VBIT Enterprise J2EE Platform

and

Service Oriented Architecture

Application Software Architecture

[image: image1.png]
Created: October 2005

Revision History

NOTE: The revision history cycle begins once changes or enhancements are requested after the initial version of the Software Architecture Document has been completed.

	Date
	Version
	Description
	Author
	Corresponding PMP Deliverable

	07/21/2005
	0.1
	Original Create
	Mario Rodrigues
	

	09/5/2005
	0.1
	Added Sect 2.2.3 Connectivity Layer – Database Adaptor Framework
	Mario Rodrigues
	7i

	09/5/2005
	0.1
	Sect 3: Organizing J2EE Components in a single Split Development Directory
	Mario Rodrigues
	

	09/8/2005
	0.1
	Sect 2.2.3 Connectivity Layer – Database Adaptor Framework – added sample Java code
	Mario Rodrigues
	7i

	10/4/2005
	0.1
	Sect 3 – J2EE Directory structure and Project build process
	Mario Rodrigues
	

	10/20/2005
	0.1
	Sect 1 – added Exec. Brief, updated Overview sect.

Sect 2 – added content for UML, frameworks

Sect 6 – development guidelines, governance process, etc.

Sect 3.3 – ESB – added subject matter
	Mario Rodrigues
	

	11/10/2005
	0.1
	Sect 2.2.1 – Added Struts implementation parameters
	Mario Rodrigues
	

	11/25/2005
	0.1
	Sect 4.1 – Updated Dimensions info based on meetings with Rachel
	Mario Rodrigues
	

	02/17/2005
	0.1
	Sect 3.1 – Updated J2EE dir structure
	Mario Rodrigues
	

	03/2/2006
	0.1
	Sect 2.2.1 – added reference to Sun’s web module diagram
	Mario Rodrigues
	

	05/9/2006
	0.1
	- Sect 5.4 –updated JNDI naming issues

- Added sect. 5.5
	Mario Rodrigues
	

	06/5/2006
	0.1
	- Sect 5.5 –updated JNDI naming examples for reporting databases
	Mario Rodrigues
	

	3/14/2007
	0.1
	- Sect 4.1 – updated Eclipse section
	Mario Rodrigues
	

	6/30/2007
	0.1
	- Added Sect 4.1.2
	Mario Rodrigues
	

	
	
	
	
	

	
	
	
	
	

Table of Contents

11
Introduction

11.1
Scope

11.2
Overview

11.2.1
UML

21.2.2
Framework & Design Patterns

22
SOA Architecture and J2EE Framework Implementation

32.1
SOA Architectural Stack

32.2
SOA and J2EE Framework

42.2.1
Composite Application Layer

102.2.2
Orchestration Layer

152.2.3
Connectivity Layer

212.3
Enterprise Service Bus (ESB)

242.3.1
Message Broker & ESB Gateway Framework

242.3.2
ESB Core Features

263
Security

283.1
Java EE Platform Reference Implementation

284
Source Code Control Structure

294.1
Organizing J2EE Components in a Development / SCC Directory

294.1.1
Archive versus Exploded Archive Directory

314.1.2
Directory Structure for static web artifacts

314.1.3
Dimensions Directory Structure

325
Project Setup and Build Process

335.1
Eclipse Installation

345.2
Connecting To The Dimensions Repository

345.2.1
Connecting to the Dimensions Server

345.2.2
Products and Worksets

355.3
Eclipse Project Setup

355.4
Run Ant Build File

425.5
Iterative Build Process

436
Application Development Guidelines

436.1
Development Toolsets

436.2
Use of Eclipse Plugins

446.3
Use of Third-Party JARS and Libraries

446.4
Governance Process

456.5
JNDI Naming Conventions

Application Software Architecture
1 Introduction

This document is the blueprint for the VBIT J2EE platform and distributed application architecture and framework based on a Service-Oriented Architecture (SOA). The VBIT’s orientation, and hence, the driving principles of this document is towards an open standards development environment that does not lock the VBIT into a particular J2EE application server. As such, usage of WebLogic specific API’s, especially those that provide optimizations and services not found elsewhere will be considered and their use will be carefully abstracted so that code impact will be minimal. The current deployment will be based on Weblogic 9.0 but this will not preclude deployment on other J2EE compliant application servers as long as the appropriate (server specific) deployment descriptors are generated.

One of the issues that enterprises face when implementing SOA is the large number of technologies that it involves: Adapters, application servers, BPM tools, Workflow engines, B2B gateways, message brokers, Web application development environments, enterprise portals, Web service gateways, UDDI servers, etc. This architecture document aims at containing these components within the VA’s current infrastructure as much as possible while also providing direction and recommendations to support a service-oriented programming model. The frameworks in this document are built from the ground-up in one stack with one framework supporting the next. The APIs are unified across the stack providing one single programming model for every feature in the framework.

1.1 Scope

This scope of this document is limited to the definition, description, patterns and principles involved in constructing the VBIT’s next generation eBusiness J2EE platform. The concept of a Service Oriented Architecture (SOA) is the overriding theme that guides these patterns and principles.

This document is structured around an n-tiered layered approach of a distributed J2EE platform within the context of a SOA.

1.2 Overview

The VBIT J2EE architecture and Service-oriented development platform is based on J2SE

5.0, J2EE 1.4 and is a critical element of service-oriented architecture where a

service is a primary code asset. One of the core aspects of service-oriented development is

the building of higher-level business services that orchestrate lower-level services
.

1.2.1 UML

System designs and components are shown mainly through the use of UML (Unified Modeling Language) diagrams. UML is the core of Object Oriented modeling, analysis and design. UML models can be converted to working Java code once they are run through a code generator. The main UML diagrams used in this document are Class diagrams, Activity Diagrams, Sequence Diagrams, Component Diagrams and State diagrams.

1.2.2 Framework & Design Patterns

At the heart of any J2EE/SOA platform is the plumbing, wiring and code that makes all application development happen in a conforming and unified manner. More importantly, it holds applications together, takes care of low level communications, exception handling, routing and performance on an enterprise-wide scale. Design Patterns are widely accepted algorithms for solving common problems. A framework automates the easily repeatable coding aspects of the patterns with techniques such as automatic code generation or a metadata-driven approach. At the highest level, J2EE frameworks turn into visual design and declarative programming environments.

2 SOA Architecture and J2EE Framework Implementation

SOA is a standards-based interaction pattern between service consumers and producers implemented on standards-based technologies (WSDL, SOAP and UDDI). A service has 2 parts: an Interface and an Implementation. The VBIT J2EE platform implements a SOA using Web Services. In a SOA, services are relatively coarse-grained components that perform a particular task. These components can be implemented in any appropriate manner – the SOA is concerned with what they do, not how they do it (location transparency). These services are usually distributed, and can be located anywhere on the VBIT network (most often within the firewall, but increasingly on the public Internet as well). The key components of the VBIT web-services-based SOA are provider, consumer, and broker.

[image: image2.png]
Basic Web Services Components

2.1 SOA Architectural Stack

The basic SOA stack is defined as a set of WS-I standards-based modules that work

cohesively to provide platform-neutral services. The VBIT WebLogic Web Services stack

is implemented according to the Enterprise Web Services 1.1 specification (JSR-921). Using

standard JDK 1.5 metadata annotations. This Web Services framework uses SOAP 1.1 as the

message format and HTTP as the connection protocol. Web Services implement

the SOAP with Attachments API for Java 1.2 specification (SAAJ 1.2) to access any

attachments to the SOAP message and use WSDL 1.1, to describe themselves.

[image: image3.png]
2.2 SOA and J2EE Framework

The VBIT SOA framework is categorized into layers built on the J2EE platform using open standards implemented by the WebLogic 9.0 Application Server. The core SOA architectural stack shown in the diagram above and the SOA conceptual model shown below are implemented using J2EE web services, EJB and web APIs.

[image: image4.png]
The following sub sections describe each layer and provide an implementation for the VBIT

J2EE platform. It is important to note that the entry point into the VBIT domain is through the Enterprise Service Bus (ESB) described in section 2.3.

2.2.1 Composite Application Layer

Data that is shuttled between services is exposed to users through various types of user interfaces. This layer is typically considered the final integration “at the glass”. The composite application layer is a pure consumer layer that provides applications for the end user.

The VBIT-specific implementation of this layer is via a thin client browser requiring no distribution of any client tools on user PCs. The client protocol is HTTP(S). Subsequent translations of client requests will be managed via SOAP/JMS based on request characteristics.

· Web Components Framework

The VBIT thin client architecture is based on a cross browser (IE 6+ Netscape 7+, Opera, and FireFox) HTTP(S) based protocol using the J2EE web, servlet and JSP specifications. It’s assumed that 128 bit encryption is supported. The core web framework is based on the J2EE Servlet 2.4 and JSP 2.0 specifications. The current MVC framework with which web componants are built is Struts 1.2.x, but during the fall of 2007, JSF will be the standard and all new web applications will be required to be built using this technology.

 [image: image5.png]
The document root where all VBIT applications will reside is /vbaapps. All sub applications will follow the naming convention /vbaapps/<application>/.

The WEB-INF directory is not part of the public document tree of the application. No file contained in the WEB-INF directory can be served directly to a client by the container. However, the contents of the WEB-INF directory are visible to servlet code using the getResource and getResourceAsStream() method calls on the ServletContext or includes/forwards using the RequestDispatcher.
The UML class diagram below represents the base Web tier and Struts framework implementation using Struts 1.2.7. The class diagram shows the Base Struts Action which is the main Action and exception handling class for all VBIT applications. All application Actions will extend this class to inherit it’s functionality for browser-based login, error handling and page routing.

[image: image6.png]

· State Management

Client state will be held in a UserContext object. This object implements the javax.http.servlet.HttpSessionBindingListener interface so that the web container can issue callbacks based on when the user’ session is invalidated. The UserContext is stored in an HttpSession object which is managed by the Struts BaseAction. Based on the security implementation, the HttpSession would probably be managed by SiteMinder, in which case the BaseAction would get a reference to it.
· Form Validation

The Struts Validator will be used for all form validation. All validation should be server side with very minimal use of JavaScript. If using the validator, then either the DynaValidatorForm or DynaValidatorActionForm should be used depending on the type of functionality required.

· DynaActionForm vs. ActionForm

DynaActionForms should be used for all form bean definitions instead of extending the ActionForm class.

Java Skeleton code sample:

/*
 * BaseServlet.java
 *
 * Copyright 2005 U.S. Dept Of Veterans Affairs. All rights reserved.
 * U.S. Government PROPRIETARY/CONFIDENTIAL. Use is subject to security

 * terms.
 */
package gov.va.VBIT.framework.controller;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.action.RequestProcessor;
import javax.servlet.ServletException;
/**
 * <p>
 * Main VBIT controller Servlet.
 * Initializes the web proxy objects (business delegates) for use by

 * client Actions. The Business Delegate pattern is a well defined

 * pattern to achieve a clean decoupling of view and service layers
 * </p>
 * @author
Mario Rodrigues
 * @since
Aug 25, 2005
 */
public class BaseServlet extends ActionServlet {

/**

 * Override the init method to do application-specific

 * initialization.

 *

 * Note: instead of using specific Service objects to

* instantiate, we can store the <code>Class</code> name of a

* particular Service in web.xml's <init param> and have this

* <code>init()</code> method dynamically instantiate it.

 * @param

 * @return

 * @throws ServletException

 */

public void init() throws ServletException {

super.init();

try {

 BenefitsProxy benefitsProxy = new BenefitsProxy();

 // store proxy into application scope for use by actions

 getServletContext().setAttribute(

Constants.BENEFITS_PROXY, benefitsProxy);

}

catch (ServiceInitException sie) {

sie.printStackTrace();

throw sie;

}

}
}
/*
 * BaseAction.java
 *
 * Copyright 2005 U.S. Dept Of Veterans Affairs. All rights reserved.
 * U.S. Government PROPRIETARY/CONFIDENTIAL. Use is subject to security

 * terms.
 */
package gov.va.VBIT.framework.controller;
import java.util.*;
import javax.servlet.http.*;
import org.apache.struts.*;
import org.apache.struts.action.*;
import gov.va.VBIT.framework.security.UserContext;
/**
 * <p>
 * An Abstract Base action that all VBIT actions extend. The main

 * purposes of BaseAction are: (1) to create a common routing and

 * exception handling mechanism so that concrete Actions can deal with

 * the task at hand and not worry about chaining and propagating

 * exceptions individually (otherwise this would lead to a lot of

 * redundant code). (2) to easily pass the UserContext
 * object to all Actions in a uniform manner. (3) Handle session

 * management when the user logs in
 * </p>
 * All that a sub class has to do is implement
 * <code>executeAction()</code>
 *
 * @author Mario Rodrigues
 * @since Aug 26, 2005
 */
public abstract class BaseAction extends Action {

/**

 * <p>

 * The default <code>execute()</code> method that all actions

* must implement. All exception handling from client Action
* invocations are done here. Descendents of this class will throw

* exceptions of <code>BaseException</code> so that they can be

* properly handled here.

 * An Exception is either processed as a BaseException type OR

* treated as a system error and made available to the system
* error page. This is accomplished by using a double-try-catch

* so that exceptions don't get propagated to the servlet

 * container, but are instead processed right here.

 * </p>

 *

 * @param ActionMapping - ActionMapping for current Action

 * @param ActionForm - DynaActionForm for current page

 * @param HttpServletRequest - current request obj

 * @param HttpServletResponse - current response obj

 * @return an ActionForward to the next Action/jsp

 * @throws java.lang.Exception

 */

public ActionForward execute(ActionMapping mapping,

 ActionForm form,
HttpServletRequest req, HttpServletResponse resp)

throws Exception {

ActionForward forwardPage = null;

UserContext userCtx = null;

try {

 try {

if ((userCtx = getUserContext(req)) != null) {
forwardPage = executeAction(mapping, form, req,

resp, userCtx);

}

else {

invalidateSession(req);

forwardPage = mapping.findForward("Login");

}

 }

 catch (BaseException ex) {

// log, using log4j

forwardPage = processBaseExceptions(req,

mapping, ex);

 }

 }

 catch (Throwable ex) {

// log system Exception using log4j

req.setAttribute(Globals.EXCEPTION_KEY, ex);

forwardPage = mapping.findForward(

PropertyManager.getInstance().

getString(Key.SYSTEM_FAILURE_KEY));

}

return forwardPage;

}

/**

 * <p>

 * All descendents of BaseAction must implement this method.

* Note: Subclasses don't have to worry about providing a catch *

* block, unless you are planning on providing specialized

* behavior for the exception.

 * </p>

 *

 * @param
ActionMapping,

 * @param
ActionForm,

 * @param
HttpServletRequest,

 * @param
HttpServletResponse,

 * @param
UserContext

 * @return
ActionForward

 * @throws
Exception

 */

public abstract ActionForward executeAction(ActionMapping

mapping,
ActionForm form, HttpServletRequest req, HttpServletResponse resp,

UserContext userCtx) throws BaseException;

/**

 * Retrieves the UserContext for the user tied to this session.

 *

 * @param req obj

 * @return UserContainer obj. from session

 */

protected UserContext getUserContext(HttpServletRequest req)

throws BaseException {

//code to get user object

return userContext;

}

/**

 * Retrieves the specified business delegate for use by Actions.

 * For simplicity, this method is shown here, but it is a good

 * practice for applications to extend this BaseAction and

 * implement their own getBusinessDelegate() method

 *

 * @param
String – business delegate name

 * @return delegate name

 */

protected IProxy getBusinessDelegate(String bd)

throws BaseException {

return servlet.getServletContext().

getAttribute(bd);

}
}
2.2.2 Orchestration Layer

The orchestration layer contains components that are both service consumers and service providers. These components invoke services from the connectivity layer and other orchestration services to aggregate low-level operations into higher-level services that map more closely to business operations. Orchestration services come in several flavors that leverage different technologies:

· Composite Services

These are services that aggregate invocations to underlying services

much like a façade design pattern. They help simplify interaction with lower-level services and shield complexity to higher-level service consumers. There are currently no open standards for how composite services are defined. The VBIT architecture will treat such composite services as groups of process services and manage the orchestration of such services.

· Process Services

These are services that define a process that spans lower-level services. This is

extremely useful when designing business services that span a variety of underlying

enterprise systems and execute as a process. For example, the business service

“Create New Participant” could be a process service that interacts with the VBIT

Corporate database to get veteran details, makes a decision based on personnel rating

and interacts with records and military systems to complete the process.

The VBIT service endpoint implementation of process services is based on the EJB 2.1

specification and exposes a business interface to be implemented by the underlying

Stateless Session EJB and exposed via a web service. The Class diagram below

shows a basic stateless session bean implementation of a VBIT service for Benefits

and Veterans Profile. Also shown are framework components:

J2EEServiceLocator and DAO.

[image: image7.png]
VBIT EJB Service Implementation and DAO

Java Skeleton code sample:

/*
 * BenefitsService.java
 *
 * Copyright 2005 U.S. Dept Of Veterans Affairs. All rights reserved.
 * U.S. Government PROPRIETARY/CONFIDENTIAL. Use is subject to security terms.
 */
package gov.va.VBIT.benefits.serviceImpl.veteran;
import java.util.*;
/**
 * Main veterans benefits service Interface
 *
 * @author Mario Rodrigues
 * @since August 26, 2005
 */
public interface BenefitsService {

/**

 *

 *

 * @param
pid - participant ID

 * @return
ValueObject

 * @throws
DataRequestException

 */

public ValueObject getBenefits(int pid) throws DataRequestException;

/**

 *

 *

 * @param
int

 * @return
List

 * @throws
DataStoreException

 */

public List updateBenefits (ValueObject obj) throws DataStoreException;
}
/*
 * BenefitsLocal.java
 *
 * Copyright 2005 U.S. Dept Of Veterans Affairs. All rights reserved.
 * U.S. Government PROPRIETARY/CONFIDENTIAL. Use is subject to security terms.
 */
package gov.va.VBIT.benefits.serviceImpl.veteran;
import java.util.*;
/**
 * Local interface for Enterprise Bean: BenefitsBean
 */
public interface BenefitsLocal extends BenefitsService,

VBITBaseService {
}
/*
 * BenefitsBean.java
 *
 * Copyright 2005 U.S. Dept Of Veterans Affairs. All rights reserved.
 * U.S. Government PROPRIETARY/CONFIDENTIAL. Use is subject to security terms.
 */
package gov.va.VBIT.benefits.serviceImpl.veteran;
import java.util.List;
import javax.naming.*;
import javax.ejb.SessionContext;
import javax.ejb.CreateException;
/**
 * <p>
 * Bean implementation class for Enterprise Bean: BenefitsBean.
 * </p>
 *
 * @author Mario Rodrigues
 * @since Aug 26, 2005
 */
public class BenefitsBean implements BenefitsService, SessionBean {

private SessionContext _context;

private static Logger logger = LogFactory.getLogger(this.getClass());

/**

 * Returns a list of scenarios for a given policy

 *

 * @param

 * @return

 * @throws

 */

public ValueObject getBenefits(int pid) throws DataRequestException {

BenfitsDAO dao = DAOFactory.getDAO(benefits);

List benefits = null;

try {

benefits = dao.retrieveAllBenefits(1233);

}

catch (FinderException fe) {

throw new DataRequestException(fe);

}

return (ValueObject) benefits.get(0);

}

public void updateBenefits(int submissionID) throws DataStoreException {

}

public SessionContext getSessionContext() {

return super.context;

}

public void setSessionContext(SessionContext ctx) {

super.context = ctx;

}

public void ejbCreate() throws CreateException {

super.ejbCreate();

//code to do initializations of factory, core objects

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbRemove() {

super.ejbRemove();

//code to do cleanup

}
}
· Data Services, Persistence & Database Adapter Framework

Data services are services that expose data sets collected across multiple disparate data sources. In many cases data that logically belongs together is spread over multiple enterprise applications and databases. A common example is veteran profile data stored in the VBIT Corporate database. Each system contains pieces of the data, but no one system has a complete “360 degree” view of the profile. Data services are not always considered an orchestration service. Often a data service interacts directly with the underlying databases through specific non-service oriented access methods such as JDBC or J2CA.They can expose data in proprietary enterprise applications and they also orchestrate data from multiple data sources (that could be exposed as services individually). Internally data services typically employ some sort of query language and other description mechanisms to specify queries and the relationships between data schemas. Technologies are SQL, XSLT, and XQuery. XQuery and XSLT are more “pure” query methods from a Web services perspective because they process and produce XML natively.

The current service end point implementation of the VBIT data service will be via a “DataAcccessLayer" or an abstract “DataService” with a concrete implementation using a mixture of Stateless Session EJB’s and entity EJB’s for persistance. Connections, queries and updates to the VBIT Corporate Oracle Database will be handled via this Data layer.

The current scheme for data persistence is based on the EJB 3.0 specification using JPA as the underlying implementation and CMT (Container Manager Transactions) *
The database adapter consists of a J2EE Service Locator and Database Manager for locating a given data source and returning a reference to it for use by an application program or service. The VBIT J2EEServiceLocator implements a variation of the Singleton design pattern for use in a clustered environment. Together with the DatabaseManager which manages database connections and execution of SQL statements, specific requests to different data sources can be made. In order to establish a connection to the VBIT Corporate Database, for example, execute SQL statements against it and retrieve data, the following steps must to be executed.

1) Create a WebLogic DataSource object through the WLS admin console with the following properties:

· JNDI name
: jdbc/framework/CorporateDb
· URL:
 jdbc:bea:oracle://VBITdev:1527
· Driver Class: weblogic.jdbcx.oracle.OracleDataSource
· Specify the UID/PW and accept all other defaults.

Important Notes:

a) In order to implement 2-phase-commit functionality (XA protocol), the datasource has to be set up using the BEA WebLogic Type 4 XA driver.

b) All Oracle userIds will be set up by the IA group and delivered to the team leads. The current convention is that every application will have a generic UID. E.g.: the CWNRS application will have UID “wbcwnrs”. It is yet to be determined whether individual developers will use this generic ID or be provided with individual Ids.

c) If using Oracle RAC, the above configurations will change in addition to datasource set up and WebLogic cluster configurations

2) Implement the framework based on the UML below to access the above data source and make it available to all applications. A .properties file or Java 5 annotations can be used to list all JNDI names for the ServiceLocator to use.

[image: image8.png]
VBIT DatabaseManager and J2EE ServiceLocator Framework

3) In application code, get a connection to the datasource through DatabaseMananger.getConnection(CORPORATE_DB).

2.2.3 Connectivity Layer

Connects to underlying enterprise applications or resources and exposes them as services.

This layer is a pure provider layer that works as an adapter between

non-service-oriented applications and the service network (Eg. Tuxedo, Oracle). For commonly used packaged applications, WebLogic contains ready to use adapters. For custom applications, adapter development kits are used. An adapter can be built to leverage standards based connectivity such as JDBC or J2CA Services in this layer can categorized as:

A current implementation of this architecture is used by CSS: The SecurityEJB invokes a TuxedoConnector which in turn invokes the underlying WebLogic WTC API’s to call the existing Legacy Tuxedo service. The final object returned to the client is a populated UserContext object.

[image: image9.png]
· Common Services

The initial VBIT reference implementation of a core common service will be done using Tuxedo to access it’s services via the Tuxedo WTC J2CA adapter and to expose Tuxedo services as web services. Since the 8.0 version of Tuxedo does not natively implement and expose a web services API, this functionality will have to be written in-house in a pluggable manner so that when Tuxedo is upgraded to version 9.x, minimal modifications will have to be made to the code base in order to achieve the same functionality. Another common service will be “CorrespondenceService” or “FormAndLetterGenerationService”

· CorrespondenceService: The implementation of this service will depend on the COTS product that the VBIT purchases such as Documentum or BusinessObjects. From a J2EE perspective, as long as the COTS product exposes a Java or WebServices interface, the VBIT framework can create a proxy service that connects to the underlying COTS API and submits/receives correspondence. Typically, this proxy service would exhibit a web services interface that takes a SOAP request message. This service can also be implemented using a pure Java interface that accepts a request via an XML stream and processes the request against the COTS API (and returns the response if necessary). There will probably also be a VBIT requirements to resend/reprocess forms/correspondence. In this case we assume that the COTS product will handle this functionality via some primary key. If that’s not the case, then the XML stream will have to be serialized to the corporate database (or a file system) via an Oracle XMLType column for later processing (resend/reprocess)

· NotificationService: This is implemented through the EJB TimerService interface. This interface provides enterprise bean components with access to the container-provided Timer Service. The service allows entity beans, stateless session beans, and message-driven beans to be registered for timer callback events at a specified time, after a specified elapsed time, or after a specified interval.

· Enterprise Infrastructure Services

Can be further categorized into: Message Brokering Services, Shared Application Services, Portal Services, and Shared Business Services. Examples of such services are: ServiceRepository, ServiceFinderAndBroker, LoggingService.

The following UML class diagram represents a Logging framework using Log4J and shows how a custom Tuxedo Appender that logs messages to Tuxedo can be implemented. A major issue with logging in a clustered environment is file thread contention and synchronization when using a FileAppender. One option is to synchronize the write processes by writing a buffer around the FileAppender or using another appender like the SocketAppender. A more elegant approach is to use the JMSAppender to write all log messages to a Q/Topic thereby taking full advantage of the container’s clustering capabilities for JMS objects. An Exception handling framework is shown using the Logger.

[image: image10.png]
VBIT Logging and Exception handling Framework

Sample Java Code:

/**

 * Retrieves a veteran’s profile based on the specified
 * ssn

 *

 * @param
ssn

 * @return
VeteranVO

 * @throws
SQLException

 */

public VeteranVO getVeteranProfile(BigDecimal ssn) throws

SQLException {

Connection con = null;

PreparedStatement ps = null;

String query =

"select ……. "+

"from individual i, profile p"+

"where v.id = ? and …..";

try {

con = DatabaseManager.getConnection(CORPORATE_DB);

ps = (PreparedStatement)DatabaseManager.getStatement(query,

con);

ps.setBigDecimal(1, ssn);

rsdc = (RowSetDynaClass)DatabaseManager.

executePreparedQuery(ps);
return (VeteranVO)ValueObjectLoader.loadVO(

new VeteranVO (), rsdc);

}

finally {

DatabaseManager.releaseResources(ps, con);

}

}
· Messaging Adapter Framework

Consists of a JMSManager for managing the VBIT platform’s low level MQ/JMS queues and topics. The VBIT JMSManager implements a variation of the Singleton design pattern for use in a clustered environment. This framework works in conjunction with the ServiceLocator and manages individual client connections and sessions to the underlying JMS infrastructure. In it’s initial state, this would be used primarily by the ESB

2.3 Enterprise Service Bus (ESB)

The core backbone of the conceptual SOA model (above) is defined via an ESB (Enterprise Service Bus). An ESB is a highly distributable and flexible backbone upon which to build enterprise service-oriented architectures. It provides the open, standards-based connectivity

infrastructure for a SOA. It is a pattern of middleware that unifies and connects services,

applications and resources within a business. Put another way, it is the framework within

which the capabilities of the VBIT’s business' applications are made available for reuse by

other applications throughout the organization and beyond. Each of the interactions with the

ESB ideally makes use of a WSDL based service definition, invoking the required transport

services and quality of service. The VBIT ESB consists of the following components:
· Web services: support for SOAP, WSDL and UDDI, as well as emerging standards such as WS-Reliable Messaging and WS-Security

· Messaging: asynchronous store-and-forward delivery with multiple qualities of service

· Message transformation: XML to XML, XML to Objects, objects to XML

· Content-based routing: publish and subscribe routing across multiple types of sources and destinations, p2p.

· A flexible security framework

· Platform-neutral: connect to any technology in the enterprise, e.g. Java, .Net, mainframes, and databases.

· Adapters, to enable connectivity into packaged and custom enterprise applications, as well as leading technologies.

· Distributed query engine, for easily enabling the creation of data services out of heterogeneous data sources

· Service orchestration engine, for both long-running (stateful) and short-running (stateless) processes

· Presentation services, to enable the creation of personalized portals that aggregate services from multiple sources

The distributed services architecture of the ESB allows the referencing of services via

abstract endpoints which are globally accessible across a federated namespace. The

distributed services architecture is layered upon an interconnected system of lightweight

service containers that allow remote services to be configured, deployed, managed, and

monitored. These service containers are held together through a standards-based messaging

backbone that enables scalability, continuous availability, low-latency throughput, and

consistent security and quality of service (QoS) across the enterprise.

[image: image11.png]
High Level VBIT ESB and Services Architecture

Supported J2EE and WS-* Specifications

The VBIT ESB will support the following J2EE and WS-* specifications:

J2EE Platform Specification 1.4

J2EE Connector Specification 1.5

J2EE Management Specification 1.0

Java API for XML Processing Specification 1.2

Java API for XML Registries Specification 1.0

Java API for XML-based RPC Specification 1.1

Java Authorization Contract for Containers 1.0

Java Naming and Directory Interface Specification 1.2.1

Java Message Service Specification 1.1

Java Transaction API Specification 1.0.1B

Java Transaction Service Specification 1.0

JDBC Specifications, 3.0, 2.1, and Optional Package API (2.0)

JavaMail API Specification 1.3

SOAP with Attachments API for Java Specification 1.2

WS-Security 1.0

WS-ReliableMessaging 1.0

2.3.1 Message Broker & ESB Gateway Framework

Messages entering the VBIT ESB gateway are intercepted by the Message Broker for

the initial phase of message preprocessing and parsing. The ESB’s intent is to provide intelligent message brokering between business services and service clients (web clients or other business services). Depending on the complexity and location of some business services, the ESB could employ a “proxy services layer” where service clients exchange messages with an intermediary proxy service instead of directly with a business service. A proxy service can have an interface that is identical (same WSDL and transport) to a business service with which the proxy service communicates, or the proxy service can have an interface that differs from that of the business service in terms of WSDL, transport type, or both.

[image: image12.png]
Message Broker & Routing framework

2.3.2 ESB Core Features

· Routing: Routes messages according to XQuery/XSLT-based policies

· Transport Protocols: File, FTP, HTTP(S), JMS (including MQ using JMS, and JMS/XA), E-mail (POP/SMTP/IMAP)

· Messaging: Synchronous, Asynchronous, Publish, Subscribe

· Message Types: Raw Data (opaque data— non-XML data), Text, SOAP, SOAP with attachments, XML (free form XML)

· Transformations:

· Validates incoming messages against schemas

· Selects a target service or services, based on the message content or message headers

· Transforms messages based on the target service

· Transforms messages based on XQuery or XSLT

· Service Registry:

· Stores information about services, schemas, transformations, WSDLs and WS Policies.

· Provides centralized management and distributed access

· Allows for browsing of the service registry and import of resources into the registry

Security

The VBIT’s security implementation is based on the existing legacy CSS (Common Security Services) application. At a high level, user’s login through SiteMinder and after a successful authentication, a user profiles stored in the Oracle CSS db is retrieved by the Java layer via a Tuxedo adapter layer and stored in a UserContext object. This UserContext object is stored in an a user’s session and provides various metods to access a user’s security profile.

[image: image13.png]
[image: image14.png]
[image: image15.png]
2.4 Java EE Platform Reference Implementation

The CSS application serves as the official reference implementation of the VBIT’s Java EE platform and uses the currently developed framework components and libraries.

3 Source Code Control Structure

WebLogic J2EE applications are built using standardized, modular components based on the Sun J2EE 1.4 specification. J2EE defines module behaviors and packaging in a generic, portable way, postponing run-time configuration until the module is actually deployed on an application server. J2EE includes deployment specifications for Web applications, EJB modules, Web Services, Enterprise applications, client applications, and connectors. J2EE does not specify how an application is deployed on the target server—only how a standard module or application is packaged. Keeping that in mind, the VBIT platform will employ an iterative build process using Apache Ant 1.6.5. and CruiseControl. J2EE modules will be designed and implemented based on the WebLogic “Split-development directory structure”. In a split-development directory structure, source and build directories form the basis of the environment. The source directory will contain all editable files for VBIT project — Java source files, editable descriptor files, JSPs, static content, etc. The build directory contains all staged modules that need to be deployed.

3.1 Organizing J2EE Components in a Development / SCC Directory

BEA recommends the split development directory structure for each project to be staged as a J2EE Enterprise Application (EAR) so that the WebLogic Ant tasks can compile, build and deploy the enterprise apps into WebLogic. From experience with building the components, this structure is not flexible enough for large cross-enterprise projects like the VBIT’s. There are pros and cons to using this structure but the biggest drawbacks are 1) SOA components cannot be partitioned and layered. 2) WebLogic targets have to be used to generate the desired archives. 3) Project structure cannot be changed and HAS to follow the web and EJB structure. To accommodate other Java development groups, the directory structure in Dimensions will closely resemble the WebLogic split development directory structure but will be flexible enough to allow for other structures like listeners, handlers and DAOs and JWS files. The Dimensions SCCM repository will have the directory structure laid out according to the “VBIT J2EE Source Control Repository Layout” diagram. The WebLogic archived J2EE snapshot is shown in the “VBIT J2EE Component Structure” diagram below.

3.1.1 Archive versus Exploded Archive Directory

For production purposes, it is recommended to deploy Enterprise applications in archived directory format (.ear) so that changes cannot be made to the application. This applies also to stand-alone Web applications, EJBs, and connectors packaged as part of an Enterprise application. In development and non production environments, deploying in an exploded/unarchived format allows you to update files directly in the exploded directory rather than having to unarchive, edit, and rearchive the whole application.

[image: image16.png]
3.1.2 Directory Structure for static web artifacts

The directory structure for static documents, images and Javascript stored on the Apache server will be as follows.

/html

/images (Generic image directory for images that will be used in multiple apps.)

/stylesheets (Generic SS directory for stylesheets that will be used in multiple

apps.)

/javascript (Generic Javascript dir. for Javascript that will be used in multiple

 apps.)

For application specific artifacts, the structure will be as follows:

/html/<appName> (i.e. html/weams)

/images/<appName> (i.e. images/weams)

/stylesheets/<appName> (i.e. /stylesheets/weams)

/javascript/<appName> (i.e. /javascript/weams)

3.1.3 Dimensions Directory Structure

Dimensions 8.0.5 is the current version of the SCCM that will host the J2EE

artifacts. The Directory structure as shown in the diagram below will be created in

Dimensions by the Dimensions admin group and each developer will log in and

download the initial source tree onto their workstations.

[image: image17.png]
VBIT J2EE Source Control Repository Layout

4 Project Setup and Build Process

In order to start developing applications, the VBIT J2EE project structure is going to have to be setup on the individual developer’s workstation in a multi step manner:

[image: image18.png]
VBIT Eclipse Project Layout

4.1 Eclipse Installation

The standard IDE installation at this point and time is Eclipse 3.2.1 with WTP 1.5.2. The IDE is bundled as a combined installation and distributed via CD by the Austin LAN support group.

For detailed installation* and set up instructions refer to the “Java EE Developer Image” document.

4.2 Connecting To The Dimensions Repository

From the Windows Start menu, select Programs (Merant (Dimensions (PC Client. This opens up the connection window to connect to the Dimensions repository

4.2.1 Connecting to the Dimensions Server

Type in the required values as follows. Note: A UNIX log in ID will need to be created for the user before attempting to log in.

- profile: VBITdev

- user name: <UNIX login ID>

- password: <UNIX password>

- server: VBITdev

- db name: VBIT

- DB Connection: dim8

[image: image19.png]
4.2.2 Products and Worksets

Once a connection has been established to the repository, the preferred Product and Workset will need to be selected based on the application development group: The default Workset after installation is $GENERIC:$GLOBAL. This needs to be changed as follows:

- Select Workset (Change

· In the window that appears, the directory field is the location where files will

be checked out to. The directory tree that the file is stored under in Dimensions will be created from the directory defined in this field. If it is desired to make this the default work set that will open when logged into Dimensions, the Make default button should be clicked, otherwise the Open button should be clicked.

 [image: image20.png]
For further information, contact the Dimensions support team for the specific application being developed.

4.3 Eclipse Project Setup

It is assumed that Eclipse has been set up with the required (startup) shortcut created on the desktop per instructions in “Java EE Developer Image Configuration.doc”.

4.4 Run Ant Build File

Each application built on the framework will supply it’s own build.xml file that will have

the following mandatory targets.

1) <target name="build" description="Builds the <app>

 application">

 2) <target name="deploy" description="Deploys the <app>

 application">

 3) <target name="clean" description="Cleans the <app>

 application compilation directories">

The targets will be assembled in a completed build.xml file and checked in to Dimensions at the root level of the application.

Following is an example Ant build.xml using the framework Ant build file that will compile, build and deploy the VBIT framework EAR:

<project name="VBIT Framework EAR" default="build">

<!-- == -->

<!-- Main build script for the VBIT Framework Project. This

-->

<!-- script should be called from the Master build script

-->

<!--

-->

<!-- @author
Mario Rodrigues

-->

<!-- @date
Sept. 9, 2005

-->

<!-- == -->

<property environment="env"/>

<property file="./framework.properties"/>

<property name="build.compiler" value="${compiler}"/>

<property name="webservices" value="webServices"/>

<!--Source Directories-->

<property name="framework.src" value="${VBIT.home.dir}/src/frameworkEar"/>

<property name="common.src" value="${framework.src}"/>

<property name="entity.ejb.src" value="${framework.src}/EntityEjbs/src"/>

<property name="session.ejb.src" value="${framework.src}/sessionEjbs/src"/>

<property name="mdb.ejb.src" value="${framework.src}/mdbEjbs/src"/>

<property name="web.src" value="${framework.src}/webApp/src"/>

<!-- build directory for the wls formatted ear -->

<property name="dest.dir" value="${VBITFramework.ear.wlcompile.build.dir}"/>

<property name="tmp.dir" value="${build.dir}/tmp"/>

<!-- This is an archived J2EE formatted ear, combining

 the build and src elements of the VBITFramework ear -->

<property name="ear.file" value="${VBITFramework.ear.file}"/>

<property name="web.build.dir" value="${dest.dir}/webApp"/>

<!-- This is an exploded J2EE formatted ear, combining

 the build and src elements of the ear -->

<property name="ear.exploded.dir" value="${VBITFramework.ear.exploded.dir}"/>

<!-- these all apply to the src and build directory for wls formatted ear -->

<property name="app-inf.dest.classes" value="${dest.dir}/APP-INF/classes"/>

<property name="app-inf.dest.lib" value="${dest.dir}/APP-INF/lib"/>

<taskdef name="jwsc" classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="wlcompile" classname="weblogic.ant.taskdefs.build.WLCompileTask" />

<taskdef name="wlappc" classname="weblogic.ant.taskdefs.j2ee.Appc" />

<taskdef name="ejbgen" classname="com.bea.wls.ejbgen.ant.EJBGenAntTask" />

<!--<taskdef name="ejbgen" classname="weblogic.ant.taskdefs.j2ee.Ejbgen"/>-->

<taskdef name="wlpackage" classname="weblogic.ant.taskdefs.build.WLPackageTask"/>

<taskdef name="wldeploy" classname="weblogic.ant.taskdefs.management.WLDeploy"/>

<path id="compile.path">

<fileset dir="${lib.root.dir}">

<include name="**/*.jar"/>

<exclude name="export/**"/>

</fileset>

<pathelement location="${dest.dir}/${ejb.jar.name.session}"/>

<pathelement location="${wls.home}/server/lib/weblogic.jar"/>

<pathelement location="${env.JAVA_HOME}/lib/tools.jar"/>

<!--<pathelement location="/bea/jrockit90_150_03/lib/tools.jar"/>-->

<pathelement location="${app-inf.dest.classes}"/>

<pathelement location="${app-inf.dest.lib}/VBITServerExtensions.jar"/>

</path>

<target name="banner">

<echo>+---------------------------------------+</echo>

<echo>+ Building VBIT Framework Ear +</echo>

<echo>+---------------------------------------+</echo>

</target>

<!-- build and deploy application -->

<target name="prepare">

<!--Setup directories for the ear level -->

<mkdir dir="${app-inf.dest.classes}"/>

<mkdir dir="${app-inf.dest.lib}" />

<mkdir dir="${web.build.dir}/WEB-INF/classes"/>

<mkdir dir="${web.build.dir}/WEB-INF/lib"/>

<mkdir dir="${tmp.dir}"/>

<!--<mkdir dir="${dest.dir}/${ejb.jar.name.session}"/>-->

</target>

<target name="build" depends="banner, clean.all, prepare, build.common.libs,

 build.session.ejbs, build.webapps"/>

<target name="build.common.libs"> <!--depends="build.server.libs"-->

<echo>Building COMMON...</echo>

<!-- Copy libs for ear & web archives -->

<copy failonerror="true" todir="${app-inf.dest.lib}">

<fileset dir="${lib.root.dir}">

<include name="*.jar"/>

<exclude name="web/**"/>

<exclude name="export/**"/>

</fileset>

</copy>

<javac srcdir = "${common.src}" destdir="${app-inf.dest.classes}" debug="${debug}">

<classpath refid="compile.path"/>

<include name="utils/**"/>

<include name="EnterpriseServiceBus/**"/>

<include name="DataAccess/**"/>

<include name="exceptions/**"/>

</javac>

</target>

<target name="build.session.ejbs">

<ejbgen source="${sourceVersion}" ejbgenverbose="on" fork="true" forcegeneration="true"

outputdir="${session.ejb.src}" descriptordir="${dest.dir}/${ejb.jar.name.session}/META-INF"

exitonerror="true">

<classpath refid="compile.path"/>

<fileset dir="${session.ejb.src}" includes="**/*.java"/>

</ejbgen>

<javac srcdir="${session.ejb.src}" destdir="${dest.dir}/${ejb.jar.name.session}" debug="${debug}">

<classpath refid="compile.path"/>

</javac>

</target>

<target name="build.webapps" description="Builds framework Web Applications">

<copy failonerror="true" todir="${web.build.dir}/WEB-INF/lib">

<fileset dir="${lib.root.dir}/web" includes="*.jar" />

</copy>

<javac srcdir="${web.src}" destdir="${web.build.dir}/WEB-INF/classes"

debug="${debug}">

<classpath refid="compile.path"/>

</javac>

</target>

<!-- build web service

 classpath is required due to session ejbs ejbgen nature -->

<target name="build.web.services" description="build web services">

<wlcompile srcdir="${framework.src}" destdir="${dest.dir}" includes="webServices">

<ejbgen source="${sourceVersion}"/>

<javac deprecation="${deprecation}"/>

<javac debug="${debug}"/>

</wlcompile>

</target>

<!-- The servicegen Ant task takes as input an EJB JAR file or list of Java

 classes, and creates all the needed Web service components and packages them

 into a deployable EAR file.-->

<target name="build.ws" description="" depends="build.sync.ws, build.async.reliable.ws" />

<!-- build synchronous WS -->

<target name="build.sync.ws">

<jwsc srcdir="${basedir}/webServices/" sourcepath="${basedir}/webServices" destdir="${dest.dir}" applicationXml="${src.dir}/Ear/META-INF/application.xml" classpath="${java.class.path};${dest.dir}/webServices;${dest.dir}/sessionEjbs;${dest.dir}/APP-INF/lib/value.jar;${dest.dir}/APP-INF/lib/utils.jar;${dest.dir}/APP-INF/lib/${log.jar}" keepGenerated="true" deprecation="${deprecation}" debug="${debug}" verbose="false">

<jws file="WebServices.java" explode="true"/>

</jwsc>

</target>

<!-- build relialbe, asynchronous WS -->

<target name="build.async.reliable.ws">

<jwsc srcdir="${basedir}/webServices" sourcepath="${basedir}/webServices" destdir="${dest.dir}" applicationXml="${src.dir}/Ear/META-INF/application.xml" classpath="${java.class.path};${dest.dir}/webServices;${dest.dir}/sessionEjbs;${dest.dir}/APP-INF/lib/value.jar;${dest.dir}/APP-INF/lib/utils.jar;${dest.dir}/APP-INF/lib/${log.jar}" keepGenerated="true" deprecation="${deprecation}" debug="${debug}" verbose="false">

<jws file="WebServices.java" explode="true"/>

</jwsc>

</target>

<target name="package.ear">

<echo>Packaging EAR and modules...</echo>

<jar destfile="${tmp.dir}/${ejb.jar.name.session}.jar" compress="false">

<fileset dir="${dest.dir}/${ejb.jar.name.session}" excludes="**/*.java, ejbgen*"/>

</jar>

<jar destfile="${tmp.dir}/webApp.war" compress="false" update="false">

<fileset dir="${web.build.dir}"/>

<fileset dir="${framework.src}/webApp" excludes="src/**"/>

</jar>

<jar destfile="${ear.file}" index="true" compress="false" update="false" >

<fileset dir="${framework.src}" includes="META-INF/**"/>

<fileset dir="${dest.dir}" includes="APP-INF/**"/>

<fileset dir="${tmp.dir}"/>

</jar>

</target>

<target name="appc.archive" description="Parses deployment descriptors and generates stubs/skeletons">

<echo>Running APPC..</echo>

<wlappc source="${ear.file}"

keepgenerated="false"

verbose="on"

optimize="true"

deprecation="true"

forcegeneration="true"/>

</target>

<!-- deploy application to target server-->

<target name="deploy.ear" description="Deploy build/Ear to WebLogic on ${wls.admin.server.host}:${wls.admin.server.port}."

depends="package.ear, appc.archive">

<wldeploy user="${wls.username}"

 password="${wls.password}"

 adminurl="t3://${wls.admin.server.host}:${wls.admin.server.port}"

 targets="${VBITFramework.server.name}"

 action="deploy"

 name="${VBITFramework.ear.display.name}"

 source="${ear.file}"

 nostage="true"

 debug="true"

 usenonexclusivelock="true"/>

</target>

<target name="redeploy.ear" description="Redeploy build/Ear to WebLogic on ${wls.admin.server.host}:${wls.admin.server.port}."

depends="build, package.ear, appc.archive">

<wldeploy user="${wls.username}"

 password="${wls.password}"

 adminurl="t3://${wls.admin.server.host}:${wls.admin.server.port}"

 targets="${VBITFramework.server.name}"

 action="redeploy"

 name="${VBITFramework.ear.display.name}"

 failonerror="true"

 usenonexclusivelock="true"/>

</target>

<target name="undeploy.ear" description="Undeploy Ear on WebLogic on ${wls.admin.server.host}:${wls.admin.server.port}.">

<wldeploy user="${wls.username}"

 password="${wls.password}"

 adminurl="t3://${wls.admin.server.host}:${wls.admin.server.port}"

 action="undeploy"

 name="${VBITFramework.ear.display.name}"

 targets="${VBITFramework.server.name}"

 verbose="true"

 debug="true"

 failonerror="true"/>

</target>

<!-- TMP targets

/opt/bea/user_projects/dev/domains/VBITApp/servers/VBITAppServer/upload/VBITFrameworkEAR/app/VBITFrameworkEar.ear

-->

<target name="deploy.ear.dev" description="Deploy build/Ear to WebLogic on VBITeasapp1:9001.">

<wldeploy user="system"

 password="weblogic"

 adminurl="t3://VBITeasapp1:9001"

 action="deploy"

 name="${VBITFramework.ear.display.name}"

 source="${ear.file}"

 targets="VBITAppSvr1"

 debug="true"

 verbose="true"

 stage="true"

 remote="true"

 />

</target>

<target name="build.framework.libs">

<jar destfile="${lib.root.dir}/export/framework.jar" index="true" compress="false" update="true" >

<fileset dir="${app-inf.dest.classes}"/>

</jar>

<jar destfile="${lib.root.dir}/export/framework-web.jar" index="true" compress="false" update="true" >

<fileset dir="${web.build.dir}/WEB-INF/classes" excludes="**/Covers*, **/Generic*, **/Test*"/>

</jar>

<jar destfile="${lib.root.dir}/export/framework-sessionEJBs.jar" index="true" compress="false" update="true" >

<fileset dir="${dest.dir}/${ejb.jar.name.session}" includes="**/Base*"/>

</jar>

<!--<copy todir="${server.conf.ext.dir}" file="${tmp.dir}/${ejb.jar.name.session}.jar"/>-->

</target>

<!-- END TMP targets -->

<!-- CLEAN TARGETS -->

<target name="clean.all" depends="clean.ear, clean.exploded.ear, clean.ejb.stubs.session">

 <delete includeemptydirs="true" failonerror="false">

 <fileset dir="${build.dir}" includes="**/*" excludes=".project"/>

<fileset dir="${server.conf.ext.dir}" includes="**/*.jar" excludes=".project"/>

 </delete>

</target>

<target name="clean.ejb.stubs.session">

 <delete includeemptydirs="false" failonerror="true">

 <fileset dir="${session.ejb.src}" includes="**/*EJBHome.java, **/*EJBRemote.java, ejbgen-build.xml"/>

 </delete>

</target>

<target name="clean.ear">

<delete file="${ear.file}" failonerror="false"/>

</target>

<target name="clean.exploded.ear">

<delete dir="${ear.exploded.dir}"/>

</target>

</project>

4.5 Iterative Build Process

The VBIT common J2EE platform assumes that projects will be developed using the Rational Unified Process (or similar approved methodology)

Application Development Guidelines

The following sections outline the general guidelines and processes that the Application Architecture Team (AAT) requires for application development. Builds for all tools will be obtained from central administration.

4.6 Development Toolsets

All VBIT applications will be built using the following tools, APIs and frameworks within the

VBIT J2EE platform. A base framework structure with a will be created in Dimensions for

individual developers to import into their environments:

Server: WebLogic 9.2.1

IDE: Eclipse 3.2.2 with WTP (with WST, JST)

HTML/JSP Editors: Macromedia Dreamweaver 8

XML: Altova XMLSpy 2006

UML: Rational Software Architect 6.0

Frameworks:

Apache: Struts 1.2, BeanUtils, Ant, Log4j

Testing: JUnit.

Persistence: EJB 2.1. with CMT. Hibernate is under evaluation.

Web services: WS Basic profile 1.1 & Enterprise Web services 1.1 (JSR-921), SOAP 1.1, WSDL 1.1, JAX-RPC 1.1

4.7 Use of Eclipse Plugins

Eclipse is a Plugin-based development IDE. Plugins are the basic units of functionality within Eclipse. When activated, they collaborate together through their predefined interfaces to provide the overall application functionality. There are a variety of plugins that do a host of tasks from starting J2EE servers to providing XML editing capabilities. The installation of plugin’s especially from vendors that do not have wide industry acceptance can prove to be counter productive to daily development activities and in many cases severely impact the Eclipse JVM and performance due to buggy memory management and code generation quality. Good starting points to read about specific plugins are “The Eclipse Tools Project” (http://eclipse.org/tools/downloads.html) and “The Eclipse Technology Project “ (http://eclipse.org/technology/index.html)

For tasks specific to JSP/HTML and XML development, the ACRB is currently in the process of approving recommendations for Macromedia Dreamweaver and XML Spy from the Application Architecture team. These 2 toolsets will form take care of all the needs of UI development and XML editing. Hence, no plugins are specifically recommended by the AAT at this time.

Prior to making use of any Eclipse plugin(s), the desired plugin should be reviewed by the AAT so that it’s impact on the IDE and overall project can determined. If the plugin is deemed a fit within the enterprise Eclipse platform, the storage and use will be part of the standard desktop build and as such will be made part of the standard Eclipse installation by the desktop services team.

4.8 Use of Third-Party JARS and Libraries

Similar to the use of Eclipse plugins, all use of libraries and JAR files (whether open source or not) will have to be brought up before the AAT and reviewed. If the library is deemed a fit, it will be stored in Dimensions together with the rest of the common JARs and become part of the master build process.

4.9 Governance Process

New applications being built on the J2EE platform will need to comply with the

architectural principles defined in this document. This implies that base framework components and interfaces defined in Section 3, once built, will have to be extended and/or implemented. In order to make sure that all these new components and services are being developed with the correct design patterns, principles and code, all application development teams need to plan on presenting their proposed architectural designs to the AAT and having the AAT assigned technical architect identify the framework components that exist to be used, and those that do not exist, to be designed and built with direct supervision from the AAT technical architect. Following are a set of guidelines that must be followed for the AAT to successfully evaluate a project:

· Use the RUP (Rational Unified Process) methodology for application design, development and implementation.

· Before actual development commences, project team leads and/or PM’s need to provide the necessary documentation clearly outlining project scope/objectives, and requirements

· Project team leads and/or PM’s need to present to the AAT a design review and a list (with justification) of all tool sets and libraries planned for usage other than what’s listed in this document

· Use Dimensions as the source control repository.

· Implement and/or extend the VBIT framework outlined in this document.

· Follow the coding and naming conventions outlined in the “Java Code Conventions” Document
· Use the development tools listed in section 6.1 above.

· Employ an iterative build and unit testing paradigm using Ant and JUnit (Cactus for server side testing). All classes (other than value objects) will need accompanying Test harnesses.

· Include proper documentation: JavaDocs in all Java source code and regular comments in non Java source. This will be in included in the “Java Code Conventions” Document

· Conduct code reviews to assure correctness and robustness. Team leads should schedule this with the AAT architect/team lead upon successful completion of a milestone.

4.10 JNDI Naming Conventions

For names that are bound to the server’s namespace, the following naming conventions should be followed:

JDBC Datasources: jdbc/<application name>/<DbName>

Example: jdbc/framework/CorpDb/admin

Example: jdbc/weams/CorpDb/user

For reporting databases, the following convention will be used:
jdbc/<application name>/reports/<DbName>

Example: jdbc/covers/reports/CorporateDb

EJBs: ejb/session/<application name>/EjbnameHome

(or EjbnameLocalHome)

Example: ejb/session/framework/BaseSessionHome

� Services that expose enterprise applications

* Details on the design of the persistence layer will be included in a later version of this document once the EJB/ORM evaluation is complete.

� Refer to sections 5.4 and 5.5 for naming conventions

� While the VBIT Enterprise Service Bus will be designed to handle multiple Client types, newly built applications should target the Browser Client type requiring no distribution of any client tools on user PC's

* Installation is done by the Austin LAN Support group.

