.security.m.SecurityFaultException.

 Represents a failure during a re-authentication attempt, where the user's verify code is expired or requires

 changing.

 COMPONENT: gov.va.med.vistalink.institution.InstitutionMappingNotFoundException

 VARIABLES: public class InstitutionMappingNotFoundException extends gov.va.med.exception.FoundationsException.

 Represents a failure to retrieve an institution mapping based on station number, due to requested station

 number not being found in the list of instituion mappings maintained by the InstitutionMapping instance.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK SECURITY
 ICR#: 5221

 NAME: gov.va.med.vistalink.security.CallbackHandlerSwing

 USAGE: Supported ENTERED: JUL 1,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class CallbackHandlerSwing extends java.lang.Object implements javax.security.auth.callback.CallbackHandler.

 Implements the JAAS CallbackHandler interface. Use with the VistaLoginModule to invoke a Swing-based interactive logon. Input

 values (access code, verify code, division selection, and other "user input") are collected via a set of GUI dialogs when this

 callback handler is used. To use:

 1. Create an instance of CallbackHandlerSwing. No parameters are needed. 2. Create the JAAS LoginContext instance, passing the

 instance of the callback handler as one of the parameters. 3. Invoke the JAAS login context's login method. The callback

 handler will invoke Swing dialogs to collect user input wherever required for login.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: windowPare Type: Input

 java.awt.Frame windowParent: Allows login dialogs to be centered over a parent frame (a

 top-level window with a title and border) and linked for display purposes with the parent

 application. If null is passed, login dialogs are centered based on the screen itself.

 CallbackHandlerSwing(java.awt.Frame windowParent): Instantiates a JAAS callback handler for Swing applications.

 COMPONENT: handle

 VARIABLES: callbacks Type: Input

 javax.security.auth.callback.Callback[] array as defined in the

 javax.security.auth.callback.CallbackHandler interface.

 throws Type: Output

 Throws: javax.security.auth.callback.UnsupportedCallbackException

 public void handle(javax.security.auth.callback.Callback[] arg0) throws

 javax.security.auth.callback.UnsupportedCallbackException:

 Implementation of handle() method required in JAAS CallbackHandler interface, used by JAAS to perform callbacks

 to retrieve or display information.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK SECURITY
 ICR#: 5222

 NAME: gov.va.med.vistalink.security.CallbackHandlerSwingCCOW

 USAGE: Supported ENTERED: JUL 1,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public class CallbackHandlerSwingCCOW extends gov.va.med.vistalink.security.CallbackHandlerSwing implements

 javax.security.auth.callback.CallbackHandler.

 Implements the CallbackHandler JAAS CallbackHandler interface. Use with the VistaLoginModule to invoke a Swing-based

 interactive logon, using the CCOW-enabled features of the VistaLink login module. If user authentication is required (if a

 valid user context does not exist that can be leveraged for single signon), input values (access code, verify code, division

 selection, and other "user input") are collected via a set of Swing GUI dialogs by this callback handler.

 To login:

 1. Create a CCOW context module and broker. Must be securely bound to the context with a secure application passcode. 2.

 Create an instance of CallbackHandlerSwing, passing the Frame window parent, the context module and broker. 3. Create the JAAS

 LoginContext instance, passing the instance of the callback handler as one of the parameters. 4. Invoke the JAAS login

 context's login method. The callback handler will invoke Swing dialogs to collect user input wherever required for login.

 ROUTINE:

 COMPONENT: constructor

 VARIABLES: windowPare Type: Input

 java.awt.Frame windowParent: Allows login dialogs to be centered over a parent frame (a

 top-level window with a title and border) and associated with the parent application for

 display purposes. If null is passed, login dialogs are centered based on the screen itself.

 appCcowCon Type: Input

 gov.va.med.hds.cd.ccow.IContextModule applicationCcowContextModule appCcowContextModule: NOT

 USED, pass null for now. PREVIOUSLY WAS: the application's CCOW context module the login

 module should use to read the CCOW context. Second parameter in method signature.

 appCcowCon Type: Input

 gov.va.med.hds.cd.ccow.IClinicalContextBroker appCcowContextBroker: the application's CCOW

 context broker the login module should use to read the CCOW context.

 CallbackHandlerSwingCCOW(java.awt.Frame windowParent, gov.va.med.hds.cd.ccow.IContextModule

 applicationCcowContextModule, gov.va.med.hds.cd.ccow.IClinicalContextBroker applicationCcowContextBroker):

 Creates a callback handler for VistaLink logins, using a SWING interface, and using the CCOW-enabled features

 of VistaLink to provide a CCOW-enabled login.

 COMPONENT: hasNonNullUserContext

 VARIABLES: contextIte Type: Input

 java.util.Map contextItems - Map of context items representing a context.

 return Type: Output

 boolean return value: true if the context has at least one non-null user context key/value

 pair.

 public static boolean hasNonNullUserContext(java.util.Map contextItems):

 Returns whether the context contains at least one user context item.

 COMPONENT: handle

 VARIABLES: callbacks Type: Input

 javax.security.auth.callback.Callback[] array as defined in the

 avax.security.auth.callback.CallbackHandler interface.

 throws Type: Output

 Throws: javax.security.auth.callback.UnsupportedCallbackException

 public void handle(javax.security.auth.callback.Callback[] arg0) throws

 javax.security.auth.callback.UnsupportedCallbackException:

 Implementation of handle() method required in JAAS CallbackHandler interface, used by JAAS to perform callbacks

 to retrieve or display information.

 COMPONENT: VHA_CCOW_LOGON_DOMAIN

 VARIABLES: public static java.lang.String: CCOW user context key holding the VistA domain name.

 COMPONENT: VHA_CCOW_LOGON_NAME

 VARIABLES: public static java.lang.String: CCOW user context key under which the user name is stored.

 COMPONENT: VHA_CCOW_LOGON_NAME_GENERIC

 VARIABLES: public static java.lang.String: The non-VA-specific generic CCOW user context key under which the user name is

 stored.

 COMPONENT: VHA_CCOW_LOGON_TOKEN

 VARIABLES: public static java.lang.String: The CCOW user context key under which the Kernel token is stored.

 COMPONENT: VHA_CCOW_LOGON_VPID

 VARIABLES: public static java.lang.String: The CCOW user context key under which the VPID is stored.

 COMPONENT: VHA_CCOW_USER_CONTEXT_KEYS

 VARIABLES: public static java.lang.String[]: Array containing the complete set of VHA CCOW user context keys.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK SECURITY
 ICR#: 5223

 NAME: gov.va.med.vistalink.security.CallbackHandlerUnitTest

 USAGE: Supported ENTERED: JUL 1,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public final class CallbackHandlerUnitTest extends java.lang.Object implements javax.security.auth.callback.CallbackHandler.

 Implements the JAAS CallbackHandler interface. Use with the VistaLoginModule to invoke a silent signon. Intended for use in

 unit testing environments where logins must be called repetitively without user interaction. Not for use in production

 environments, where users should be interactively prompted for signon credentials.

 To use:

 1. Pass access code, verify code and division as parameters when you create an instance of this callback handler.

 2. Pass the instance of the callback handler to the login context when you create the login context.

 3. Then, when VistaLoginModule'slogin method (via the indirection of the LoginContext) invokes this callback handler to

 collect user input for (access code, verify code, select division), these values are already present and are handed back to

 the login module without any user interation.

 ROUTINE:

 COMPONENT: constructor 3-arg

 VARIABLES: accessCode Type: Input

 java.lang.String accessCode: Access Code to use for logon.

 verifyCode Type: Input

 java.lang.String verifyCode: Verify Code to use for logon.

 divisionIe Type: Input

 java.lang.String divisionIen: IEN of division to select for multidivisional logins. If not

 needed, pass an empty string.

 CallbackHandlerUnitTest(java.lang.String accessCode, java.lang.String verifyCode, java.lang.String

 divisionIen): Creates a simple callback handler that handles the callbacks for logon.

 COMPONENT: constructor 5-arg

 VARIABLES: accessCode Type: Input

 java.lang.String accessCode: Access Code to use for logon.

 oldVerifyC Type: Input

 java.lang.String oldVerifyCode: Verify Code to use for logon.

 divisionIe Type: Input

 java.lang.String divisionIen: IEN of division to select for multidivisional logins. If not

 needed, pass an empty string.

 newVerifyC Type: Input

 java.lang.String newVerifyCode: new verify code to change.

 newVerifyC Type: Input

 java.lang.String newVerifyCodeCheck: should be the same as newVerifyCode, to be successful.

 Used as a check.

 CallbackHandlerUnitTest(java.lang.String accessCode, java.lang.String oldVerifyCode, java.lang.String

 divisionIen, java.lang.String newVerifyCode, java.lang.String newVerifyCodeCheck):

 Creates a simple callback handler that handles the callbacks for logon. Will change verify code as part of

 login.

 COMPONENT: handle

 VARIABLES: throws Type: Output

 Throws: javax.security.auth.callback.UnsupportedCallbackException

 callbacks Type: Input

 javax.security.auth.callback.Callback[] array as defined in the

 javax.security.auth.callback.CallbackHandler interface.

 public void handle(javax.security.auth.callback.Callback[] arg0) throws

 javax.security.auth.callback.UnsupportedCallbackException:

 Implementation of handle() method required in JAAS CallbackHandler interface, used by JAAS to perform callbacks

 to retrieve or display information.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK SECURITY
 ICR#: 5224

 NAME: gov.va.med.vistalink.security.VistaKernelPrincipalImpl

 USAGE: Supported ENTERED: JUL 1,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public final class VistaKernelPrincipalImpl extends java.lang.Object implements java.io.Serializable, VistaKernelPrincipal

 Implements the gov.va.med.vistalink.security.m.VistaKernelPrincipal interface. Represents a JAAS principal representing a

 logged on Kernel user on an M system.

 ROUTINE:

 COMPONENT: getAuthenticatedConnection

 VARIABLES: return Type: Output

 return value gov.va.med.vistalink.adapter.cci.VistaLinkConnection: the authenticated Vista

 connection, post-successful logon.

 public gov.va.med.vistalink.adapter.cci.VistaLinkConnection getAuthenticatedConnection(): Retrieve the

 authenticated connection from this principal after logon.

 COMPONENT: getKernelPrincipal

 VARIABLES: jaasSubjec Type: Input

 javax.security.auth.Subject jaasSubject: JAAS subject returned by a JAAS LoginContext after

 a successful VistaLink logon to Vista.

 return Type: Output

 return value gov.va.med.vistalink.security.VistaKernelPrincipalImpl: VistaKernelPrincipalImpl

 Kernel principal contained in the JAAS subject.

 throws Type: Output

 throws gov.va.med.exception.FoundationsException: If no Kernel principal, or more than one,

 are found, an exception is thrown.

 public static gov.va.med.vistalink.security.VistaKernelPrincipalImpl

 getKernelPrincipal(javax.security.auth.Subject jaasSubject) throws FoundationsException:

 returns the single Kernel principal contained in a JAAS subject returned by a JAAS LoginContext after a

 successful VistaLink logon to Vista.

 COMPONENT: getName

 VARIABLES: return Type: Output

 returns java.lang.String: the user name (from the New Person .01 field) of the Principal.

 public java.lang.String getName():

 get the Principal's full name from the New Person .01 field.

 COMPONENT: getUserDemographicValue

 VARIABLES: key Type: Input

 java.lang.String key: The key under which the demographic value is stored.

 return Type: Output

 returns java.lang.String: the value of the demographic value requested.

 public java.lang.String getUserDemographicValue(java.lang.String key): returns a given user demographic value.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK SECURITY
 ICR#: 5225

 NAME: gov.va.med.vistalink.security.VistaLoginModule

 USAGE: Supported ENTERED: JUL 1,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 public final class VistaLoginModule extends java.lang.Object implements javax.security.auth.spi.LoginModule:

 VistaLoginModule is a JAAS-compliant LoginModule to log users on to a Vista system. An application never needs to access the

 VistaLoginModule class directly. Rather, as a JAAS login module, its methods are invoked indirectly by an application through

 the JAAS login context class (javax.security.auth.login.LoginContext).

 Client/server applications using VistALink for logins/connections make use of VistaLoginModule thru JAAS configuration, by

 specifying gov.va.med.vistalink.security.VistaLoginModule as the LoginModule class in a jaas.config login configuration, and

 then invoking a JAAS login in application code.

 The key classes for invoking a login with this login module are:

 - a callback handler, either CallbackHandlerSwing, CallbackHandlerSwingCCOW, or CallbackHandlerUnitTest

 - the login context (javax.security.auth.login.LoginContext)

 - the Kernel principal returned after a successful login (VistaKernelPrincipalImpl)

 ROUTINE:

 COMPONENT: SERVER_ADDRESS_KEY

 VARIABLES: public static java.lang.String SERVER_ADDRESS_KEY: returns the JAAS configuration key to store/retrieve server

 IP address.

 COMPONENT: SERVER_ADDRESS_KEY_V1

 VARIABLES: public static java.lang.String SERVER_ADDRESS_KEY_V1: returns the JAAS configuration key to store/retrieve

 server IP address, that was used in VistALink v1.0 only.

 COMPONENT: SERVER_PORT_KEY

 VARIABLES: public static java.lang.String SERVER_PORT_KEY: returns the JAAS configuration key to store/retrieve server

 port.

 COMPONENT: SERVER_PORT_KEY_V1

 VARIABLES: public static java.lang.String SERVER_PORT_KEY_V1: returns the JAAS configuration key to store/retrieve server

 port, that was used in VistALink v1.0 only.

 COMPONENT: SERVER_SPI_KEY

 VARIABLES: public static java.lang.String SERVER_SPI_KEY: returns the JAAS configuration key to select the

 VistaLoginModuleSPI implementation used for providing back-end Kernel login services.

 COMPONENT: login

 VARIABLES: throws Type: Output

 Throws:

 gov.va.med.vistalink.security.VistaLoginModuleException - a VistaLoginModuleException is

 thrown if the login for this module fails.

 gov.va.med.vistalink.security.VistaLoginModuleLoginsDisabledException - thrown if logins are

 disabled

 gov.va.med.vistalink.security.VistaLoginModuleNoJobSlotsAvailableException - thrown if no job

 slots are available

 gov.va.med.vistalink.security.VistaLoginModuleNoPathToListenerException - thrown if the

 specified listener can't be reached

 gov.va.med.vistalink.security. VistaLoginModuleTooManyInvalidAttemptsException - thrown if

 too many bad login attempts are made

 gov.va.med.vistalink.security.VistaLoginModuleUserCancelledException - thrown if user cancels

 the login

 gov.va.med.vistalink.security.VistaLoginModuleUserTimedOutException - thrown if user times

 out of the login

 public boolean login() throws VistaLoginModuleException, VistaLoginModuleLoginsDisabledException,

 VistaLoginModuleNoJobSlotsAvailableException, VistaLoginModuleNoPathToListenerException,

 VistaLoginModuleTooManyInvalidAttemptsException, VistaLoginModuleUserCancelledException,

 VistaLoginModuleUserTimedOutException:

 Should never be called by an application directly. Instead, this method is invoked behind the scenes by the

 proxy of the JAAS LoginContext.

 However, exceptions thrown by this method can be caught when invoking the login() method of a JAAS login

 context.

 When an application invokes login() on the LoginContext, the LoginContext calls this method to initiate a login

 to a VistaLink M server. Once a successful login has occurred, the authenticated connection will be stored in

 the JAAS subject, in a VistaKernelPrincipal.

 COMPONENT: logout

 VARIABLES: throws Type: Output

 Throws:

 gov.va.med.vistalink.security.VistaLoginModuleException - thrown if the logout fails on the M

 side.

 public boolean logout() throws VistaLoginModuleException:

 Should never be called by an application directly. Instead, this method is invoked behind the scenes by the

 proxy of the JAAS LoginContext.

 However, exceptions thrown by this method can be caught when invoking the logout() method of a JAAS login

 context.

 For applications to call, to logout a user from an open connection/session to a VistaLink M server. Doing this

 drops the connection, freeing up resources on the M server.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: VISTALINK SECURITY
 ICR#: 5244

 NAME: vljSecurity Exceptions

 USAGE: Supported ENTERED: JUL 9,2008

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 Exceptions that can be thrown from public methods of classes distributed in vljSecurity jar.

 ROUTINE:

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleException

 VARIABLES: public class VistaLoginModuleException extends javax.security.auth.login.LoginException implements

 gov.va.med.exception.FoundationsExceptionInterface.

 Represents a LoginException thrown by the VistaLoginModule.

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleIPLockedException

 VARIABLES: If thrown, the user's IP has been locked due to too many times with invalid credentials. When attempting a

 logon, you can trap for this specific exception, in addition to the more general VistaLoginModuleException and

 LoginException exceptions.

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleLoginsDisabledException

 VARIABLES: public final class VistaLoginModuleLoginsDisabledException extends VistaLoginModuleException.

 If thrown, logins are disabled on the M server. When attempting a logon, you can trap for this specific

 exception, in addition to the more general VistaLoginModuleException and LoginException exceptions.

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleNoJobSlotsAvailableException

 VARIABLES: public final class VistaLoginModuleNoJobSlotsAvailableException extends VistaLoginModuleException.

 If thrown, job slot maximum has been exceeded on M server. When attempting a logon, you can trap for this

 specific exception, in addition to the more general VistaLoginModuleException and LoginExceptionexceptions.

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleNoPathToListenerException

 VARIABLES: public final class VistaLoginModuleNoPathToListenerException extends VistaLoginModuleException.

 If thrown, no reachable listener was found on the path represented by the specified IP address and Port. When

 attempting a logon, you can trap for this specific exception, in addition to the more general

 VistaLoginModuleException and LoginException exceptions.

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleTooManyInvalidAttemptsException

 VARIABLES: public final class VistaLoginModuleTooManyInvalidAttemptsException extends VistaLoginModuleException.

 If thrown, the user tried to login too many times with invalid credentials. When attempting a logon, you can

 trap for this specific exception, in addition to the more general VistaLoginModuleException and LoginException

 exceptions.

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleUserCancelledException

 VARIABLES: public final class VistaLoginModuleUserCancelledException extends VistaLoginModuleException.

 Represents a user cancellation of Login. When attempting a logon, you can trap for this specific exception, in

 to the more general VistaLoginModuleException and LoginException exceptions.

 COMPONENT: gov.va.med.vistalink.security.VistaLoginModuleUserTimedOutException

 VARIABLES: User timed out of a login. When attempting a logon, you can trap for this specific exception, in addition to

 the more general VistaLoginModuleException and LoginException exceptions.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: WEB SERVICES CLIENT
 ICR#: 5421

 NAME: XOBWLIB

 USAGE: Supported ENTERED: MAR 20,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Routine

 Public APIs for the HWSC package.

 ROUTINE: XOBWLIB

 COMPONENT: $$GETPROXY

 VARIABLES: web servic Type: Input

 first input parameter, name of of entry in WEB SERVICE (#18.02) file.

 web server Type: Input

 Name of entry in WEB SERVER (#18.12) file.

 return val Type: Output

 Web service client proxy object ready to invoke web service methods on the specified web

 server.

 $$GETPROXY (web service name, web server name)

 Returns a Cache web service client proxy object for the specified web service, ready to invoke web service

 methods on the specified web server. Use this method to obtain a web service proxy if you are going to invoke

 web service methods on a single server only.

 COMPONENT: $$GENPORT

 VARIABLES: infoarray Type: Input

 pass by reference. set up array as follows:

 infoarray("WSDL FILE") WSDL file location on host operating system

 infoarray("CACHE PACKAGE NAME") Package name to place generated Cache classes in.

 infoarray("WEB SERVICE NAME"): Name to store web service information in file #18.02 (WEB

 SERVICE) - used for lookups, should be namespaced for your application.

 infoarray(""AVAILABILITY RESOURCE"") (optional) resource for HWSC to access via an HTTP

 GET when checking if the web service is available. HWSC appends the resource to the IP

 address and context root of the web service.

 return val Type: Output

 Success: positive value Failure: 0^failure description

 $$GENPORT (.infoarray)

 Use in installation post-init routines to import a WSDL file and run the Cachi WSDL import wizard. This call

 runs the Cache SOAP client wizard to create proxy classes for communicating with an external web service, using

 the web service's WSDL file. Creates entry for web service in file #18.02, WEB SERVICE.

 COMPONENT: REGSOAP

 VARIABLES: wsname Type: Input

 first input parameter. Web Service name.

 wsroot Type: Input

 second input parameter. Web Service root (without trailing '/').

 class Type: Input

 third input parameter: Cache package + class name of the main class created for the web

 service client proxy, as created by the Cache WSDL compiler.

 NOTE: The WSDL compiler uses the value of the name attribute (of the port element, within the

 service element, in the WSDL file) as the name for the main class it creates.

 path Type: Input

 fourth input parameter (optional). WSDL file location on host operating system (WSDL file is

 copied into Web Service file entry.)

 resource Type: Input

 fifth input parameter (optional): Resource for HWSC to access via an HTTP GET when checking

 if the web service is available. HWSC appends the resource to the IP address and context root

 of the web service.

 REGSOAP (wsname, wsroot, class, [path], [resource])

 Use in installation post-init routines to register a web service by creating an entry in the WEB SERVICE file

 (#18.02), without calling the Cache WSDL compiler. Typical use cases would be:

 1. Compiled classes are exported for install on the target system rather than just a WSDL, because classes were

 manually modified by development team after initial import.

 2. A site calls the WSDL import wizard itself to create a client to a web service, and needs to create a Web

 Service entry to associate with the imported classes.

 COMPONENT: UNREG

 VARIABLES: servicenam Type: Input

 SOAP or REST Web Service Name (entries in File #18.02).

 UNREG (service name)

 Use in installation post-init routines to un-register/delete a web service entry in the WEB SERVICE file

 (#18.02). Can be either a SOAP or REST web service. Also removes the service from any web servers it is

 authorized to.

 COMPONENT: $$GETREST

 VARIABLES: service na Type: Input

 REST Web Service Name (entry File #18.02).

 server nam Type: Input

 Web Server Name (entry in File #18.12).

 return val Type: Output

 REST service request (xobw.RestRequest) object.

 $$GETREST (service name, server name)

 Return REST service request object. Use to make GET, POST and PUT calls to the specified service and server.

 COMPONENT: $$GET

 VARIABLES: RestReques Type: Input

 xobw.RestRequest object.

 Resource Type: Input

 resource string to use with GET method.

 error Type: Input

 (optional) where to store any error encountered (pass by ref) - errors returned as an

 xobw.error object.

 ForceError Type: Input

 (optional) force error trap (1) or not (0). Defaults to 1.

 returnvalu Type: Output

 True if succeeded, false if an error occurred. NOTE: If ForceError is set to 1, a $ECODE is

 thrown and the return value QUIT is never reached.

 $$GET (RestRequest, resource, [.error], [ForceError])

 Make HTTP GET call and (by default) force an error trap if problem encountered.

 COMPONENT: $$POST

 VARIABLES: RestReques Type: Input

 xobw.RestRequest object.

 Resource Type: Input

 resource string to use with POST method.

 error Type: Input

 (optional) where to store any error encountered (pass by ref) - errors returned as an

 xobw.error object.

 ForceError Type: Input

 (optional) force error trap (1) or not (0). Defaults to 1.

 returnvalu Type: Output

 True if succeeded, false if an error occurred.

 NOTE: If ForceError is set to 1, a $ECODE is thrown and the return value QUIT is never

 reached.

 $$POST (RestRequest, Resource, [.error], [ForceError])

 Make HTTP POST call and (by default) force an error trap if problem encountered.

 COMPONENT: $$HTTPCHK

 VARIABLES: RestReques Type: Input

 xobw.RestRequest object.

 error Type: Input

 (optional) where to store any error encountered (pass by ref) - errors returned as an

 xobw.error object.

 ForceError Type: Input

 (optional) force error trap (1) or not (0). Defaults to 1.

 returnvalu Type: Output

 True if HTTP status judged OK, false if a condition other than success occurred. NOTE: If

 ForceError is set to 1, a $ECODE is thrown and the return value QUIT is never reached.

 $$HTTPCHK (RestRequest, [.error], [ForceError])

 Check HTTP status after a GET, POST, or PUT operation has completed; if HTTP status code indicated condition

 other than success, create an HttpError object and return false.

 COMPONENT: $$HTTPOK

 VARIABLES: http statu Type: Input

 String containing HTTP status code (e.g., from xobw.RestRequest.HttpResponse.StatusCode).

 returnvalu Type: Output

 True if HTTP status judged OK, false if a condition other than success occurred.

 $$HTTPOK (http status code)

 Check HTTP status after a GET, POST, or PUT operation has completed; if HTTP status code indicated condition

 other than success, return false.

 COMPONENT: $$EOFAC

 VARIABLES: SOAP proxy Type: Input

 (optional) SOAP proxy object (if making a SOAP call).

 returnvalu Type: Output

 Cachi Object representing the trapped and parsed error (assumes EOFAC^XOBWLIB is being called

 in an error trap handler) is an instance of one of the following classes in the "xobw.error"

 PACKAGE:

 BasicError: basic M/ Cache error DialogError: HWSC fault with corresponding DIALOG file

 (#.84) entry ObjectError: Cache Object-level error SoapError: SOAP fault returned from web

 service invocation AbstractError: base class for all error types

 $$EOFAC ([SOAP proxy object])

 For use in error trap handlers during SOAP and REST web services calls, to make it easy to process error

 conditions. Creates an error object based on the error condition in the partition, representing a SOAP, Cachi

 Object, HWSC dialog, or basic M error. Includes special parsing for <ZSOAP> web service errors.

 Intended for use in an error trap handler, i.e., a known error condition is already present in the partition.

 COMPONENT: $$EOSTAT

 VARIABLES: status obj Type: Input

 Cache %Library.Status object.

 returnvalu Type: Output

 xobw.error.ObjectError object.

 $$EOSTAT (status object)

 Create ObjectError from Cache status (%Library.Status) object.

 COMPONENT: $$EOHTTP

 VARIABLES: response o Type: Input

 %Net.HttpResponse object (e.g., from xobw.RestRequest.HttpResponse).

 returnvalu Type: Output

 xobw.error.HttpError object.

 $$EOHTTP (response object)

 Create HttpError object from Cache %Net.Response object.

 COMPONENT: ERRDISP

 VARIABLES: error obje Type: Input

 Any HWSC error object in the xobw.error package.

 ERRDISP (error object)

 Does a simple display of an error's information to the screen. "Error Object" should be of the type

 xobw.error.AbstractError or one of its descendants.

 COMPONENT: ERR2ARR

 VARIABLES: error obje Type: Input

 Any HWSC error object in the xobw.error package.

 return arr Type: Both

 (pass by ref) Array in which to return the decomposed components of the error object.

 Different array nodes are returned depending on the type of xobw.error object passed in:

 xobw.error.BasicError:

 ARRAY("errorType") = type of error (BASIC, DIALOG)

 ARRAY("code") = error code

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.DialogError:

 ARRAY("errorType") = type of error (BASIC, DIALOG)

 ARRAY("code") = error code

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.HttpError:

 ARRAY("errorType") = type of error (HTTP)

 ARRAY("code") = error code

 ARRAY("statusLine") = error dcode

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.ObjectError:

 ARRAY("errorType") = type of error (OBJECT)

 ARRAY("code") = error code

 ARRAY("dcode") = error dcode

 ARRAY("domain") = error domain

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.SoapError:

 ARRAY("errorType") = type of error (SOAP)

 ARRAY("soapFaultType") = SOAP Fault Type

 ARRAY("faultactor") = SOAP fault actor

 ARRAY("faultcode") = SOAP fault code

 ARRAY("faultstring") = SOAP fault string

 ARRAY("detail") = SOAP fault detail

 ARRAY("text") =

 ARRAY("text",i..n) =

 ERR2ARR (error object, .return array)

 Decomposes an error object into an M array carrying the various components of the error object. "Error Object"

 is should be of the type xobw.error.AbstractError or one of its descendants.

 COMPONENT: $$STATCHK

 VARIABLES: status obj Type: Input

 Cache %Library.Status object.

 error Type: Input

 (optional) where to store any error encountered (pass by ref) - errors returned as an

 xobw.error object

 forceerror Type: Input

 (optional) force error trap (1) or not (0). Defaults to 1.

 returnvalu Type: Output

 True if succeeded, false if an error occurred.

 NOTE: If ForceError is set to 1, a $ECODE is thrown and the return value QUIT is never

 reached.

 $$STATCHK (status object, [.error], [ForceError])

 Check Cache %Library.Status status object (returned by many Cache Object calls); if not OK create ObjectError

 object and return false.

 COMPONENT: ZTER

 VARIABLES: error obje Type: Input

 Any HWSC error object in the xobw.error package (should be of the type

 xobw.error.AbstractError or one of its descendants).

 XOB-namesp Type: Output

 Array contains different nodes depending on xobw.error subclass type of input parameter:

 xobw.error.BasicError:

 ARRAY("errorType") = type of error (BASIC, DIALOG)

 ARRAY("code") = error code

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.DialogError:

 ARRAY("errorType") = type of error (BASIC, DIALOG)

 ARRAY("code") = error code

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.HttpError:

 ARRAY("errorType") = type of error (HTTP)

 ARRAY("code") = error code

 ARRAY("statusLine") = error dcode

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.ObjectError:

 ARRAY("errorType") = type of error (OBJECT)

 ARRAY("code") = error code

 ARRAY("dcode") = error dcode

 ARRAY("domain") = error domain

 ARRAY("text") =

 ARRAY("text",i..n) =

 xobw.error.SoapError:

 ARRAY("errorType") = type of error (SOAP)

 ARRAY("soapFaultType") = SOAP Fault Type

 ARRAY("faultactor") = SOAP fault actor

 ARRAY("faultcode") = SOAP fault code

 ARRAY("faultstring") = SOAP fault string

 ARRAY("detail") = SOAP fault detail

 ARRAY("text") =

 ARRAY("text",i..n) =

 ZTER (error object)

 Performs two functions:

 1. Decomposes error object into an XOB-namespaced M array carrying the various components of the error object.

 2. Calls Kernel error trap to record error.

 It is useful to decompose the error into an M array before calling the Kernel error trap, because otherwise the

 Cachi Object error information is not captured in the error trap.

 COMPONENT: $$SKEYADD

 VARIABLES: key name Type: Input

 Name of server lookup key.

 descriptio Type: Input

 (optional) Brief description of lookup key.

 error Type: Both

 (optional) location to return error description (pass by reference) - returned as array

 node(s) starting at error(1)

 return val Type: Output

 if successful: IEN of new or existing entry (always > 0)

 if unsuccessful: 0 (Also, error description node(s) are returned in optional error

 parameter.)

 $$SKEYADD (key name, [description], [.error])

 Add a new server lookup key, or edit an existing one.

 COMPONENT: $$SNAME4KY

 VARIABLES: key name Type: Input

 Name of server lookup key.

 retvalue Type: Both

 Storage location to return server name if successful (pass by reference).

 error Type: Both

 (optional) location to return error information in if failure (pass by reference).

 [error format]: error code^error text. Possible errors: 186008^description (invalid key)

 186009^description (server association missing)

 return val Type: Output

 if successful: IEN of new or existing entry (always > 0) (and the matching server name is

 returned in the "server name" parameter)

 if unsuccesful: 0 Also, an error is returned in the optional error parameter.

 $$SNAME4KY (key name, .retvalue, [.error])

 Retrieve the server name associated with a server lookup key.

 COMPONENT: ATTACHDR

 VARIABLES: proxy obje Type: Input

 SOAP web service client proxy object.

 ATTACHDR (proxy object)

 Attach a "VistaInfoHeader" header block to outgoing web service request. It can be processed by the receiving

 web service as a SOAP header by using a handler. This header block contains partition and Kernel environment

 variables as follows:

 duz: the user's DUZ value mio: the partition's $IO value mjob: the partition's $JOB value production: "1" if

 the calling VistA system is a production system, "0" if test. station: station # (currently the Kernel site

 parameter default institution value) vpid: the user's VPID

 COMPONENT: REGREST

 VARIABLES: service na Type: Input

 REST Web Service Name (entry in File #18.02).

 context ro Type: Input

 Context Root for the REST service (without leading or trailing '/' characters)

 resource Type: Input

 resource for HWSC to access via an HTTP GET when checking if the web service is available.

 HWSC appends the resource to the IP address and context root of the web service.

 REGREST (service name, context root, [resource])

 Use in installation post-init routines to register a REST service by creating an entry in the WEB SERVICE file

 (#18.02).

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: WEB SERVICES CLIENT
 ICR#: 5458

 NAME: xobw.RestRequest

 USAGE: Supported ENTERED: JUN 10,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 This class is used to make REST-type requests to an external web service.

 The class extends Cache's %Net.HttpRequest class. As such, all methods in the parent class are avialable in this one as well.

 ROUTINE:

 COMPONENT: Get

 VARIABLES: resource Type: Input

 the url to request, e.g. '/test.html'.

 test Type: Input

 If test is 1 then instead of connecting to a remote machine it will just output what it would

 have send to the web server to the current device, if test is 2 then it will output the

 response to the current device after the Get. This can be used to check that it will send

 what you are expecting.

 return val Type: Output

 a Cache %Library.status object. Many of the methods provided by the Cache Class Library

 return error status information using the %Status data type.

 method Get(resource As %String, test As %Integer = 0) returns %Status

 Issue the Http 'get' request, this will cause the web server to return the page requested. If this completes

 correctly the response to this request will be in the HttpResponse. The location is the url to request, e.g.

 '/test.html'. This can contain parameters which are assumed to be already URL escaped, e.g.

 '/test.html?PARAM=%25VALUE' sets PARAM to %VALUE. If test is 1 then instead of connecting to a remote machine

 it will just output what it would have send to the web server to the current device, if test is 2 then it will

 output the response to the current device after the Get. This can be used to check that it will send what you

 are expecting. This calls Reset automatically after reading the response, except in test=1 mode or if reset=0.

 COMPONENT: Head

 VARIABLES: resource Type: Input

 he url to request, e.g. '/test.html'.

 test Type: Input

 If test is 1 then instead of connecting to a remote machine it will just output what it would

 have send to the web server to the current device, if test is 2 then it will output the

 response to the current device after the Get. This can be used to check that it will send

 what you are expecting.

 return val Type: Output

 a Cache %Library.status object. Many of the methods provided by the Cache Class Library

 return error status information using the %Status data type. The status represents success or

 failure.

 method Head(resource As %String, test As %Integer = 0) returns %Status

 Issue the Http 'head' request, this will cause the web server to just return the header of the response and

 none of the body. If this completes correctly the response to this request will be in the HttpResponse. The

 location is the url to request, e.g. '/test.html'. This can contain parameters which are assumed to be already

 URL escaped, e.g. '/test.html?PARAM=%25VALUE' sets PARAM to %VALUE. If test is 1 then instead of connecting to

 a remote machine it will just output what it would have send to the web server to the current device, if test

 is 2 then it will output the response to the current device after the Head. This can be used to check that it

 will send what you are expecting. This calls Reset automatically after reading the response, except in test

 mode or if reset=0.

 COMPONENT: POST

 VARIABLES: resource Type: Input

 the url to request, e.g. '/test.html'.

 test Type: Input

 If test is 1 then instead of connecting to a remote machine it will just output what it would

 have send to the web server to the current device, if test is 2 then it will output the

 response to the current device after the Get. This can be used to check that it will send

 what you are expecting.

 return val Type: Output

 a Cache %Library.status object. Many of the methods provided by the Cache Class Library

 return error status information using the %Status data type. The status represents success

 or failure.

 method Post(resource As %String, test As %Integer = 0) returns %Status

 Issue the Http 'post' request, this is used to send data to the web server such as the results of a form, or

 upload a file. If this completes correctly the response to this request will be in the HttpResponse. The

 location is the url to request, e.g. '/test.html'. This can contain parameters which are assumed to be already

 URL escaped, e.g. '/test.html?PARAM=%25VALUE' sets PARAM to %VALUE. If test is 1 then instead of connecting to

 a remote machine it will just output what it would have send to the web server to the current device, if test

 is 2 then it will output the response to the current device after the Post. This can be used to check that it

 will send what you are expecting. This calls Reset automatically after reading the response, except in test=1

 mode or if reset=0.

 COMPONENT: Put

 VARIABLES: method Put(resource As %String, test As %Integer = 0) returns %Status

 Issue the Http 'put' request, this is used to upload data to the web server, it is not used that often. If this

 completes correctly the response to this request will be in the HttpResponse. The location is the url to

 request, e.g. '/test.html'. This can contain parameters which are assumed to be already URL escaped, e.g.

 '/test.html?PARAM=%25VALUE' sets PARAM to %VALUE. If test is 1 then instead of connecting to a remote machine

 it will just output what it would have send to the web server to the current device, if test is 2 then it will

 output the response to the current device after the Put. This can be used to check that it will send what you

 are expecting. This calls Reset automatically after reading the response, except in test=1 mode or if reset=0.

 COMPONENT: put

 VARIABLES: resource Type: Input

 the url to request, e.g. '/test.html'.

 test Type: Input

 If test is 1 then instead of connecting to a remote machine it will just output what it would

 have send to the web server to the current device, if test is 2 then it will output the

 response to the current device after the Get. This can be used to check that it will send

 what you are expecting.

 return val Type: Output

 a Cache %Library.status object. Many of the methods provided by the Cache Class Library

 return error status information using the %Status data type. The status represents success

 or failure.

 method Put(resource As %String, test As %Integer = 0) returns %Status

 Issue the Http 'put' request, this is used to upload data to the web server, it is not used that often. If this

 completes correctly the response to this request will be in the HttpResponse. The location is the url to

 request, e.g. '/test.html'. This can contain parameters which are assumed to be already URL escaped, e.g.

 '/test.html?PARAM=%25VALUE' sets PARAM to %VALUE. If test is 1 then instead of connecting to a remote machine

 it will just output what it would have send to the web server to the current device, if test is 2 then it will

 output the response to the current device after the Put. This can be used to check that it will send what you

 are expecting. This calls Reset automatically after reading the response, except in test=1 mode or if reset=0.

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: WEB SERVICES CLIENT
 ICR#: 5459

 NAME: xobw.error.BasicError

 USAGE: Supported ENTERED: JUN 10,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 class xobw.error.BasicError extends xobw.error.AbstractError

 Error class used by the HWSC error processing sub-system when a basic M/Cache error occurs.

 ROUTINE:

 COMPONENT: code

 VARIABLES: property code As %String (TRUNCATE = 1)

 Code associated with the error.

 COMPONENT: errorType

 VARIABLES: property errorType As %String (TRUNCATE = 1)

 Human readable name for the type of error.

 COMPONENT: text

 VARIABLES: list property text As %String (TRUNCATE = 1)

 Human readable text that provides information about the error.

 COMPONENT: decompose

 VARIABLES: error Type: Both

 pass by reference. Structure of ARRAY returned in this parameters:

 ARRAY("errorType") = type of error (BASIC, DIALOG) ARRAY("code") = error code ARRAY("text") =

 ARRAY("text",i..n) =

 method decompose(ByRef error) returns nothing.

 This method converts the error object properties into a traditional M array.

 COMPONENT: display

 VARIABLES: method display() returns nothing.

 This method provides a simple display of the error using MUMPS WRITE commands.

 Information displayed: Class name Properties: code text

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: WEB SERVICES CLIENT
 ICR#: 5460

 NAME: xobw.error.DialogError

 USAGE: Supported ENTERED: JUN 10,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 class xobw.error.DialogError extends xobw.error.AbstractError

 Class for errors associated with DIALOG file (#.84) entries and used by the HWSC error processing sub-system

 The Kernel API EZBLD^DIALOG should be used to produce the 'text' property value and the ien of the DIALOG file entry should be

 the 'code' property value.

 ROUTINE:

 COMPONENT: code

 VARIABLES: property code As %String (TRUNCATE = 1)

 Code associated with the error.

 COMPONENT: errorType

 VARIABLES: property errorType As %String (TRUNCATE = 1)

 Human readable name for the type of error.

 COMPONENT: text

 VARIABLES: list property text As %String (TRUNCATE = 1)

 Human readable text that provides information about the error.

 COMPONENT: decompose

 VARIABLES: error Type: Both

 pass by reference. Structure of ARRAY returned in this parameters:

 ARRAY("errorType") = type of error (BASIC, DIALOG) ARRAY("code") = error code ARRAY("text") =

 ARRAY("text",i..n) =

 method decompose(ByRef error) returns nothing.

 This method converts the error object properties into a traditional M array.

 COMPONENT: display

 VARIABLES: method display() returns nothing.

 This method provides a simple display of the error using MUMPS WRITE commands.

 Information displayed: - Class name - Properties:

 - code

 - text

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: WEB SERVICES CLIENT
 ICR#: 5461

 NAME: xobw.error.HttpError

 USAGE: Supported ENTERED: JUN 10,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 class xobw.error.HttpError extends xobw.error.AbstractError

 Error class used by the HWSC error processing sub-system when an HTTP error occurs.

 ROUTINE:

 COMPONENT: code

 VARIABLES: property code As %String (TRUNCATE = 1)

 Code associated with the error.

 COMPONENT: errorType

 VARIABLES: property errorType As %String (TRUNCATE = 1)

 Human readable name for the type of error.

 COMPONENT: text

 VARIABLES: list property text As %String (TRUNCATE = 1)

 Human readable text that provides information about the error.

 COMPONENT: statusLine

 VARIABLES: property statusLine As %String (TRUNCATE = 1)

 The HTTP status line. This is the first line of the response and signals if the request was sucessful or if

 there was a problem.

 COMPONENT: decompose

 VARIABLES: error Type: Both

 pass by reference.

 Structure of ARRAY returned in reference parameter:

 ARRAY("errorType") = type of error (HTTP)

 ARRAY("code") = error code

 ARRAY("statusLine") = error dcode

 ARRAY("text") =

 ARRAY("text",i..n) =

 method decompose(ByRef error) returns nothing.

 This method converts the HTTP error object properties into a traditional M array.

 COMPONENT: display

 VARIABLES: method display() returns nothing.

 This method provides a simple display of the error using MUMPS WRITE commands.

 Information displayed: - Class name - Properties:

 - code

 - statusLine

 - text

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: WEB SERVICES CLIENT
 ICR#: 5462

 NAME: xobw.error.ObjectError

 USAGE: Supported ENTERED: JUN 10,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 class xobw.error.ObjectError extends xobw.error.AbstractError

 Error class used by the HWSC error processing sub-system when a CacheObject error occurs.

 ROUTINE:

 COMPONENT: code

 VARIABLES: property code As %String (TRUNCATE = 1)

 Code associated with the error.

 COMPONENT: errorType

 VARIABLES: property errorType As %String (TRUNCATE = 1)

 Human readable name for the type of error.

 COMPONENT: text

 VARIABLES: list property text As %String (TRUNCATE = 1)

 Human readable text that provides information about the error.

 COMPONENT: dcode

 VARIABLES: property dcode As %String (TRUNCATE = 1)

 Cache Objects error code.

 COMPONENT: domain

 VARIABLES: property domain As %String (TRUNCATE = 1)

 Cache Objects error domain.

 COMPONENT: decompose

 VARIABLES: error Type: Both

 pass by reference, error elements are returned as array nodes.

 Structure of ARRAY returned ByRef:

 ARRAY("errorType") = type of error (OBJECT)

 ARRAY("code") = error code

 ARRAY("dcode") = error dcode

 ARRAY("domain") = error domain

 ARRAY("text") =

 ARRAY("text",i..n) =

 method decompose(ByRef error) returns nothing.

 This method converts the error object properties into a traditional M array.

 COMPONENT: display

 VARIABLES: This method provides a simple display of the error using MUMPS WRITE commands.

 Information displayed: - Class name - Properties:

 - code

 - dcode

 - domain

 - text

************** END OF ICR RECORD ***************
 CUSTODIAL PACKAGE: WEB SERVICES CLIENT
 ICR#: 5463

 NAME: xobw.error.SoapError

 USAGE: Supported ENTERED: JUN 10,2009

 STATUS: Active EXPIRES:
 DURATION: Till Otherwise Agr VERSION:
 FILE: ROOT:
 DESCRIPTION: TYPE: Other

 class xobw.error.SoapError extends xobw.error.AbstractError

 Error class used by the HWSC error processing sub-system when a SOAP fault is returned.

 ROUTINE:

 COMPONENT: code

 VARIABLES: property code As %String (TRUNCATE = 1)

 Code associated with the error.

 COMPONENT: errorType

 VARIABLES: property errorType As %String (TRUNCATE = 1)

 Human readable name for the type of error.

 COMPONENT: text

 VARIABLES: list property text As %String (TRUNCATE = 1)

 Human readable text that provides information about the error.

 COMPONENT: soapFault

 VARIABLES: property soapFault As %SOAP.Fault

 SOAP fault object instance returned by a web method call.

 COMPONENT: soapFaultType

 VARIABLES: property soapFaultType As %String (TRUNCATE = 1) [Calculated;]

 Type of SOAP fault returned by web method call. Possible types: - Server - Client - Must Understand - Version

 Mismatch - Unknown

 COMPONENT: decompose

 VARIABLES: error Type: Both

 pass by reference. error information is returned in array nodes.

 Structure of ARRAY returned ByRef:

 ARRAY("errorType") = type of error (SOAP)

 ARRAY("soapFaultType") = SOAP Fault Type

 ARRAY("faultactor") = SOAP fault actor

 ARRAY("faultcode") = SOAP fault code

 ARRAY("faultstring") = SOAP fault string

 ARRAY("detail") = SOAP fault detail

 ARRAY("text") =

 ARRAY("text",i..n) =

 method decompose(ByRef error) returns nothing.

 This method converts the error object properties into a traditional M array.

 COMPONENT: display

 VARIABLES: method display() returns nothing.

 This method provides a simple display of the error using MUMPS WRITE commands.

 Information displayed: - Class name - Properties:

 - soapFaultType

 - soapFault.faultactor

 - soapFault.faultcode

 - soapFault.faultstring

 - soapFault.detail

 COMPONENT: isFaultClient

 VARIABLES: return val Type: Output

 evaluates to true if a client request fault, false if not.

 method isFaultClient() returns %String

 Indicates if fault was produced when the client made an incorrect/incomplete request.

 COMPONENT: isFaultMustUnderstand

 VARIABLES: return val Type: Output

 evaluates to true if fault was due to a header that was not handled by the server with the

 MustUnderstand attribute set to true. Otherwise evaluates to false.

 method isFaultMustUnderstand() returns %String

 Indicates if fault was produced when a header was not handled by server when the 'MustUnderstand' attribute was

 set to 'true'.

 COMPONENT: isFaultServer

 VARIABLES: return val Type: Output

 evaluates to true if fault was caused on server side, otherwise evaluates to false.

 method isFaultServer() returns %String

 Indicates if fault was produced when server side error occurred.

 COMPONENT: isFaultVersionMismatch

 VARIABLES: return val Type: Output

 evaluates to true if fault was due to SOAP version incompatibility between server and client,

 otherwise evaluates to false.

 method isFaultVersionMismatch() returns %String

 Indicates if fault was produced when the SOAP versions between client and server were incompatible.

 COMPONENT: soapFaultGet

 VARIABLES: return val Type: Output

 returns the SOAP fault object.

 method soapFaultGet() returns %SOAP.Fault

 returns the SOAP fault object.

 COMPONENT: soapFaultTypeGet

 VARIABLES: return val Type: Output

 Text description of the type of SOAP fault.

 Server, Client, Version Mismatch, Must Understand, Unknown.

 method soapFaultTypeGet() returns %String

 Returns text string describing type of fault.

************** END OF ICR RECORD ***************
Page 749

